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Abstract: This study was conducted to evaluate selected biomolecular characteristics of 

rice root-associated diazotrophs isolated from the Tanjong Karang rice irrigation project 

area of Malaysia. Soil and rice plant samples were collected from seven soil series 

belonging to order Inceptisol (USDA soil taxonomy). A total of 38 diazotrophs were 

isolated using a nitrogen-free medium. The biochemical properties of the isolated bacteria, 

such as nitrogenase activity, indoleacetic acid (IAA) production and sugar utilization, were 

measured. According to a cluster analysis of Jaccard’s similarity coefficients, the genetic 

similarities among the isolated diazotrophs ranged from 10% to 100%. A dendogram 

constructed using the unweighted pair-group method with arithmetic mean (UPGMA) 

showed that the isolated diazotrophs clustered into 12 groups. The genomic DNA rep-PCR 

data were subjected to a principal component analysis, and the first four principal 

components (PC) accounted for 52.46% of the total variation among the 38 diazotrophs. 

The 10 diazotrophs that tested highly positive in the acetylene reduction assay (ARA) were 

identified as Bacillus spp. (9 diazotrophs) and Burkholderia sp. (Sb16) using the partial 

16S rRNA gene sequence analysis. In the analysis of the biochemical characteristics, three 

principal components were accounted for approximately 85% of the total variation among 

the identified diazotrophs. The examination of root colonization using scanning electron 
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microscopy (SEM) and transmission electron microscopy (TEM) proved that two of the 

isolated diazotrophs (Sb16 and Sb26) were able to colonize the surface and interior of rice 

roots and fixed 22%–24% of the total tissue nitrogen from the atmosphere. In general, the 

tropical soils (Inceptisols) of the Tanjong Karang rice irrigation project area in Malaysia harbor 

a diverse group of diazotrophs that exhibit a large variation of biomolecular characteristics. 

Keywords: diazotrophs; nitrogenase enzyme activity; indoleacetic acid; scanning electron 

microscopy; transmission electron microscopy; 16S rRNA  

 

Abbreviations: a.e., atom excess; ANOVA, analysis of variance; ARA, acetylene reduction assay; 

DGGE, Denaturing Gradient Gel Electrophoresis; PC, principal components; SEM, scanning electron 

microscopy; TEM, transmission electron microscopy. 

1. Introduction 

Rice plants are generally associated with several diazotrophs, and the Azospirillum, Azoarcus, 

Enterobacter, Herbaspirillum, Burkholderia and Corynebacteria genera are commonly associated with 

the rice rhizosphere. The use of biologically fixed nitrogen reduces the requirement for N chemical 

fertilizer and considerably ameliorates the environmental problems of NO2 emission and NO3 

leaching. In addition to nitrogen fixation, diazotrophs also enhance crop growth through other 

processes. Certain microbes alter root development by producing growth hormones, such as auxin, 

ethylene and cytokinins, as well as volatile compounds [1]. Their overall impact on root 

morphogenesis increases the root surface area and volume, which help the plant to increase nutrient 

uptake and improve its performance under challenging environmental conditions.  

Biological nitrogen fixation is an energy-consuming process; 16 moles of ATP are required to fix 

one mole of atmospheric nitrogen. Diazotrophs utilize root-exuded carbon compounds for their 

nitrogen fixation activity [2], and these carbon substrate utilization patterns are the definitive 

biochemical characteristics of these microorganisms. Indeed, the sugar uptake exhibited by 

diazotrophs is controlled genetically, and it is important to evaluate the sugar utilization preferences of 

microbes in addition to their nitrogen fixation and indoleacetic acid production.  

The strain diversity of diazotrophs depends on the soil environment [3]. The tropical soil of Malaysia 

(Tanjong Karang) generally has a low pH (5.5) and thus favors low pH-tolerant diazotrophs. As the 

nitrogen fixation by diazotrophs is controlled by the nifH gene, most previous studies have evaluated 

strain diversity through the molecular detection of the nifH gene in soil isolates. All of the culturable 

and non-culturable diazotrophs in a soil solution can be detected using the Denaturing Gradient Gel 

Electrophoresis (DGGE) method [3,4]. But a few diazotrophs have been subjected to biofertilizer 

preparation. In this study, we used a conventional method (nitrogen-free medium) to isolate only 

culturable diazotrophs for their further identification and use in biofertilizer preparations. The 16S 

rRNA is an excellent molecular marker due to its highly conserved function and ubiquitous distribution 

and to the highly conserved to highly variable nature of the sequence [5]. In our study, we employed a 

molecular phylogenetic approach based on 16S rRNA sequences to identify pure potential isolates.  
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Rice is the third most cultivable crop in Malaysia, and it was presumed that rice-growing soils 

would harbor a large group of α- and β-subclass Proteobacteria. However, the diazotrophic strain 

diversity in the tropical soils of Malaysia has not yet been studied in depth. Therefore, the present 

study was conducted to identify potential efficient indigenous diazotrophs using molecular approaches 

and to evaluate their diversity, colonization efficiency and nitrogen fixation.  

2. Results  

2.1. Biochemical Characteristics of Diazotrophs 

The bacterial strains isolated in the nitrogen-free semi-solid medium were evaluated for nitrogenase 

enzyme activity using an acetylene reduction assay (ARA). The ARA values ranged from 1.36 × 10−6 

to 7.0 × 10−11 µmol C2H4 cfu−1·h−1, with the highest value found for isolate Sb35 (Table 1). Several 

other isolates, such as Sb6, Sb16, Sb17, Sb21, Sb23, Sb27 and Sb34 also exhibited high ARA values. 

The isolates with positive ARA values were considered nitrogen-fixing bacteria because nitrogen 

fixation is related to nitrogenase activity. 

Table 1. Biochemical properties of diazotrophs isolated from Tanjong Karang rice 

growing area. 

Isolate 
ARA 

(µmol·C2H4
−1·cfu−1·h−1) 

Cellulose 

degradation 

IAA production 

(mg·L−1) 

Sugar consumption (%) 

Glucose Fructose Sucrose Arabinose Galactose

Sb1 1.9 × 10−8 − 26.0 100.0 98.25 72.00 89.00 85.00 

Sb2 1.6 × 10−9 + 66.7 100.0 96.00 79.33 76.32 82.33 

Sb3 2.3 × 10−10 − 48.0 nd nd nd nd nd 

Sb4 nd + 32.0 nd nd nd nd nd 

Sb6 1.3 × 10−7 + 57.6 90.54 100.0 86.84 83.00 98.00 

Sb7 nd + 63.0 nd nd nd nd nd 

Sb9 nd + 34.02 nd nd nd nd nd 

Sb10 2.7 × 10−10 − 34.2 nd nd nd nd nd 

Sb12 1.23× 10−7 + 16.49 nd nd nd nd nd 

Sb13 3.1 × 10−9 − 54.2 97.33 96.00 96.00 100.0 100.0 

Sb14 2.3 × 10−7 − 32.03 nd nd nd nd nd 

Sb15 1.8 × 10−6 − 24.41 nd nd nd nd nd 

Sb16 1.4 × 10−7 + 59.5 90.67 76.00 80.00 98.67 100.0 

Sb17 2.1 × 10−7 − 22.43 nd nd nd nd nd 

Sb18 2.7 × 10−10 − 43.0 nd nd nd nd nd 

Sb19 1.7 × 10−7 − 17.14 nd nd nd nd nd 

Sb20 3.9 × 10−9 − 52.0 nd nd nd nd nd 

Sb21 2.3 × 10−7 − 13.21 nd nd nd nd nd 

Sb23 1.7 × 10−7 − 16.32 nd nd nd nd nd 

Sb26 2.9 × 10−10 + 15.0 96.00 93.33 69.33 88.00 86.91 

Sb27 1.8 × 10−7 −  nd nd nd nd nd 
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Table 1. Cont. 

Isolate 
ARA 

(µmol·C2H4
−1·cfu−1·h−1) 

Cellulose 

degradation 

IAA production 

(mg·L−1) 

Sugar consumption (%) 

Glucose Fructose Sucrose Arabinose Galactose

Sb28 2.1 × 10−9 + 51.0 94.67 100.0 94.67 93.33 75.00 

Sb32 5.4 × 10−10 + 62.0 nd nd nd nd nd 

Sb33 1.8 × 10−10 + 22.0 nd nd nd nd nd 

Sb34 4.9 × 10−7 + 47.0 nd nd nd nd nd 

Sb35 1.36 × 10−6 − 30.4 89.00 96.76 79.32 90.00 84.54 

Sb37 2.5 × 10−10 + 49.0 nd nd nd nd nd 

Sb38 6.1 × 10−11 + 31.0 nd nd nd nd nd 

Sb40 1.2 × 10−8 − 18.04 nd nd nd nd nd 

Sb41 9.1 × 10−10 + 53.0 89.53 100.0 81.82 96.00 96.33 

Sb42 6.1 × 10−11 + 60.0 91.00 98.00 96.00 85.00 100.0 

Sb43 4.2 × 10−12 − 21.0 nd nd nd nd nd 

Sb44 5.1 × 10−11 − 15.61 nd nd nd nd nd 

Sb45 7.0 × 10−11 + 18.1 nd nd nd nd nd 

Sb46 6.1 × 10−10 + 41.0 nd nd nd nd nd 

Sb47 2.2 × 10−9 + 24.0 nd nd nd nd nd 

Sb48 6.3 × 10−11 + 20.0 nd nd nd nd nd 

Sb49 1.1 × 10−11 + 22.4 nd nd nd nd nd 

nd, not done; +, positive; −, negative (cellulose degradation). 

The potential for indoleacetic acid production by the diazotrophs was determined. In the presence of 

tryptophan, the isolated diazotrophs were able to produce high amounts of IAA, which varied from  

15 mg·L−1 to 66.7 mg·L−1. The highest and lowest amounts of IAA were produced by strain Sb2, and 

Sb26 respectively (Table 1). 

In this study, Jensen-CMC plates were assayed to determine the cellulase activity. Plates were 

spotted with aliquots of diazotroph broth, and the presence of a clear halo zone after staining with 

0.1% Congo red indicated cellulase activity. Twenty one of the isolates were positive for cellulase 

activity (Table 1). The nitrogen fixation is needed the energy source and diazotrophs consume carbon 

substrates from the rhizosphere of the plants. According to the higher values of ARA and IAA 

production, 10 isolates were evaluated for sugar utilization. The tested diazotrophs were able to utilize 

approximately 69.3%–100% of the supplied sugar (glucose, fructose, arabinose, sucrose and galactose). 

2.2. Molecular Characteristics of Diazotrophs 

2.2.1. Cluster Analysis 

The rice soil contains a diverse group of diazotrophs. Using Jaccard’s genetic similarity 

coefficient, we established that different levels of genetic variation exist among the isolates, ranging 

from 0.010 to 1.0 (Table 2). The UPGMA cluster analysis of the Jaccard’s similarity coefficient was 

used to generate a dendogram (Figure 1), illustrating the overall genetic relationship among the 

diazotrophs. According to this analysis, 38 diazotrophs were grouped into twelve major clusters at a 

coefficient level of 0.001. Each group of isolates consisted of identical bands. Cluster I contained two 

diazotrophs (Sb1 and Sb3) and Cluster II contained three diazotrophs, Sb28, Sb48 and Sb49. Cluster 
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III had only two isolates, Sb2 and Sb23. The largest number of diazotrophs was in cluster IV, 

including Sb4, Sb9, Sb12, SB14, Sb17, Sb18, Sb20, Sb21, Sb26, Sb32, Sb33, Sb34, Sb42, and Sb49. 

Cluster V existed three (Sb15, Sb19 and Sb27) on the other hand Cluster VI contained five diazotrophs 

(Sb6, Sb7, Sb13, Sb41 and Sb43). Whereas cluster VII contained four diazotrophs and remaining 

clusters VIII to XII contained one isolate each. A large variation was observed among the diazotrophs, 

which could be due to the different soil types within the study area (seven soil types or series).  

Table 2. Intra and inter similarity matrix among clusters of 38 diazotrophs using genomic 

DNA rep-PCR. 

 
Cluster 

I 

Cluster 

II 

Cluster 

III 

Cluster 

IV 

Cluster 

V 

Cluster 

VI 

Cluster 

VII 

Cluster 

VIII 

Cluster 

IX 

Cluster 

X 

Cluster 

XI 

Cluster 

XII 

Cluster I 0            

Cluster II 0.039 0           

Cluster III 0.021 0.024 0          

Cluster IV 0.018 0.026 0.022 0         

Cluster V 0.022 0.030 0.039 0.018 0        

Cluster VI 0.019 0.043 0.022 0.021 0.010 0       

Cluster VII 0.017 0.044 0.025 0.020 0.021 1.000 0      

Cluster VIII 0.019 0.012 0.026 0.021 0.011 1.000 1.000 0     

Cluster IX 0.018 0.043 0.025 0.025 0.010 1.000 1.000 1.000 0    

Cluster X 0.019 0.029 0.024 0.022 0.010 1.000 1.000 1.000 1.000 0   

Cluster XI 0.018 0.044 0.025 0.021 0.103 1.000 1.000 1.000 1.000 1.000 0  

Cluster XII 0.019 0.029 0.022 0.010 0.03 1.000 1.000 1.000 1.000 1.000 1.000 0 

Figure 1. The dendogram of cluster analyses of isolated diazotroph based on REP-PCR 

marker [6]. Dendogram constructed by Jaccard similarity coefficient matrix by unweighted 

pair-group method with arithmetic mean (UPGMA) method. 
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2.2.2. Principal Component Analysis (PCA) 

The first four principal components (PC) accounted for 52.28% of the total variation among the  

38 genotypes of diazotrophs. PC1, PC2, PC3 and PC4 accounted for 5.04%, 10.27%, 16.62% and 

20.35% of the variation, respectively (Table 3). 

In principal component analysis, 38 isolates also formed 12 clusters in a two dimensional graph 

(Figure 2). Here most of isolates followed the same clustering groups as shown in cluster analysis with 

little exception in clusters i.e. VI and VII. In cluster analysis group VI contained 5 isolates (Sb6, Sb7, 

Sb13, Sb41 and Sb43) while in PCA group it contained only two isolates (Sb6 and Sb7). The analysis 

supplemented the cluster analysis. The diazotrophs genotypes, Sb18 (0.53), Sb9 (0.51), Sb21 (0.47), 

Sb17 and Sb4 (0.34), Sb19 and Sb14 (0.18), Sb12 (0.17), Sb12 (0.13), Sb20 (0.08), Sb15 (0.06) and 

Sb13 (0.01), were positively associated with PC1 and showed high similarity values (Table 3). 

Figure 2. Principal component analysis (PCA) generated from genomic DNA rep-PCR 

which showed genetic similarity distance of 38 isolates. 

 

Seven biochemical properties of the ten selected isolates were subjected to PCA to determine the 

genetic relatedness among these isolates (Figure 3); approximately 85% of the total genetic variation 

was present among these 10 strains (Table 4). The first three components accounted for 51%, 22%, 

and 12% of the variation. Strains Sb1, Sb2, Sb16, Sb13 and Sb42 exhibited distance from the centroid, 

whereas the others (Sb6, Sb26, Sb28, Sb35 and Sb41) were close to the centroid (Figure 3). Among 

these strains, Sb1 and Sb2 utilized 100 percent of the supplied glucose. A preference for galactose 

utilization (100%) was found for Sb13, Sb16 and Sb42. In contrast, Sb6, Sb28 and Sb41, which were 

placed around the centroid, demonstrated a preference for fructose over other sugars. The first 

principal component accounted for 51% of the variation, with glucose (0.052) and fructose (0.030) 

positively contributing. Arabinose (0.033) and galactose (0.55) contributed positively to the second 

principal component, whereas IAA (0.25), glucose (0.16) and fructose (0.26) contributed positively to 

the third principal component. 
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Table 3. Component loading of the first four principal components (PC) for 38 diazotrophs 

by genomic DNA rep-PCR analysis. 

*Bv, Burkholderia sp. (Gene bank AF219125.1). 

  

Strains 
First four principle components 

PC1 PC2 PC3 PC4 

Variation accounted for 5.04 10.27 16.62 20.35 
Sb1 0.00 0.00 0.00 0.00 
Sb2 0.17 −0.38 −0.43 0.23 
Sb3 0.00 0.00 0.00 0.00 
Sb4 0.34 −0.56 0.04 −0.07 
Sb6 0.01 0.00 0.02 −0.03 
Sb7 0.02 0.00 0.03 −0.02 
Sb9 0.51 0.38 −0.33 −0.15 

Sb10 0.00 0.00 0.00 0.00 
Sb12 0.13 0.08 0.01 0.01 
Sb13 0.01 0.00 0.03 −0.02 
Sb14 0.18 0.11 0.17 0.22 
Sb15 0.06 0.05 0.14 0.52 
Sb16 0.00 0.00 0.00 0.00 
Sb17 0.34 −0.10 0.46 −0.19 
Sb18 0.53 0.31 0.02 0.03 
Sb19 0.18 0.12 0.17 0.56 
Sb20 0.08 0.01 0.22 −0.06 
Sb21 0.47 0.35 −0.33 -0.15 
Sb23 0.26 −0.53 −0.42 0.21 
Sb26 0.23 0.07 0.29 −0.01 
Sb27 0.07 0.05 0.15 0.57 
Sb28 0.00 0.00 0.00 0.00 
Sb32 0.31 −0.11 0.44 −0.18 
Sb33 0.35 −0.44 0.32 −0.20 
Sb34 0.33 −0.12 0.45 −0.17 
Sb35 0.00 0.00 0.00 0.00 
Sb37 0.00 0.00 0.00 0.00 
Sb38 0.01 0.01 0.04 0.06 
Sb40 0.00 0.00 0.00 0.00 
Sb41 0.05 −0.02 0.12 −0.06 
Sb42 0.12 −0.03 0.30 −0.12 
Sb43 0.01 0.00 0.03 −0.03 
Sb44 0.01 0.01 0.03 0.05 
Sb45 0.02 0.00 0.03 0.09 
Sb46 0.03 0.01 0.02 0.08 
Sb47 0.01 0.00 0.01 0.00 
Sb48 0.00 0.01 0.01 0.00 
Sb49 0.23 0.26 0.02 0.01 
*Bv 0.04 0.03 0.07 0.11 
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Figure 3. Principal component analysis for biochemical characteristics of 10 selected 

isolates. Sb1 accession JQ820251, Sb2 accession JQ820252, Sb6 accession JQ820253, 

Sb13 accession JQ820254, Sb16 accession JQ820255, Sb26 accession JQ820256, Sb28 

accession JQ820257, Sb35 accession JQ820258, Sb41 accession JQ820259, and Sb42 

accession JQ82026. 

 

Table 4. Component loading of the first three principal components (PC) for  

* 10 diazotrophs by genomic DNA rep-PCR analysis. 

Variable PC1 PC2 PC3 

proportion 0.51 0.22 0.12 
ARA −0.039 −0.751 −0.276 
IAA −0.893 −0.009 0.255 
Glucose 0.052 −0.077 0.167 
Fructose 0.030 −0.244 0.268 
Sucrose −0.383 −0.253 −0.316 
Arabinose −0.007 0.033 −0.742 
Galactose −0.223 0.552 −0.329 

* Sb1 accession JQ820251, Sb2 accession JQ820252, Sb6 accession JQ820253, Sb13 accession JQ820254, 

Sb16 accession JQ820255, Sb26 accession JQ820256, Sb28 accession JQ820257, Sb35 accession JQ820258, 

Sb41 accession JQ820259, Sb42 accession JQ820260.  

2.2.3. Identification of Diazotrophs 

In this study, we used partial gene sequences from β-subclass Proteobacteria (Rhizobium, Bacillus 

and Burkholderia genera and Stenotrophomonas maltophilia) as references to determine the 

phylogenetic relationships among the tested isolates. Because some of the physiological characteristics 

of the isolated bacteria were identical (data not shown) to those of this strain, we selected 

Stenotrophomonas maltophilia as the reference strain. The Neighbor-Joining tree was subjected to the 

numerical re-sampling by bootstrapping, and the resulting bootstrap values are shown at the tree branch 

nodes. Each value represents the number of times (out of 1000 replicates) that the represented groupings 

occurred in the resamplings. The consensus tree showed 99% confidence levels between nine 
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diazotrophs (Sb2, Sb13, Sb6, Sb43, Sb1, Sb26, Sb28, Sb41 and Sb42) and Bacillus sp. (β-subclass of 

Proteobacteria), whereas Sb16 and Burkholderia sp. had a 100% confidence level (Figure 4). Our results 

indicate that the tropical soils (above-stated seven soil series) of Malaysia are dominated by the  

β-subclass of Proteobacteria.  

Figure 4. Phylogenetic tree with bootstrap values. Tree constructed using  

Neighbor-Joining (NJ) method. Sb1, Sb2, Sb6, Sb13, Sb16, Sb26, Sb28, Sb35, Sb41, Sb42, 

UPMB10 (Bacillus sp.), UPMB16 (Bacillus sp.), UPMB17 (Bacillus sp.), UPMB18 

(Bacillus sp.), Rhizobium sp. and Stenotrophomonas maltophilia. 

 

2.2.4. Colonization and Efficiency of Biological Nitrogen Fixation (BNF) by Sb16 and Sb26 

Based on our results, Sb16 was identified as Burkholderia sp. and Sb26 was identified as  

Bacillus sp. Under in vitro conditions, both of the strains exhibited a high nitrogenase activity and 

produced a substantial amount of IAA. Based on these characteristics, these two strains were selected 

for root colonization and BNF studies. Scanning and transmission electron microscopy proved that 

both of the diazotrophs were able to colonize the root surface and interior (Figure 5). Both diazotrophs 

also have the potential to fix atmospheric nitrogen and contributed approximately 22%–24% of the 

total nitrogen in the plant tissue. According to a 15N isotope study, diazotrophs can fix approximately  

10 kg·N·ha−1–12 kg·N·ha−1 within a 60 day period (Table 5). The results of some 15N studies showed 

that the proportion of nitrogen derived from the atmosphere and the amount of N2 fixed in plant tissues 

varies across species. 
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Figure 5. Scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM) micrograph of inoculated rice genotypes. (a) SEM micrograph, surface colonization 

of Sb42 inoculated with MR219 rice; (b) TEM micrograph, Sb26 inside the root cell of 

Mayang Segumpal rice; (c) TEM micrograph, Sb16 inside the root cell of MR219 rice. 

Table 5. Effect of diazotroph inoculation on MR219 (HYV rice) and Mayang Segumpal 

(local rice accession). 

Rice  
genotype 

Diazotrophs 
15N  

(%a.e.) 
Tissue N 

(%) 
N fixed 

(mg·plant−1) 
% 

Nfda 
N fixed kg· 

(ha−1) 

MR219 

Control 0.76 ± 0.02 2.3 ± 0.16 − − − 

Sb16 0.57 ± 0.02 3.6 ± 0.14 0.89 ± 0.16 23 11 
Sb26 0.59 ± 0.01 3.8 ± 0.10 0.84 ± 0.18 22 13 

Mayang 
Segumpal 

Control 0.80 ± 0.03 2.2 ± 0.14 − − − 

Sb16 0.60 ± 0.01 3.9 ± 0.10 0.93 ± 0.11 22 11 

Sb26 0.58 ± 0.02 4.2 ± 0.10 1.00 ± 0.09 24 12 

a.e., atomic excess; Nfda, percent nitrogen derived from atmosphere. 
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3. Discussion  

Several diazotrophs were isolated from tropical soils of Malaysia. The isolates were capable for the 

nitrogenase enzyme activity proved by the acetylene reduction assay (ARA). The isolates with positive 

ARA values were considered nitrogen-fixing bacteria because nitrogen fixation is related to nitrogenase 

activity [7]. The promotion of plant growth by diazotrophs is an effect of nitrogen fixation and growth 

hormone production [8]. Therefore, the potential for indoleacetic acid production by the diazotrophs 

was evaluated. Diazotrophs are free-living nitrogen-fixing bacteria, and some are endophytic. 

Diazotrophs that produce cellulase can degrade cell walls, which is one potential mechanism for entry 

into root tissue [9]. Because nitrogen fixation is an energy-consuming process, diazotrophs utilize 

rhizosphere carbon substrates as an energy source to support nitrogen fixation, and approximately 

64%–86% of the carbon released by the plant into the rhizosphere is consumed by microorganisms [10]. 

Rice root exudates generally include simple sugars, such as glucose, fructose, mannose, xylose, arabinose, 

galactose and sucrose [11]. However, different isolates demonstrated different carbon source 

requirements, and physiologically distinct organisms were enriched on each carbon source tested [12].  

Rice soil harbors a diverse group of diazotrophs. Ueda et al. [13] constructed a clonal library of 

PCR-amplified nifH sequences, which revealed the great diversity of uncharacterized diazotrophs in 

the rice rhizosphere. The strain diversity of free-living diazotrophs depends on several soil 

environmental factors, such as the soil pH, C abundance and N availability [3]. Isolates formed various 

clusters with the various biochemical properties. The diazotrophs were found to differ in the total 

genetic variation through the principal component accounted and varied for the consumption of sugar 

as a carbon source. Most of the diazotrophs followed the same clustering groups like cluster analysis 

with little exception in clusters. Therefore, PCA almost supplemented the cluster analysis. To confirm 

the accuracy of the grouping of isolates or germplasms several researchers use more than one 

multivariate analysis [14–16]. A previous study also showed that several diazotrophs have a preference 

for a particular sugar as a carbon source [17]. Sugar preference is controlled by the ChvE protein, a 

periplasmic sugar-binding protein that is homologous to the Escherichia coligalactose-binding protein. 

Diazotrophs containing a ChvE homologous protein showed strong preferences for D-galactose,  

L-arabinose, and D-fructose [17].  

Ribosomal ribonucleic acids are excellent markers for the clarification of bacterial phylogeny [5]. 

After the partial gene sequences Rhizobium, Bacillus and Burkholderia genera and Stenotrophomonas 

maltophilia were identified. In Korea, Stenotrophomonas maltophilia was isolated from rice soil and 

identified as a nitrogen-fixing bacterium [18]. The recognition and known diversity of diazotrophic  

β-proteobacteria have increased significantly in the last decade [19]. The first diazotrophic species of 

the Burkholderia genus identified was B. vietnamiensis, which was isolated from the rice rhizosphere 

in a screen for nitrogen-fixing bacteria [20]. A contribution to biological nitrogen fixation and 

association with rice plants have also been documented for Bacillus spp.  

Some of the isolates based on their characteristics, proved that the diazotrophs were able to colonize 

the root surface and interior. Moreover, diazotrophs have the potential to fix atmospheric nitrogen 

(22%–24%) by the 15N studies. It was found that free-living diazotrophs can fix between  

0 kg·ha−1year−1 and 60 kg·ha−1year−1 of atmospheric nitrogen [21]. According to Mirza et al. [22] and 

Malik et al. [23] approximately 59% of the N2 in rice ecosystems is derived from the atmosphere. In 
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another study, Govindarajan et al. [24] reported that 40.4% of the N2 in a rice ecosystem was fixed by  

Burkholderia vietnamiensis under glasshouse conditions. However, the nitrogen-fixing potential 

strongly depends on the type of diazotroph and the nature of its association with the plant.  

4. Experimental Section 

4.1. Collection and Isolation of Diazotrophs  

Plant and soil samples were collected from seven soil types or series (Jawa, Sedu, Bakau, Bernam, 

Serong, Organic Clay & Muck and Brown Clay) from the Tanjong Karang rice irrigation project area. 

All of the soils are considered Inceptisols (USDA soil taxonomy). The diazotrophs were from the 

rhizosphere and non-rhizosphere soil were isolated using a nitrogen-free (Nfb) semi-solid malate 

medium [25] per litre consisting of 5 g malic acid, 0.5 g K2HPO4, 0.2 g MgSO4·7 H2O, 0.1 g NaCl,  

0.02 g CaCl2, 0.5% bromothymol blue in 0.2 N KOH (2 mL), 1.64% Fe-EDTA solution (4 mL) and  

2 g agar. A total of 38 diazotrophs were isolated. Selected soil chemical properties are given in Table 6. 

Table 6. Diazotrophs isolated from different soil series of Tanjong Karang rice irrigation 

project area, Malaysia and some of soil chemical properties of isolated soil. Different 

letters in the columns are significantly different at p < 0.05. 

SNo. Soil series/types Diazotrophs isolated Soil pH Organic carbon (%) Total nitrogen (%) 

1 Jawa Sb1, Sb2, Sb26, Sb28, Sb32 4.71 c 6.67 c 0.44 c 

2 Serong Sb3, Sb4, Sb17, Sb41, Sb42 4.90 b 2.94 e 0.38 d 

3 
Organic Clay & 

Muck 

Sb43, Sb44, Sb45, Sb46, Sb19, Sb21,  

Sb47, Sb48, Sb49 
4.50 d 9.11 a 0.66 a 

4 Sedu Sb6, Sb16, Sb18, Sb35, Sb37, Sb38 4.40 e 7.89 b 0.55 b 

5 Bernam Sb7, Sb9, Sb12, Sb20, Sb40 4.87 b 5.43 c 0.24 e 

6 Bakau Sb10, Sb13, Sb14, Sb23 5.18 a 3.08 e 0.27 e 

7 Brown Clay Sb15, Sb27, Sb33, Sb34 4.63 d 5.13 d 0.33 d 

Means within the same column followed by the same letters are not significantly different at p < 0.05. 

4.2. Estimation of Nitrogenase Enzyme Activity 

The nitrogenase activity was assayed using the acetylene reduction assay (ARA). A 1 mL aliquot of 

the diazotroph culture was transferred to an airtight 30 mL bottle containing 10 ml of N-free semi-solid 

malate (Nfb) medium. After pellicle formation, the bottles were injected with 5% v/v acetylene gas, 

and the same volume of air was removed simultaneously. The bottles were incubated at 30 °C for  

24 h [26], and 1.0 mL of gas was withdrawn and transferred to a vacuum tube (Vacutainer™ 7 mL). 

The presence of ethylene was assayed using a G-300 gas chromatograph (GC) equipped with FID 

detector. The rate of N2 fixation was expressed as the quantity of ethylene accumulated  

(µmol C2H4 cfu−1h−1) based on the standard curve and peak area percentage.  

4.3. Determination of Indoleacetic Acid (IAA) Production 

The isolates were inoculated in Jensen’s broth (Sucrose 20 g, K2HPO4 1 g·L−1, MgSO4 7H2O 0.5 g·L−1, 

NaCl 0.5 g·L−1, FeSO4 0.1 g·L−1, NaMoO4 0.005 g·L−1, CaCO3 2 g·L−1) containing 2 mg·mL−1 
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tryptophan and incubated at 29 ± 1 °C for 72 h. Approximately 2 mL of the culture solution was 

centrifuged at 7000 rpm for 7 min, and the supernatants were used to determine the IAA concentration. 

A 1 mL aliquot of the supernatant was mixed with 2 mL of Salkowski’s reagent as described by 

Gordon and Weber [27], and the absorbance was measured using a spectrophotometer at 530 nm. The 

concentration of IAA was determined using a standard graph.  

4.4. Determination of CelluSlase Activity 

The cellulase activity was evaluated using Jensen’s agar plates with 0.1% carboxymethyl  

cellulose [28]. The plates were spot-inoculated with 10 µL of liquid culture. After 24 h of incubation, 

the colonies were streaked, washed with sterile water and discarded. The plates were stained with 0.1% 

Congo red solution for 30 min and then rinsed with 1 M NaCl. A positive cellulose-degrading enzyme 

reaction was indicated by a clear halo zone on the plate. 

4.5. Determination of Sugar Consumption 

The carbon- and nitrogen-free nutrient culture broth used was modified from Egener et al. [29] 

using 15 g of different sugars (glucose, fructose, sucrose, galactose and arabinose). The composition of 

the broth per liter was: KH2PO4, 1.5 g; K2HPO4, 0.33 g; K2SO4, 0.2 g; ferric citrate, 13 mg; 

CaCl2·2H2O, 0.4 g; MgCl2, 0.4 g; Na2MoO4·2H2O, 2 mg; H3BO3, 3 mg: MnSO4·H2O, 2 mg; 

ZnSO4·7H2O, 0.2 mg and CuSO4·5H2O, 0.1 mg. After 36 h of incubation, the cultures were filtered 

through 0.2 µM pore syringe filters, and 20 µL of each sample was separated using high-performance 

liquid chromatography (HPLC, 1100 Series, Agilents, Harlow Scientific, Arlington, Middlesex 

County, MA, USA, 2002). The amount of residual glucose, fructose, sucrose and arabinose was 

determined using an Apex column at 60 °C and a refractive index (R.I.) detector. Acetonitrile (75%) 

was used as the mobile phase at a flow rate of 1.8 mL·min−1. The amount of sugar consumption was 

determined by subtraction from the initial substrates as follows: 

tt SSC  0  (1)

where, C represents the amount of substrate consumed, St0 represents the substrate added at the initial 

time and St represents the substrate remaining in the culture solution at each sampling time. 

4.6. Strain Diversity and Diazotrophs Identification  

4.6.1. DNA Extraction and Primers 

The bacterial genomic DNA was extracted from the pure bacterial culture using the GF−1 bacterial 

DNA extraction kit, Vivantis, Malaysia. Rep-PCR was performed using the primers published [30]: 

REP IR, 5'-IIIICgICgICATCIggC-3', and REP 2I, 5'-ICgITTATCIggCCTAC-3'. 

4.6.2. PCR Protocols and Gel Electrophoresis 

The strain diversity was evaluated by rep-PCR genomic fingerprinting. The 25 µL PCR reaction 

volume consisted of the following: 5 µL 5× Gitschier buffer, 2.5 µL DMSO, 1.25 µL dNTPs (1:1:1:1), 
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1 µL each primer, 1 µL Taq DNA polymerase and 1 µL of purified genomic DNA. The thermal cycler 

(MJ Mini personal Thermal Cycler, Bio-Rad, Model-PTC-1148) conditions were as follows: 95 °C for 

6 min and 30 cycles of 94 °C for 1 min, 40 °C for 1 min, and 65 °C for 8 min, followed by  

1 cycle at 65 °C for 16 min. The PCR reaction ended with an extension temperature of 65 °C for  

8 min, and the products were stored at −20 °C until separation by 1% agarose electrophoresis in  

10× TAE buffer.  

4.6.3. Strain Identification by Partial Gene Sequencing  

Ten isolates with high ARA values were selected for partial 16S rRNA gene sequencing analysis. 

The DNA was extracted from pure isolates using the QIAamp Genomic DNA Mini Kit UK AS. The 

rep-PCR was performed using the forward primer 8F, 5'-AGA GTT TGA TCC TGG CTC AG-3' and 

the reverse primer 1492R, 5'-GGT TAC CTT ACG ACT T-3'. The primers selected for this study 

amplify sequences from both symbiotic and free-living nitrogen-fixing bacteria. The PCR products 

were purified using the Gene JET RNA purification kit (Thermo Scientific™ Fermentas GeneJET 

RNA Purification Kit, Waltham, MA, USA) and sequenced by First BASE laboratories, Malaysia. The 

partial gene sequences were aligned using the ClustalW package [31]. An unrooted phylogeny tree was 

constructed using the Neighbor-Joining method [32]. Partial sequences for the strains (Bacillus sp., 

GenBank JN695718.1, Burkholderia sp. GenBank AF219125.1 and Stenotrophomonas maltophilia, 

GenBank HQ219979.1) were obtained as references. The topology of the distance tree was tested by 

re-sampling the data using 1000 bootstrap replicates [33]. The phylogenetic analyses were conducted 

in MEGA4 [34]. The sequences obtained were deposited in the European Molecular Biology 

Laboratory data bank (accession number JQ820251 to JQ820260). 

4.6.4. Determination of Nitrogen Fixation (15N Isotope Dilution Technique) 

Two strains, Sb16 and Sb26, were selected for biological nitrogen fixation (BNF) assessment in a 

greenhouse study. The popular modern rice variety MR219 and the local accession Mayang Segumpal 

were inoculated with the selected diazotrophs, and the N2 fixation rate was estimated using the  
15N isotope dilution method [35]. Plant tissue-nitrogen was determined by semi-micro Kjeldahl  

method [36]. Soil pH was measured in soil; water (1:2.5) extract using PHM210 Standard pH meter at 

30 °C [37] and total soil carbon determined by infrared absorption method (LECO CR-412),  

The %15N (a.e.) in plant part was estimated using the following formula Warembough [38]:  

)(%3663.0%.).(% 15 abundancenaturalNabundanceNpartplanteachineaN  (2)

assuming that the atmosphere contains 0.3663% 15N. 

The proportion of N derived from the atmosphere had been calculated as (Warembough [38]): 
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Rice seeds were surface sterilized followed by Amin et al. [39]. Rice seeds were agitated in 70% 

ethanol (5 s). The ethanol was discarded and the seeds washed in sodium hypochlorite solution 

comprising 3% Chlorox TM (2.6% NaOCl), with a few drops of Tween 20. The seeds were rinsed with 

sterile water followed by 2% sodium thiosulphate solution to neutralize chloramine residue. Seven 

days old seedlings (4 seedlings) were transplanted into each pot containing 10 kg of soil. Seedlings 

were inoculated with washed cell of diazotrophs (Sb16 Burkholderia sp. and Sb26 Bacillus sp. at  

106 cfu after 3 days of transplanting. Dead cells (By inoculum sterilization) were applied at control 

plant. Exactly 0.1 g of 15N urea with atomic excess (10.18) was diluted with distilled water and poured 

uniformly in each pot (3 days before planting to stabilize the soil). Blanket doses of P2O5, and K2O 

from sodium phosphate (monobasic), and potassium chloride at the rates of 60 and 40 kg·ha−1 

equivalent, respectively, were applied to each pot.  

4.6.5. Observation of Root Colonization Using SEM and TEM  

Root colonization was studied using scanning electron microscope (JSM-5610LV SEM, JEOL, 

Datum Ltd., Tokyo, Japan, 1996) and transmission electron microscopy (Leo 912AB EFTEM, ITEM 

software, Soft Imaging Systems, Omega, Zeiss, Oberkochen, Germany, 1999). 

4.7. Statistical Analysis 

The biochemical analyses and glasshouse experiments were arranged in completely randomized 

designs with 5 replicates. The quantitative results were subjected to an analysis of variance (ANOVA), 

and significance at the 5% level was tested by Tukey’s studentized range using SAS statistical 

program version 9.1 (SAS Institute, Cary, NC, USA, 2008). The genomic DNA was analyzed using 

NTSYS-pc software to assess the genetic relatedness of the 38 isolated diazotrophs. The coefficients of 

genetic similarity for all of the pair-wise comparisons were computed using the Jaccard’s  

coefficient [40], and the similarity matrix was subjected to a cluster analysis using the unweighted 

pair-group method with arithmetic mean (UPGMA) to produce a dendogram. PCA was also performed 

for the isolates and their biochemical properties. More than one multivariate technique is required to 

represent the results more clearly and it is obvious from the results of many researchers [41,42].  

5. Conclusions 

The tropical soils (rice soil) of Malaysia are dominated by β-subclass Proteobacteria: 9 diazotrophs 

were identified as Bacillus spp. and one was identified as a Burkholderia sp. (Sb16). Isolates Sb16 and 

Sb26 (Bacillus spp.) were able to colonize the rice rhizosphere and the interior of the root tissue. 

Scanning and transmission electron micrographs clearly showed that both of the diazotrophs were able 

to colonize the root surface and interior. These strains had the potential to fix atmospheric nitrogen and 

contributed approximately 22%–24% atmospheric nitrogen to the total plant tissue nitrogen. In 

addition, the 15N isotope analysis also proved that both diazotrophs can fix approximately  

10 kg N ha−1–12 kg N ha−1 within a 60 days period. Four principal components were identified among 

the 38 isolated diazotrophs and were accounted for 52.46% of the total genetic variation, confirming 

that the evaluated soil harbors a diverse group of diazotrophs. 
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