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The problem of dynamic prediction with time-dependent covariates, given by
biomarkers, repeatedly measured over time, has received much attention over
the last decades. Two contrasting approaches have become in widespread use.
The first is joint modeling, which attempts to jointly model the longitudinal
markers and the event time. The second is landmarking, a more pragmatic
approach that avoids modeling the marker process. Landmarking has been
shown to be less efficient than correctly specified joint models in simulation
studies, when data are generated from the joint model. When the mean model
is misspecified, however, simulation has shown that joint models may be infe-
rior to landmarking. The objective of this article is to develop methods that
improve the predictive accuracy of landmarking, while retaining its relative sim-
plicity and robustness. We start by fitting a working longitudinal model for the
biomarker, including a temporal correlation structure. Based on that model, we
derive a predictable time-dependent process representing the expected value
of the biomarker after the landmark time, and we fit a time-dependent Cox
model based on the predictable time-dependent covariate. Dynamic predictions
based on this approach for new patients can be obtained by first deriving the
expected values of the biomarker, given the measured values before the land-
mark time point, and then calculating the predicted probabilities based on the
time-dependent Cox model. We illustrate the approach in predicting overall
survival in liver cirrhosis patients based on prothrombin index.
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1 INTRODUCTION

Biomarkers are commonly used in clinical research and treatment to monitor progression of patients. Prominent examples
are PSA in prostate cancer,1,2 CD4+ T-cell count and HIV-RNA in HIV-infected individuals,3,4 and eGFR in patients with
end-stage renal disease.5,6 They are used to study the impact of (changes) in the biomarker on disease progression and
survival, and to obtain updated prognosis for patients, based on observed marker values, that is, for dynamic prediction
of survival.
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Broadly speaking, two approaches are in widespread use for dynamic prediction based on longitudinally measured
biomarkers. The first is the use of models that jointly characterize the development of the longitudinal biomarkers and
the time to event.7,8 The advantage of the joint modeling approach is that predictions based on joint models are quite
efficient when the model is well specified, and there is software available that can fit these models and produce dynamic
predictions in standard situations.9,10

The second approach is landmarking,11,12 which is a pragmatic approach that avoids specifying a model for the lon-
gitudinal markers. The advantage of landmarking is that it is easy to implement; no specialized software is needed to
obtain dynamic predictions from landmarking. The disadvantage is that it is less efficient than joint modeling, and can
yield small bias when last observation carried forward is used and the biomarkers are coarsely observed.

The objective of this article is to bridge the gap between joint modeling and landmarking, and develop a method that
improves on standard landmarking while avoiding complex integration over random effects, which makes joint modeling
computationally demanding.

2 NOTATION AND COMMON APPROACHES

We assume that we follow patients, indexed by i = 1, … ,n, from time t = 0 until an event (called death here) occurs.
Let Ti be the time of death, and Ci an independent censoring time; define T̃i = min(Ti,Ci) and the status indicator Di =
I(Ti ≤ Ci). There is a continuous biomarker process Xi(t), defined as long as individual i is alive. This process is observed
at observation times tij, i = 1, … ,n, j = 1, … ,ni. The observation times may be irregular, the number of observations
may differ across subjects, but it is assumed that they are uninformative, that is, that they do not depend on unobserved
marker values or unobserved characteristics. The observations have measurement error or day-to-day variation (white
noise), and the actual observed measurements of Xi(t) at tij are denoted by xij. Other covariates might be present, but will
be ignored for the sake of simplicity; they can be included into each of the models we describe below in a straightforward
way. The observations are (t̃i, di, xi), with xi = (xi1, … , xi,ni )

⊤.
The objective is to use part of the information of the biomarkers of the patient to estimate the conditional probability

that the patient is still alive after a predefined time window. More specifically, at a prediction time point s we want to
estimate the conditional probability that the patient is still alive at time s + w, conditionally on being alive at time s and
conditional on the history of the biomarkers up to time s, that is,

𝜋i(s + w | s) = P(Ti > s + w |Ti ≥ s, xi(s)),

with xi(s) denoting the history of all biomarker measurements up to s.
A Cox model with a time-dependent covariate X(t)

𝜆(t |X(t)) = 𝜆0(t) exp(𝛽X(t))

is helpful in understanding biology, but useless in predicting the future. The reason for this is that to obtain 𝜋i(s + w | s),
based on information at the prediction time s one would need the future values of X(t) after time s. Unless the
time-dependent covariate is exogenous one would not know these future values.

2.1 Joint modeling

One way to be able to derive dynamic predictions is to make a model for how X(t) might change over time, given
knowledge at the prediction time. For this it is assumed that Xi(t) follows a Gaussian process with mean 𝜇i(t), possibly
depending on covariates, and covariance function C(t1, t2) = cov(Xi(t1),Xi(t2)). A popular choice is a linear mixed model
like Xi(t) = 𝛽0 + bi0 + (𝛽1 + bi1)t with fixed effects 𝛽0 and 𝛽1 (possibly depending on covariates) and random effects (bi0, bi1)
assumed to be bivariate normal with mean zero. Xi(t) is observed at tij with independent measurement errors eij. The stan-
dard joint model assumes that the hazard of dying at time t depends on the current value of the biomarker, for instance
given by the proportional hazards model

𝜆(t | xi(t)) = 𝜆0(t) exp(𝛽𝜇i(t)).
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Other options, where the hazard depends on the random effects directly, or on the slope or the area under the curve are
also possible. Rizopoulos13 discusses how to obtain dynamic prediction from such joint models, and software is available
in the JM and JMbayes packages.9,10

Simulation studies have shown that the joint model efficiently estimates the underlying parameters, when the model
is correctly specified,14 and that it is reasonably robust against modest misspecification of the dependence function and
against modest deviations of proportional hazards, but that it is quite sensitive to misspecification of the longitudinal
trajectory.15

2.2 Landmarking

Landmarking11,12 avoids modeling the marker process. The idea behind landmarking is to select, for a given landmark
time point tLM = s, all subjects alive and under follow-up at time s. The time-dependent information until time s is sum-
marized in some way. Possibilities to summarize the history are the last observed measurement (last observation carried
forward, LOCF), or the last observed measurement and the slope. An extension is to use the “age” of the last observa-
tion (difference between s and last observed time before s) as additional covariate. This summary of the time-dependent
covariate is subsequently used in a Cox model in the landmark data set. When interest is in estimating the dynamic
prediction probability at s + w, it is common to apply administrative censoring at s + w. This administrative censoring,
or “stopped Cox”16 is introduced to make the procedure robust against violations of proportional hazards, although
for long term prediction (large w) time-varying effects might lead to some bias. A concern is that the staleness (“ag-
ing”) of the predictor when using LOCF leads to a mismatch between the true underlying value of the biomarker and
the last observation. This measurement error leads to violation of proportional hazards,12 which would call for mod-
eling time-varying effects, but it is challenging to find adequate models while at the same time avoiding the threat of
overfitting.

A number of approaches have been proposed to improve the simple LOCF landmarking approach. One of them is
a two-stage approach,17-19 where the data of the time-dependent covariate(s) before the landmark prediction time-point
s are used and a mixed model is fit to those data (or all data). Then the empirical Bayes best linear unbiased predictor
(BLUP) is used as a predictor at s. It is called “error free” but that could be too optimistic. It partly solves the staleness
problem of the predictor at tLM, but does not take care of the problem that the effect of the last measured biomarker before
time s typically becomes smaller as t gets more removed from s, leading to a decay of the 𝛽(t).

3 LANDMARKING 2.0: GETTING CLOSER TO THE JOINT MODEL

The joint model approach leads to the following model for the conditional survival:20

𝜋i(s + w | s) = E
[

exp
(
−∫

s+w

s
𝜆0(t) exp(𝛽Xi(t))dt

) |Ti ≥ s, xi(s)
]
. (1)

Following Tsiatis et al3 in their treatment of measurement errors in survival analysis, see also Andersen and Liestøl,21

the conditional survival can by approximated by

𝜋i(s + w | s) ≈ exp
(
−∫

s+w

s
�̃�0(t) exp

(
𝛽E[Xi(t) |Ti ≥ t, xi(s)]

)
dt
)
. (2)

Note that the regression coefficient 𝛽 and baseline hazard �̃�0(t) in the approximation (2) differ from the original ones
in Equation (1). Also note the conditioning on Ti ≥ t in (2), rather than on Ti > s, by definition of the hazard. We expect
the approximation in Equation (2) to be accurate when 𝛽 and the baseline hazard are not too large and when X(t) is not
too variable. The approximation in (2) leads to the following proposal for what we call landmarking 2.0:

1. Define and fit a working Gaussian process with trend 𝜇(t) and covariance matrix C(t1, t2) of the observed Xij. Note that
it is not assumed that Xi(t) follows a Gaussian process, although a transformation of the longitudinal measurements
in order to make it approximately normal before fitting the model is probably wise anyway.
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2. Use the fitted Gaussian process to estimate E{Xi(t) |Ti ≥ t, xi(s)} for t ≥ s by least squares yielding the predictable
time-dependent covariate x̂i(t | s), given by

x̂i(t | s) = 𝜇2 + Σ⊤
12Σ

−1
11 (xi(s) − 𝜇1),

at each of the event time points in the data, where 𝜇1 and 𝜇2 denote the means of the fitted Gaussian process, evaluated
at the observed measurement time points before s and the event time points after s, respectively, and Σ11, Σ12, and Σ22
the relevant sub-matrices of the variance-covariance matrix at the collection of those time points.

3. Fit a landmark Cox model with a fixed effect of the time-dependent covariate x̂i(t | s), yielding estimates 𝛽 and �̂�0(t) of
𝛽 and �̃�0(t) in Equation (2).

4. Use the resulting landmark Cox model to obtain dynamic predictions for a new patient with observed x∗(s) by
– Using the Gaussian process again to estimate E{X∗(t) |T ≥ t, x∗(s)} for t ≥ s by least squares yielding the predictable

time-dependent covariate x̂∗(t | s). Let 𝜇1 and 𝜇2 denote the means of the fitted Gaussian process, evaluated at the
observed measurement time points before s and the event time points after s, respectively, and Σ11, Σ12, and Σ22 the
relevant sub-matrices of the variance-covariance matrix at the collection of those time points, then

x̂∗(t | s) = E{X∗(t) |T ≥ t, x∗(s)} = 𝜇2 + Σ⊤
12Σ

−1
11 (x

∗(s) − 𝜇1).

– Calculating the predicted hazard increments �̂�0(u) exp{𝛽x̂∗(u | s)} for each event time point u between s and s + w
in the data.

– The estimated conditional survival probability is given by

�̂�(s + w|s) = exp

[
−

∑
s<u≤s+w

�̂�0(u) exp{𝛽x̂∗(u | s)}

]
.

The approach is obviously more complex than naïve landmarking, but it is computationally considerably less challeng-
ing than joint modeling, because it avoids latent variables and integration over random effects. It gives a robust estimate of
the survival given the predictable x̂(t | s). Note that the first two steps above could be replaced by any other approach that
would give estimates of x̂i(t | s) for t ≥ s. Later we will use revival modeling22 for this purpose. Landmarking 2.0 might be
less efficient than the joint model, but it allows closer inspection and direct modeling of the trajectories of the survivors
before estimating the regression parameters of the survival model. Note that the BLUP approach17-19 is similar in spirit,
but uses x̂i(s | s) rather than x̂i(t | s) in the landmark model.

As a working longitudinal model, we propose to take a variance components approach related to an autoregressive
model, as also used in Dempsey and McCullagh.22 This involves specifying a model for the trend 𝜇(t) and one for the tem-
poral covariance C(t1, t2) = cov(X(t1),X(t2)). For the temporal covariance we follow22 by taking as variance components
a between individuals variance 𝜎2

1 , a within individuals variance 𝜎2
2 with a temporal correlation exp(−𝜆|t1 − t2|), and a

white noise error component 𝜎2
3 , leading to

C(t1, t2) = 𝜎2
1 + 𝜎2

2 exp(−𝜆|t1 − t2|) + 𝜎2
3 1{t1 = t2}.

Other options, depending on the fit of the model, are of course possible. The mode can be fitted with standard software
for linear mixed effects models, such as the R package nlme.

3.1 Revival

The working Gaussian process is not the only way to obtain estimates x̂(t | s) to be used in the landmark Cox model.
Another interesting way to achieve the same goal is to base x̂(t | s) on the revival approach.22 In this approach, a longi-
tudinal model is used for the biomarker, backwards in time from the time of death of the individual. Bayes’ formula can
be used to obtain dynamic predictions of 𝜋i(s + w | s). A problem that has to be dealt with is the possibility of censoring,
that is, of not observing the time of death. We follow here the approach suggested by the commentary on the paper by
Dempsey and McCullagh by van Houwelingen.23 We start by giving some details on the model, then show how the model
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can be used to obtain dynamic predictions, and continue to illustrate how the same model can be used to obtain estimates
of the predictable time-dependent covariate x̂(t | s), to be used in landmarking 2.0.

3.1.1 The revival model

Following van Houwelingen,23 we start by defining an observation limit 𝜏, and denote the subset of “dead” subjects by
those that died before 𝜏, and the subset of “survivors” by those that were alive at time 𝜏 (including those that are observed
to die after time 𝜏). We define and fit separate models for the longitudinal markers of the dead subjects and the survivors.
Subjects that were censored before 𝜏 are not included in either model. They are used later on when obtaining and assessing
dynamic prediction probabilities. For subject i belonging to the subset of dead people, let ti be the time of death, denote
u = ti − t the reverse time to death of subject i, and define the time-reversed process of subject i as Zi(u) = Xi(ti − u).
The distribution of this time-reversed process may depend on subject-specific factors like age, sex, and treatment. For all
subjects belonging to the subset of survivors, we denote u = 𝜏 − t the reverse time to the observation limit, and define the
time-reversed process as Zi(u) = Xi(𝜏 − u).

3.1.2 Dynamic prediction using revival

When models have been defined for the time-reversed marker processes, backwards in time from the time of death ti
of the dead subjects, and from the horizon 𝜏 for the survivors, conditional probabilities 𝜋i(s + w | s) can be obtained by
Bayes’ rule, after having obtained an estimate of the conditional survival probabilities P(T > t |T > s). The latter may be
obtained from a Kaplan-Meier estimate, possibly stratified by covariates, or a simple baseline Cox model. Since these all
yield estimates that concentrate their probability mass on the observed event time points, let t > s be such an event time
point. Then Bayes’ rule gives

P(T = t |T > s,X(s)) = P(X(s) |T = t,T > s) ⋅ P(T = t |T > s)∑
u>s P(X(s) |T = u,T > s) ⋅ P(T = u |T > s)

. (3)

Note that in the above, the sum in the denominator is over all event time points u > s,u < 𝜏, plus the predefined
horizon 𝜏. Note also that P(X(s) |T = t,T > s) can be simplified to P(X(s) |T = t). With slight abuse of notation, we denote
by P either a discrete probability or a (joint) density. For each event time point, P(X(s) |T = t) is the joint density of the
observed marker values before the landmark time point s, which can be obtained from the distribution of the time-reversed
marker process Z(t − u). For t = 𝜏, the joint density of the observed marker values before the landmark time point s can
be obtained from the distribution of the process Z(𝜏 − u).

3.1.3 Landmarking 2.0 using revival

Equation (3) describes how to obtain dynamic prediction probabilities of survival, given observed marker values. We
shall refer to this as direct dynamic prediction using revival. The time-reversed marker processes also imply conditional
distributions of the marker at time points t > s, given survival until time t and the observations of the marker process at
time points before time s. Here we want to extract the conditional expectations of X(t), given the observed history until
time x(s), and given T ≥ t. Using the same abuse of notation (P denoting either density or probability), we have

P(X(t) = x |T ≥ t, x(s)) = ∫
𝜏

t
P(X(t) = x,T = u |T ≥ t, x(s)) du

= ∫
𝜏

t
P(X(t) = x |T = u,T ≥ t, x(s)) ⋅ P(T = u |T ≥ t, x(s)) du

= ∫
𝜏

t
P(X(t) = x |T = u, x(s)) ⋅ P(T = u |T ≥ t, x(s)) du.

When working with Cox models or nonparametric models for the time-to-event distribution, the integral is in fact
a sum over event time points u, including the separate time point 𝜏, representing the survivors. This implies that the
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conditional expectation x̂(t | s) is given by

E
(

X(t) |T ≥ t, x(s)
)
= ∫ xP(X(t) = x |T ≥ t, x(s)) dx

=
∑

t≤u≤𝜏
E
(

X(t) |T = u, x(s)
)
⋅ P(T = u |T ≥ t, x(s)).

The last term can be written as

P(T = u |T ≥ t, x(s)) = P(x(s) |T = u) ⋅ P(T = u |T ≥ t)∑
u′≥t P(x(s) |T = u′) ⋅ P(T = u′ |T ≥ t)

,

similar to (3), the direct revival dynamic prediction probability of dying at time u. Both u and u′ include 𝜏. Furthermore,
the first term, E

(
X(t) |T = u, x(s)

)
can be obtained from the joint distribution of (X(s),X(s,u]), given T = u. Here X(s,u]

refers to the vector of X(t)’s for the event times t in (s,u]. If we denote this distribution as multivariate normal with mean

vector
(
𝜇s
𝜇su

)
, and covariance matrix

(
Σss Σs,su
Σsu,s Σsu,su

)
, then we obtain

E
(

X(s,u] |T = u, x(s)
)
= 𝜇su + Σsu,sΣ−1

ss
(

x(s) − 𝜇s
)
.

All this implies the following procedure to calculate x̂(t | s) = E
(

X(t) |T ≥ t, x(s)
)

based on revival, for use in landmarking
2.0: first calculate the direct dynamic prediction probabilities P(T = u |T ≥ t, x(s)), then loop over event time points u > s,
including u = 𝜏, and

• Calculate conditional expectations and variances, given T = u, of (X(s),X(s,u]), yielding expectation vector
(
𝜇s
𝜇su

)
and

covariance matrix
(

Σss Σs,su
Σsu,s Σsu,su

)
.

• Calculate E
(

X(s,u] |T = u, x(s)
)
= 𝜇su + Σsu,sΣ−1

ss
(

x(s) − 𝜇s
)
.

• Combine elements E
(

X(t) |T = u, x(s)
)

of these with P(T = u |T ≥ t, x(s)) and sum over u ∈ (t, 𝜏] to obtain
E
(

X(t) |T ≥ t, x(s)
)
.

4 ILLUSTRATION

We will illustrate our methods using data from the CSL-1 trial, conducted in Copenhagen in 1962 to 1969, randomizing
patients with histologically verified liver cirrhosis to placebo or prednisone. The subset used in this article consists of
488 patients, 251 in the prednisone and 237 in the placebo arm. Figure 1 shows the Kaplan-Meier estimate of overall
survival for all subjects in the trial, and the reverse Kaplan-Meier estimate of the censoring distribution in the trial, both
by randomized treatment.

The longitudinal marker of interest is the prothrombin index, a composite blood coagulation index related to liver
function, measured initially at 3-month intervals and subsequently at roughly 12-month intervals. The prothrombin mea-
surements over time for all patients in the trial by randomized treatment are shown in Figure 2, along with a loess
smoothed average.

A Gaussian process was fitted on the prothrombin measurements excluding t = 0, where the mean𝜇(t)was fitted using
different linear trends for the two treatment arms, but a common covariance function was used for both treatments. The
estimated linear trend was 69.03(±1.69) + 2.19(±0.37)t for the placebo arm (estimate± standard error) and 80.57(±1.64) +
1.03(±0.34)t for the prednisone arm, with covariance parameters as shown in Table 1.

4.1 Revival

Figure 3 shows spaghetti plots of the prothrombin measurements in reverse time, separately for the placebo and pred-
nisone patients, and separately for subjects that died within the observation limit of 𝜏 = 9 years and subjects that were
alive at 𝜏. A total of 36 patients were censored before time 𝜏.
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T A B L E 1 Estimated covariance parameters of the Gaussian process

Component Variance Estimate Standard error

Between individuals 𝜎2
1 308.4 39.1

Within individuals 𝜎2
2 240.8 55.8

Temporal decay parameter 𝜆 0.52 0.49

White noise 𝜎2
3 184.3 50.0
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F I G U R E 3 Spaghetti plots of the prothrombin measurements in backward time, separately for the placebo and prednisone patients,
and separately for subjects that died within 𝜏 = 9 years (“dead”) and subjects that were alive at 9 years (“survivor”)

Denote Ai as the treatment indicator (0 = placebo, 1 = prednisone). A Gaussian process for the time-reversed marker
process was used, with

E(Zi(u) |T = ti,Ai) = 𝛽0 + 𝛽1Ai + 𝛽2u + 𝛽3 log(u + 𝜀) + 𝛽4ti,

cov(Zi(u),Zi(u′) |T = ti) = 𝜎2
1 + 𝜎2

2 exp(−𝜆|u − u′|) + 𝜎2
31{u = u′},

for subjects that died before 𝜏 (ti being the time of death of subject i), and with

E(Zi(u) |T > 𝜏,Ai) = 𝛽0 + 𝛽1Ai + 𝛽2u + 𝛽3 log(u + 𝜀),
cov(Zi(u),Zi(u′) |T > 𝜏) = �̃�2

1 + �̃�2
2 exp(−�̃�|u − u′|) + �̃�2

31{u = u′},

for subjects that were alive and under follow-up at time 𝜏. For 𝜀 we took 1 day. The results are shown in Table 2.
Figure 4 illustrates the mean model, for patients in both treatment arms, dying at 3, 6, and 9 years, and surviving

until 𝜏.



PUTTER and VAN HOUWELINGEN 1909

T A B L E 2 Estimates of the longitudinal time-reversed models

Died Censored

Parameter Estimate SE Estimate SE

Intercept 66.39 2.57 95.85 4.51

ti 1.73 0.56

Revival (u) −1.79 0.56 −1.39 0.68

ln(u + 𝛿) 4.58 0.45 −1.65 1.51

Prednisone 8.37 2.55 9.53 5.34

Between individuals (𝜎2
1 ) 221.5 53.8 202.4 98.5

Within individuals (𝜎2
2 ) 243.6 70.7 191.1 282.2

Temporal decay parameter (𝜆) 0.62 0.62 0.35 2.28

White noise (𝜎2
3 ) 161.9 52.6 161.9 209.4
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Prednisone, death at t=6
Prednisone, death at t=3

F I G U R E 4 Model-based means for patients in both treatment arms, dying at 3, 6, and 9 years, and surviving until 𝜏

4.2 Dynamic prediction

Our aim is to illustrate our new proposed method in obtaining dynamic prediction probabilities, and to compare these
dynamic prediction probabilities with those obtained by other methods. For this purpose we fix the prediction time point
at s = 3 years and the prediction window to w = 2 years. Using the marker values up to s, the following methods are
considered for estimating 𝜋i(s + w | s).

• Joint model (JM): Joint model, where the linear mixed effects model used fixed and random intercepts (unstructured),
separately for the two treatment arms, and a proportional hazards model with treatment for the survival part and
piecewise constant baseline hazard, using the JM package.9
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• Revival: Direct revival, using Equation (3).
• LOCF: Last observation carried forward, this is the naïve landmark method, where at time s the last observed marker

value before time s is used in a Cox model.
• x̂(s | s) (Xhats): This is the BLUP method,17-19 based on the fitted working Gaussian process.
• x̂(t | s) (Xhat): The newly proposed landmark method, with x̂(t | s) based on the fitted working Gaussian process.
• x̂(t | s) based on revival (Xhatrevival): The newly proposed landmark method, with x̂(t | s) based on revival model.

Dynamic prediction probabilities were obtained by leave-one-out cross-validation; for each subject, the above models
were fitted on data with the subject left out and subsequently used to obtain the predicted probability for that subject.

Figure 5 shows the evolution of x̂(t | s) for each of the patients in the CSL-1 trial, based on their observed marker values
until the landmark time s = 3 years, by randomized treatment. The x̂(t | s) in the top row of Figure 5 is based on the fitted
working Gaussian process, while those in the bottom row are based on the revival model.
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F I G U R E 5 Evolution of x̂(t | s) for s < t ≤ s + w for all patients by treatment, based on the Gaussian process (top row) and the revival
model (bottom row)
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Figure 6 shows a matrix plot of the cross-validated dynamic predictions obtained from the different approaches.
Figure 6 reveals an aspect already noted,23 namely that the revival models are not well calibrated. The cross-validated

prediction probabilities of the direct revival model are much more narrowly distributed around its mean than the other
methods, while those of the landmarking based on revival (Xhatrevival) seem to have a somewhat lower average than
the other methods. The miscalibration of the direct revival model could be due to a misspecification of the revival mod-
els (the longitudinal models in reverse time), leading to incorrect prediction probabilities after using Bayes’ rule, as in
Equation (3).

In order to compare the predictive information of the different methods, we transformed the original cross-validated
predicted probabilities using the complementary log-log transformation. We then entered each of the transformed
cross-validated dynamic prediction probabilities in a univariate proportional hazards model in the landmark data, using
administrative censoring at the horizon. The results are shown in Table 3.

It can be seen that landmarking 2.0 with x̂(t | s) based on revival as predictable time-dependent covariate has the
highest univariate 𝜒2 value (𝜒2 column). Landmarking 2.0 (x̂(t | s)) and the BLUP method (x̂(s | s)) are very close with
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T A B L E 3 Estimated regression coefficients, standard errors, and chi-squared statistics for the univariate (𝜒2) and bivariate vs
univariate model with x̂(t | s) revival (LRT)

Model Beta SE 𝝌
2 LRT

Joint model 0.908 0.221 17.29 0.56

Direct revival 2.717 0.622 17.69 1.76

Last observation 0.858 0.238 12.99 0.17

x̂(s | s) 0.886 0.198 19.30 0.10

x̂(t | s) 0.874 0.194 19.45 0.02

x̂(t | s) revival 1.168 0.256 20.30 —

T A B L E 4 Cross-validated Brier and Kullback-Leibler (KL) prediction errors of different prediction methods; in brackets after the
prediction errors are the percentage reduction of prediction error, compared to the null model

Model Prediction error

Brier KL

Null model 0.1683 0.5206

Joint model 0.1649 (2.1%) 0.5048 (3.0%)

Direct revival 0.1565 (7.0%) 0.4858 (6.7%)

Last observation 0.1585 (5.8%) 0.4932 (5.3%)

x̂(s | s) 0.1549 (8.0%) 0.4797 (7.9%)

x̂(t | s) 0.1549 (8.0%) 0.4791 (8.0%)

x̂(t | s) revival 0.1536 (8.7%) 0.4751 (8.7%)

respect to their univariate 𝜒2 value. The fact that direct revival is not well calibrated is also evident from this table, with
an estimated regression coefficient of 2.72. In the other methods the calibration slope is acceptable, but it must be noted
that calibration in the large was not assessed here. For that, a parametric model like Poisson or Weibull12,24,25 could
be used. After having selected landmarking 2.0 with x̂(t | s), we fitted bivariate proportional hazards models with the
cloglog-transformed landmarking 2.0 with x̂(t | s) cross-validated dynamic prediction probabilities along with each of the
other transformed cross-validated dynamic prediction probabilities. The column LRT reports the likelihood ratio test
statistic of each of the bivariate Cox models, compared with the univariate Cox model with only x̂(t | s) revival. The direct
revival dynamic prediction probabilities gives the highest LRT, but its value is not dramatic; adding it would not yield
statistical significance at the 5% level.

Finally, Table 4 reports the cross-validated prediction errors (both Brier and Kullback-Leibler, KL) and the percentage
of prediction error reduction with respect to the null model, containing no covariates. For the revival models, the cal-
ibrated dynamic prediction probabilities (the model-based prediction probabilities based on the univariate Cox models
described above) were used.

5 SIMULATION STUDY

We conducted a simulation to study more closely the differences in terms of predictive accuracy of different landmark
models and joint models.

Following our previous paper,20 we base the biomarker process on a mean zero Ornstein-Uhlenbeck (OU) process
X∗(t), starting at X∗(0) = 0, and further defined by

dX∗(t) = −𝜃X∗(t)dt + 𝜎 dW(t), (4)

with W(t) a Wiener process and 𝜃 and 𝜎 are parameters describing the degree of mean reversal (to zero) and influence
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of the random fluctuations of the Wiener process, respectively. The solution of (4) is a stationary Wiener process with
covariance function

cov(X∗(s),X∗(t)) = 𝜎2

2𝜃
exp(−𝜃|t − s|).

The biomarker process of subject i at time t is obtained by adding a common mean 𝜇(t), taken to be equal to 𝛿t, and a
random person effect bi ∼ N(0, 𝜔2) to the OU process, leading to

Xi(t) = 𝜇(t) + bi + X∗
i (t). (5)

After adding the random person effect b, the result is a Wiener process20 with

cov(Xi(s),Xi(t)) = 𝜔2 + 𝜎2

2𝜃
exp(−𝜃|t − s|) = 𝜎2

tot(𝜌 + (1 − 𝜌) exp(−𝜃|t − s|)),
where 𝜎2

tot = 𝜔2 + 𝜎2∕(2𝜃) is the total variance of X(t) and 𝜌 = 𝜔2∕𝜎2
tot is the intra-class correlation, the proportion of the

total variance represented by the random person effect variance. For the base scenario, the following values were taken:
𝜎2

tot = 0.75, 𝜌 = 0.75, 𝜃 = 1, 𝛿 = 0.1, from which it follows that 𝜔2 = 0.5625 and 𝜎2 = 0.375.
The baseline hazard is taken to be Weibull with rate a and shape b, and hazard h0(t; a, b) = abtb−1. The values for

a and b are 0.1 and 1.5, respectively. The resulting hazard, given the value of the biomarker, is given by h(t | X(t)) =
h0(t; a, b) exp(𝛽X(t)). The value for 𝛽 was set to 0.5 in the base scenario.

For a given scenario, defined by specific choices of the parameters involved, we started out by generating a single pool
of validation data for a large number (N = 6250) of individuals. Data for each individual consists of a full set of biomarker
values Xi(t) at a fine grid (Δt = 0.01) from t = 0 until a fixed horizon t = 𝜏 = 10. The generated biomarker values define the
hazard of the individual through h(t | Xi(t)) = h0(t; a, b) exp(𝛽Xi(t)), from which “true” conditional survival probabilities
can be calculated through 𝜋i(s, t) = exp(−∫ t

s h(u | Xi(u))du). Observed data in the validation set are defined as follows.
First, the generated biomarkers also define the overall survival probabilities of subject i as Si(t) = exp(−∫ t

0 h(u | Xi(u))du),
from which, through the inverse method, a single event time Ti = S−1

i (U) is drawn, with U uniform on (0, 1), and with
administrative censoring at 𝜏. The biomarker process is observed at more or less regular intervals. For this we used an
observation frequency Δ, chosen so that one would expect on average five measurements before the median marginal
time-to-event. The biomarker process then is observed at time 0, and at kΔ with a disturbance uniform on the interval
[−Δ∕3,Δ∕3], all observation times of subject i occurring before the event time Ti and before 𝜏. At these observation
times, the observed value of the biomarker was taken to be the true biomarker value at that time with an independent
measurement error from a mean zero normal distribution with standard deviation 𝜏, which was taken to be 0.2.

For each of M = 250 replications, we then independently generated a set of training data, consisting of n = 500 individ-
uals, with data generated in the same way as the observed validation data. We fitted three landmark models, one (LM1.0)
using the last observed biomarker value, one (LM1.5) based on the BLUP approach,17 and one (LM2.0) on the newly pro-
posed landmark approach. We also fit a joint model with linear trend, random intercept and slope for the longitudinal
part, and with the hazard based on the current value of the biomarker (JM), using the JM package.9 Revival models were
not considered in the simulation study because they were computationally too expensive. After having fit the landmark
models and joint model, the models were used to estimate conditional probabilities 𝜋i(s, t) = P(Ti > t |Ti ≥ s, xi(s)) for
i = 1, … ,N in the large pool of validation data, where s is the landmark time point, t is the prediction horizon, and xi(s)
is the set of observed data of subject i before time s. We also calculated conditional probabilities based on Kaplan-Meier
estimates (NULL). For s and t, we used the quintiles of the marginal distribution of the generated event times in the vali-
dation set (which could differ from scenario to scenario). In the results, we will simply denote s and t with the numbers of
these quintiles, so “24” for instance will stand for s being the second quintile, the 40% quantile, and t being the fourth quin-
tile, the 80% quantile of the marginal time to event distribution. After having obtained estimated conditional probabilities
�̂�i(s, t) for a given method, these were compared with the true 𝜋i(s, t) values obtained from the full true biomarker tra-
jectories as explained above, and we obtained estimates of bias N−1∑N

i=1 [�̂�i(s, t) − 𝜋i(s, t)] and mean squared error (MSE)
N−1∑N

i=1[�̂�i(s, t) − 𝜋i(s, t)]2.
Figure S1 shows the marginal survival function of the event times of the validation set for the base scenario, while

Figure S2 shows the full trajectories and observed data of the first four subjects of the validation set. Figure S3 shows
the individual survival functions of these first four subjects. The mean squared errors of the base scenario are shown in



1914 PUTTER and VAN HOUWELINGEN

Figure 7 (bias was seen to be virtually zero for the landmarking methods and in the order of 0.01 to 0.04 for the joint
model, data not shown).

Clearly, all landmark methods and the joint model perform better than the null model. For all scenarios and all com-
binations of s and t, the landmarking BLUP approach (LM1.5) improved on the naive landmarking method (LM 1.0),
and landmarking 2.0 (LM2.0) further improved on LM1.5. Interestingly, all landmarking methods outperformed the joint
model when the prediction horizon is close to the landmark time point (“12,” “23,” and “34”), and the joint model was
only competitive for LM2.0 when the prediction horizon is further away (“14”).

The Supplementary Material also shows the reduction in MSE ((MSENULL − MSEmethod)∕MSENULL (Figure S4) and
the runtimes for the base scenario (Table S1). The Supplementary Material also shows MSE and reductions in MSE for
the other scenarios. The other scenarios are based on the base scenario with one of the parameters altered. In general,
results are quite consistent over different scenarios. The relative positions of the different landmark methods is very stable.
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F I G U R E 7 Mean squared error of predicted probabilities in the base scenario; the numbers 12 through 34 refer to the combinations st
of landmark time s (1 through 3 representing the first through third quintile of the marginal time-to-event distribution) and prediction
horizon t (2 through 4 representing the second through fourth quintile of the marginal time-to-event distribution)
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Compared to the base scenario, the joint model performs relatively worse for the scenario with lower 𝜌, and relatively
better for the scenarios with higher 𝛽 and higher 𝜏.

A possible reason for the worse performance of the joint model approach is that the data generating process for the
longitudinal data is a stochastic process exhibiting random deviations from a random intercept and deterministic slope,
whereas the joint model assumed a random intercept and slope joint model with measurement error. So far most sim-
ulation studies comparing joint models with landmarking have not used data generating processes for which the joint
models were misspecified.

6 DISCUSSION

The landmarking principle that “prediction should depend only on the past and nothing but the past in a transparent
way” firmly stands. Nevertheless there is a lot to learn from the “future of the past.” We have incorporated this in land-
marking 2.0 by defining a predictable time-dependent covariate to be used in a time-dependent Cox model, from the
landmark time point onwards until the prediction horizon. This predictable time-dependent covariate at time t is defined
as the conditional expectation of the biomarker, given alive at time t and given the observed biomarker values before the
landmark time point, and could be determined on the basis of an underlying Gaussian process or on a reverse-time model
(“revival”). The proposed procedure is more computer intensive than landmarking 1.0, but still considerably less so than
joint models, because integration over random effects is avoided, see also Table S1 in the Supplementary Material. In the
application we considered, we found that landmarking 2.0, especially when combined with revival, showed the best pre-
dictive performance, but it should be emphasized that this was just one application. We do not claim that landmarking
2.0 with revival is always the best performing procedure; more study and experience is needed to better understand the
relative advantages and disadvantages of different approaches.

It is well known that landmarking is not consistent in the sense of Jewell and Nielsen,26 as already discussed in
Chapter 7 of our book.12 In a sense, considering the longitudinal process in the landmarking procedure might bring
landmarking closer to Jewell and Nielsen’s consistency. On the other hand, the pragmatic aim of using landmarking for
dynamic prediction at time s is to provide a simple and robust model that is optimal at time s. There could be unexpected
changes over time in the relation between biomarkers and hazard that are difficult to detect and/or to capture in a model;
not relying on a single coherent overarching model makes one less vulnerable to misspecification of the model, leading to
more robust estimates. In that sense, consistency is both a curse and a blessing. As a reviewer pointed out, more robustness
could be gained by fitting separate longitudinal models at each event time. This could be an interesting angle for future
study.

The good performance of revival is interesting, but it should be used with caution. First, revival methods seem to work
best when the biomarker shows a marked increase or decrease in value toward the event time point. Figure 3 and the
model-based version, Figure 4, show that this marked decrease of prothrombin values takes place only 2 months before
death, which means that this decrease is hard to foresee after more than 2 months, and therefore its use in long-term
prediction (also 2 years as used in our application) may be more limited than it seems on first instance. The revival
models also need calibration. This point was already raised in van Houwelingen’s commentary;23 through Bayes’ rule in
Equation (3) any misspecification in the longitudinal revival models translate in possible miscalibration of the conditional
event probabilities. The effect of the misspecification of the longitudinal revival models in landmarking 2.0 combined
with revival is more obscured and hard to judge. We advise to always calibrate both direct and indirect revival models in
practice.

Extension to higher-dimensional biomarkers is possible in principle, by simultaneously fitting Gaussian processes
to the biomarkers. This requires more thinking how to handle the correlation between the biomarker components. The
extension to higher-dimensional biomarkers is easier for landmarking 2.0 than for joint models, because for the latter
approach dealing with the (typically higher-dimensional) random effects becomes comparatively much more difficult.

In this article, we covered the situation of dynamic prediction based on a biomarker, repeatedly measured over time.
Analysis and prediction with this type of time-dependent covariates is often performed using joint models. Another
common situation of dynamic prediction with time-dependent covariates concerns the case where the time-dependent
covariate is a binary covariate, most commonly changing from 0 to 1 over the course of time. Examples include predic-
tion of survival based on the occurrence of some intermediate event like relapse, progression or response to treatment.
This setting has been studied by Suresh et al.27 In that context the time-dependent covariate always starts as X(t) = 0
at t = 0 and cannot revert from the value 1 back to 0. Then dynamic prediction at prediction time s is of most interest
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when X(s) = 0 (which implies x(s) ≡ 0). One approach, the equivalent of the joint model approach for longitudinally mea-
sured biomarkers, is multi-state models, in the present case with states 0 (alive and X(t) = 0), 1 (alive and X(t) = 1), and
2 (dead). In that case, Equation (2) can also be used, and E[X(t) |T ≥ t, x(s) ≡ 0] is given by the prevalence probability
𝜋01(s, t) = P01(s,t)

P00(s,t)+P01(s,t)
, where Pgh(s, t) are the transition probabilities in the multi-state model.20 The conditional survival

probability can also be expressed directly as one minus the transition probability P02(s, t), which can also be calculated
in the multi-state model. Simulations in Suresh et al27 showed that predictions based on a correctly specified joint model
(Markov illness-death model) provided more accurate predictions than landmark models. They also derived extensions
of the simple landmarking approaches that provided improvements in simulations. The added value of landmarking 2.0
could be that the result does not depend on the Markov assumption.28 It would be of interest to study this case further.
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