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Abstract
Soil nematodes are a foremost component of terrestrial biodiversity; they display a 
whole gamut of trophic guilds and life strategies, and by their activity, affect major 
ecosystem process, such as organic matter degradation and carbon cycling. Based 
on nematodes' functional types, nematode community indices have been developed, 
and can be used to link variation in nematodes community composition and eco-
system processes. Yet, the use of these indices has been mainly restricted to an-
thropogenic stresses. In this study, we propose to expand the use of nematodes' 
derived ecological indices to link soil and climate properties with soil food webs, and 
ecosystem processes that all vary along steep elevation gradients. For this purpose, 
we explored how elevation affects the trophic and functional diversity of nematode 
communities sampled every 300 m, from about 1,000 m to 3,700 m above sea level, 
across four transects in the lesser Himalayan range of Jammu and Kashmir. We found 
that (a) the trophic and functional diversity of nematodes increases with elevation; 
(b) differences in nematodes communities generate habitat-specific functional diver-
sity; (c) the maturity index (ΣMI) increases with elevation, while the enrichment index 
decreases, indicating less mature and less productive ecosystems, enhanced fungal-
based energy flow, and a predominant role of nematodes in generating carbon in-
fluxes at high-elevation sites. We thus confirm that the functional contribution of soil 
nematodes to belowground ecosystem processes, including carbon and energy flow, 
is stronger at high elevation. Overall, this study highlights the central importance of 
nematodes in sustaining soil ecosystems and brings insights into their functional role, 
particularly in alpine and arctic soils.
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1  | INTRODUC TION

It has been estimated that soils of terrestrial ecosystems sus-
tain about 25% of the world biodiversity (Bach et  al.,  2020; 
Decaëns, 2008; Decaëns et al., 2006); consequently, soils function 
as biodiversity reservoirs, and have the potential to mainly contrib-
ute to ecosystem functioning (Bardgett & van der Putten,  2014; 
Decaëns,  2010; Fitter et  al.,  2005). Indeed, soil fauna functional 
diversity has been shown to contribute to ecosystem function-
ing by impacting on different processes, such as primary pro-
duction and nutrient cycling of carbon, phosphorous, or nitrogen 
(Brussaard, 1997), the decomposition of organic matter, or the as-
similation of carbon in food webs, which in turn regulates energy 
movements between the below and the aboveground compart-
ments of the ecosystems (Hunt & Wall, 2002; Krumins et al., 2013).

The group of roundworms (i.e., the nematodes; phylum 
Nematoda) represents a major component of the belowground 
fauna diversity. Nematodes include more than 27,000 described 
species (Hodda, 2011; Hugot et al., 2001), are found almost in every 
inhabitable place on Earth, and represent about 80% of below-
ground bulk metazoan taxonomic and functional diversity (Bongers 
& Bongers, 1998; Hodda et al., 2009). Nematodes can be assigned 
to practically all existing trophic groups, including the herbivore, 
fungivore, bacterivore, predator, unicellular eukaryote feeder, para-
site, and omnivore trophic and functional group (Yeates et al., 1993). 
Nematodes can also be functionally assigned to a wide gamut of 
ecological adaptations, ranging from being classified as “colonizer” 
(i.e., r strategists,) to being classified as “persister” (i.e., K strategists), 
and all in between, such as along the colonizer-persister (“cp”) scale 
as described by Bongers (1990). Nematodes therefore constitute 
a key component of the soil microbiota, and contribute to regulat-
ing several ecosystem processes, such as mineral cycling, succes-
sion processes, and energy flow (Andrén et  al.,  1995; Bongers & 
Bongers, 1998; Boström & Sohlenius, 1986).

Numerous studies have demonstrated the critical role of cli-
mate in the development and maintenance of soil nematode diver-
sity (Chen et al., 2015; Nielsen et al., 2014; Song et al., 2017). For 
instance, Nielsen et  al.  (2014) showed that nematode community 
composition was strongly related to two main climatic factors, 
mean annual rainfall and temperature, which accounted for 65% and 
58% of the total variation in community differences, respectively. 
Similarly, mean annual precipitation has been shown to influence 
nematode assemblage at the regional scale (Chen et  al.,  2015). In 
addition, climate can directly impact on local soil and vegetation 
characteristics (Rodriguez-Iturbe et al., 1999), and thus climate, in-
directly, can influence soil invertebrate communities via changes 
in vegetation and soil properties (Kergunteuil,  2016). Therefore, 
contemporary and historical climatic factors can be used to study 
changes in species and functional diversity of soil nematodes across 
large geographic scales (Li et al., 2020).

In addition to climate, it is well established that soil nema-
tode diversity, abundance, and composition are also influenced 
by soil physicochemical properties, such as soil temperature 

(de Ruiter et al., 1998), relative humidity (Dinoor & Eshed, 2003), or-
ganic matter content (Collins et al., 1995; Cook et al., 1992; Crawford 
et al., 2005; De Deyn et al., 2003, 2004), phosphorus (De La Peña 
et al., 2006), texture, or salinity (Djigal et al., 2004), either from the 
local to the large scales (Chen et  al.,  2015; Liu et  al.,  2016; Quist 
et  al.,  2019; van den Hoogen et  al.,  2019). As a consequence, the 
study of the taxonomic and functional structure of nematode com-
munities can, in turn, be used for assessing soil quality (Brinkman 
et al., 2008; Sochová et al., 2006; Wilson & Kakouli-Duarte, 2009), 
as well as for evaluating natural changes in soil ecological conditions, 
for instance, along large-scale ecological and climatic gradients 
(Kergunteuil,  2016). Accordingly, several indices have been devel-
oped that summarize the functional role and the contribution of 
nematodes in the ecosystem (Bongers & Ferris, 1999; Ferris, 2010; 
Ferris et al., 2001). For instance, the “Channel index,” the “Enrichment 
index,” and the “Structure index,” which are all derived from calcu-
lating the weighted functional diversity components of the soil nem-
atodes communities (Berkelmans et  al.,  2003; Ferris et  al.,  2001), 
represent the predominant decomposition pathways, food web 
response to available resources and state of food web affected by 
environmental stress, respectively (Ferris & Bongers,  2009; Ferris 
et al., 2001) Moreover, the “Metabolic Footprint,” which quantifies 
the amplitude of C utilization by different components of the nem-
atode soil food web, can function as an indicator of carbon and en-
ergy flow in the soil (Ferris, 2010). Being integrators of ecosystems 
properties, we therefore expect these indices to vary across habitat 
types, as well as local climatic and edaphic conditions.

While studies relating nematodes' functional structure and soil 
functioning remain mostly restricted to anthropogenic systems 
(Freckman & Ettema, 1993; Šalamún et al., 2014; Zhao et al., 2015), 
studying functional variation of soil nematode communities in natu-
ral systems can inform on the potential natural relationship between 
belowground diversity, ecosystem function, soil properties, and cli-
mate (van den Hoogen et al., 2019). In this context, we here propose 
to expand the use of nematodes' derived ecological indices to study 
natural populations' variation along large-scale ecological gradients, 
which in turn, will allow increasing our understanding of how soil 
nematodes contribute and inform on the changes in ecosystem func-
tioning across contrasted landscapes (Ritz & Trudgill, 1999; Wilschut 
et al., 2019; Yeates, 2003). In this regard, studying nematode com-
munities' functional variation along steep elevation gradients can 
be used to dissect the link between climate and soil conditions and 
nematode functional properties within a homogenous biogeograph-
ical and evolutionary background (Kergunteuil, 2016; Körner, 2007).

The purpose of this study was thus to investigate whether 
along elevation gradients, nematode communities and functional-
ities vary predictably with soil and climatic properties. For this, we 
studied soil community's composition along four elevation transects 
of Northern India (Jammu and Kashmir region). Based on previous 
studies along elevation gradients in the Alps (Kergunteuil,  2016), 
we hypothesized that (a) nematodes' functional composition varies 
with elevation, (b) nematodes' functional beta-diversity covary with 
changes in soil and climatic conditions along the elevational gradient, 
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and (c) indices related to ecosystem properties also vary with nem-
atode communities being more associated with more productive 
and mature ecosystems at low versus high elevation. Interestingly, 
it was previously shown that along the Alpine elevation gradients, 
several soil nematodes' trophic and functional groups, such as the 
herbivores, increase with elevation (Kergunteuil, 2016). These find-
ings were to some extent in opposition to classic hypotheses of bio-
diversity changes along elevation, in which, for most clades, theory 
predicts a decline in biodiversity with elevation, indeed due to an 
increase of more constrained and stressful environmental condi-
tions at high elevation. By studying similar ecosystem dynamics but 
in an entirely different setting—the Himalayas versus the Alps—we 
ultimately hope to draw broader conclusions about soil nematodes' 
biodiversity patterns and soil functioning in nature.

2  | MATERIAL S AND METHODS

2.1 | Study area

We surveyed soil nematode communities along the Pir Panjal moun-
tain range, a group of mountains in the Lesser Himalayan region, 
running from east-southeast to west-northwest, and including the 
Indian Territory of Jammu and Kashmir, where this study was con-
ducted, and where the average elevation varies from 1,000 m above 
sea level (a.s.l.) to 4,000 m a.s.l. Within this region, four elevation 

transects were selected viz., Darhal, Thanamandi, Budhal, and Bakori 
transects (Figure 1, Table S1). The transects span elevations ranging 
as low as about 1,000 m a.s.l., which are characterized by evergreen 
forests dominated by arboreal plant species, such as Quercus leucotri-
cophora, Pinus wallichiana, Pyrus pashia, Rhododendron arboreum, and 
Priensepia utilis, and to almost 3,700 m a.s.l., habitats which are char-
acterized by alpine meadows and recent glacial retreats (Table S1).

2.2 | Extraction of climatic variables

To characterize the climatic conditions present at each site along the 
elevational transects, we extracted the 19 BIOCLIM variables from 
the Chelsa global climate dataset (https://chels​a-clima​te.org/biocl​
im/) at 30-s resolution (Karger et al., 2017). For statistical analyses, 
we removed overly correlated variables from the full list using the 
package caret (Kuhn et  al., 2020), and ended up with 10 variables 
describing the climatic niche of each site (Table S2).

2.3 | Soil and nematode sampling

Nematodes were sampled between June and October 2020 across 
the four transects, and starting end of June at the lowest sites, and 
finishing in October at the highest elevation sites. Within each tran-
sect, we sampled 10 sites, separated from one another about 300 m 

F I G U R E  1   Sampling sites along elevation gradients. Shown is an elevation map of the Indian Jammu and Kashmir region in which four 
elevation transects were chosen for sampling nematode biodiversity
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in elevational distance so as to yield a total of 40 sites (Table S1). 
At each site, a sampling quadrat of 2 × 2 m was randomly chosen 
within characteristic and homogenous vegetation type of the site. In 
sub-alpine areas, soil samples were predominantly collected within 
Fagus sylvatica, Abies pindrow, Pinus spp., Quercus spp., or Castanea 
sativa-dominated forests, whereas sampling in the alpine elevation 
stage was performed in alpine grasslands found above the timber-
line. Everywhere, agricultural or urban lands were avoided. At each 
site, about 10–12 soil cores of 10 cm diameter and 10–20 cm deep 
were collected until reaching a sufficient amount of soil (about 
1  kg fresh weight) after the removal of big (>2  cm in diameter) 
rock particles. Soil samples were then placed in a cold room (4℃) 
within 24 hr after sampling; between one and four days later, from 
this well-homogenized bulk soil material, a subsample of 100  g of 
fresh soil was used for extracting soil nematodes using the sieving 
and Baermann funnel method (Barker,  1985). The Baermann fun-
nel method has been amply used for sampling nematodes across 
a wide variety of habitats and substrates, including soils and plant 
tissues (e.g., Freckman & Virginia, 1989; Kergunteuil,  2016; Son & 
Moon, 2013; Viglierchio & Schmitt, 1983).

All nematodes in each sample were then counted under an 
Olympus Stereo-zoom SZX16 microscope, mounted into slides for 
identification to the genus level, and assigned to various functional 
guilds based on their trophic group and life history strategies (Yeates 
et al., 1993) (Table S3). Next, another subsample of the bulk soil was 
used for measuring soil parameters, including soil humidity, pH, con-
ductivity, and temperature. For soil humidity, we calculated the dif-
ference between soil fresh weight and soil dry weight after 7 days 
at 70℃; pH and conductivity were measured using a pH meter/
Conductometer (HANNA HI-98129 pH, EC and TDS Meter, HANNA 
Instruments AG, Langnau bei Reiden, Switzerland), after mixing 50 g 
of this subsample with 100 ml of deionized water. Soil temperature 
was measured on site with a soil thermometer.

2.4 | Nematode communities' functional 
characterization

Depending upon the abundance of functional guilds of nematodes, 
various indices were calculated so as to analyze the functional role 
of nematode-based food webs along various mountain transects 
(Bongers & Bongers, 1998; Ferris et al., 2001). In order to do so, all 
identified nematodes were classified into five main trophic habits 
(bacterial-feeders, fungal feeders, plant-feeders, omnivores, and 
predators (Yeates et  al.,  1993)), and along the colonizer–persister 
(cp) scale (Bongers, 1990) (Table S3). Because we were working in 
yet largely unexplored territory (Northern India) in terms of nema-
tode functional characterization, we resolved to only work with two 
major indices of relating nematodes' functional groups to ecosystem 
functioning: (a) the Sigma maturity index (ΣMI; Bongers, 1990), rep-
resenting the proportions of the different cp groups for the whole 
nematode community, where higher values indicate that nematodes 
harboring “persister” life history traits are predominant within each 

of those different nematode categories. (b) The Enrichment index (EI; 
Ferris et  al.,  2001), which is based on the biomass of opportunis-
tic nematodes that respond rapidly to the increase in bacterial and 
fungal populations that arise from organic matter decomposition. 
High values indicate high soil enrichment and high fertility. Biomass 
values were extrapolated from the NINJA (https://sieri​ebrie​nnikov.
shiny​apps.io/ninja/).

2.5 | Statistical analyses

All statistical analyses were performed using R software, version 
4.0.3 (R Development Core Team, 2020).

1.	 Soil-climate covariation: First, the effect of elevation on all 
individual soil and climate variables was tested using a mixed 
linear model (package lme4 (Bates et al., 2015)) with “elevation” 
as fixed factor and “transect” as random factor. Second, we 
tested for a shared structure between soil properties and cli-
matic conditions, which would represent a coupled soil–climate 
syndrome along elevation gradients, using a coinertia analysis. 
In other words, here we tested whether the matrices of soil 
parameters and climatic variables concomitantly vary across 
different sites. If this is the case, it would lead us to conclude 
that sites covary in their soil and climatic properties. The coin-
ertia analyses were performed using the ade4 package (Dray 
et  al.,  2003; Dray & Dufour,  2007), and the significance of 
the shared variance was assessed using a Monte Carlo test as 
implemented in ade4. When the coinertia analysis was signifi-
cant (i.e., there is a significant soil/climate structuration across 
sites; see Figure S1), we performed a linear regression between 
combined soil–climate syndrome (coinertia 1) and elevation using 
a mixed linear model (package lme4 (Bates et  al.,  2015)) with 
“elevation” as fixed factor and “transect” as random factor.

2.	 Nematodes trophic diversity covary with changes in soil and cli-
matic conditions along the elevational gradient. First we assessed 
the effect of the coupled soil/climatic variables on the six major 
trophic groups of nematodes (herbivores, fungivores, bacteri-
vores, predators, omnivores, and parasites) using a mixed linear 
model (package lme4) with “coinertia axis 1” as fixed factor and 
“transect” as random factor. Second, we scored the effect of in-
dividual soil and climatic variables on the different trophic groups 
by performing a distance-based redundancy analysis (dbRDA) be-
tween nematode communities and (a) the climatic variable matrix 
and (b) the soil variable matrix. Distance matrices were built using 
Bray-Curtis dissimilarity values, and significances were tested 
using permutational analyses of variance function capscale, the 
package vegan (Oksanen et al., 2013).

3.	 Nematode functional indices change along elevation. We as-
sessed the effect of the coupled soil/climatic variables on the 
two nematode functional indices (ΣMI and EI) using a mixed linear 
model (package lme4) with “coinertia axis 1” as fixed factor and 
“transect” as random factor (Table 1).

https://sieriebriennikov.shinyapps.io/ninja/
https://sieriebriennikov.shinyapps.io/ninja/
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3  | RESULTS

1.	 Soil-climate covariation along elevation: We found that ele-
vation was correlated with soil moisture, pH, temperature, 
and conductivity. Particularly, soil temperature (t39  =  −31.70, 
p-value <.001), conductivity (t39  =  −11.34, p-value <.001), and 
pH (t39  =  −2.04, p-value  =  .047) all decreased with elevation. 

From the lowest to the highest elevations, soil temperature 
decreased in average by 12.6  ±  0.4 degrees, conductivity de-
creased by a factor of 3.86  ±  1.14  mS/m, and pH decreased 
from 6.35 to 6.10. Soil moisture (t39  =  23.90, p-value <.001) 
increased along the elevational gradient and was in the range 
of 25.69  ±  7.21. For climatic conditions, we found that high 
elevation sites were on average 9.25  ±  4.8 degrees colder, 

SQ NumDF DenDF F Pr(>F)

Herbivores 2,646.7 1 35.67 49.17 <0.001 ***

Fungivores 221.8 1 37.77 20.93 <0.001 ***

Bacterivores 29,906 1 35.54 129.46 <0.001 ***

Predators 72.663 1 38 1.79 0.187

Omnivores 13,012 1 35.67 84.63 <0.001 ***

Parasites 2,650.3 1 20.71 6.43 0.019 *

Note: Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

TA B L E  1   Type III Analysis of Variance 
Table with Satterthwaite's method for 
measuring the effect of the combined 
soil/climate variation (coinertia axis 1, 
Figure S1) on the different nematode 
trophic guilds

F I G U R E  2   Climate and soil properties' covariation along elevation. Gray shading shows best fitting of the linear model with confidence 
intervals when the correlation is significant (p < .05). Dots are colored for distinguishing the four different elevation transects
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16% more humid, and 10% less seasonal variation in precipi-
tation than low-elevation sites (Table  S2). We also found that 
climatic and soil properties across sites were significantly cor-
related (Figure  S1, Monte-Carlo test based on 999 replicates, 
r = 0.71, simulated p-value =  .001). Finally, we found a positive 
correlation between the first axis of the soil/climate coinertia 
analysis (as a proxy of soil and climatic variables' correlation) 
and elevation (Figure  2, Type III ANOVA with Satterthwaite's 
method, F1,35.01, p-value <.001).

2.	 Across 40 sites, we retrieved 15,091 nematodes per 100  g of 
soil, belonging to 47 genera (Table S3). Nematode communities 
observed along the elevational transects varied considerably in 
their composition (Figure  S2). Low-elevation soils found in for-
ested areas, ranging from altitude 1,000  m to 2,500  m, were 
mainly composed of genera like Plectus, Acrobeles, Mesorhabditis, 
Mylonchulus, Aphelenchus, Alaimus, Wilsonema, and Eudorylaimus, 
while those found between the range of 2,500 m and 3,500 m 
were composed of genera like Mesodorylaimus, Prodorylaimus, 
Aphelenchoides, Teratocephalus, Panagrolaimus, Tylencholaimus, 
Paratylenchus, and Helicotylenchus. However, in the transition 
zones of elevation transects, various genera coexist, for exam-
ple, Helicotylenchus and Eudorylaimus, which were found both 
in lower transects and in the middle transects, whereas genera 
like Teratocephalus, Panagrolaimus, and Prodorylaimus were found 
both in mid-elevation transects and in the upper elevation tran-
sects at an altitude of 3,500  m  a.s.l. Some genera were com-
pletely absent in some sites, but present in others. For example, 
the bacterivore genera Cuticularia, Curviditis, and Rhabditis were 
not found at high elevations, while Longidorella, Nagelus were 
not found at low elevations. Furthermore, above 3,500 m a.s.l., 
nematode communities mostly consisted of few herbivore and 
omnivore genera like Pratylenchus, Longidorella, Prodorylaimus, 
and Panagrolaimus. Overall, we observed a general increase in 
the number of nematodes along the elevational gradient, but the 
diversity of nematode communities declined at the highest eleva-
tions (above 3,500 m a.s.l.), which mostly consisted of herbivore 
and omnivore genera (Table 1, Figure 3). Among climatic variables, 
diurnal temperature range and isothermality were significantly as-
sociated with more bacterivores and predators, while seasonality 
was significantly correlated with more omnivores and herbivores 
(Figure  S3, Table  S4). Among soil variables, pH was negatively 
associated with fungivores, but positively associated with herbi-
vores, while conductivity and temperature were positively asso-
ciated with bacterivores, and finally, soil moisture was positively 
associated with omnivores (Figure S3, and Table S4).

3.	 We found that indices related to ecosystem properties varied with 
elevation (Figure S4), with nematode communities being associated 
with more productive and mature ecosystems found more likely 
living at low versus high elevation. Specifically, (a) the ΣMI showed 
an increase along the elevational gradient (Table 2, Figure 4a), de-
picting an increase in the relative abundance of persister nema-
todes when moving up along the elevational gradient, while (b) the 
EI showed a decline with elevation (Table 2, Figure 4b).

4  | DISCUSSION

Abiotic variation along elevational gradients shapes species diver-
sity patterns, both for above- and belowground organisms, but the 
generalities of these patterns are still a matter of debate and vary 
across guilds of taxa (Sundqvist et  al.,  2013). Here, we studied ele-
vational gradients in soil nematode functional structure in the lesser 
Himalayan range, and found that variation in nematode communities' 
functional composition along the elevational gradient was related to a 
shared structure of climatic and edaphic variables. Second, we found 
an increase in functional diversity and nematodes' footprints with el-
evation. Third, functional indices analyses highlighted a more stable 
ecological successional status and high amplitude of carbon utilization 
at high-elevation sites, respectively. Below, we expand on these find-
ings, and extrapolate on the relevance of soil nematodes' functional in-
dices for characterizing ecosystem changes along ecological gradients.

4.1 | Elevation effect on soil nematodes' trophic 
groups in relation to edaphic and climatic variables

We analyzed nematode communities' linkages to ecosystem func-
tion by studying sites-specific soil and climatic variables along 
the elevational gradient. First, our results show an increase in soil 
moisture content along the elevation, which can be attributed to 
the increase in mean annual climatic precipitation and a decrease 
in precipitation seasonality. These properties were in turn related 
to increase in the abundance and diversity of nematodes along the 
elevation (Li et  al.,  2020). Indeed, we observed that most trophic 
groups of nematodes, except the bacterivores, which showed a de-
cline, and the parasites, which showed no variation in abundance 
along elevation, all increased with elevation. Similarly, it was pre-
viously observed that soil nematodes' diversity is higher in cooler, 
more humid soils (Dong et al., 2017; Kergunteuil, 2016). Such trends 
might be counterintuitive, as the diversity and abundance of most 
taxonomic groups studied so far; e.g., plants (Bryant et al., 2008), ar-
thropods (Hodkinson, 2005), or birds (Duclos et al., 2019; Patterson 
et  al.,  1998), all show either a steady decline or a bell-shaped re-
lationship with elevation (Brehm et  al.,  2007; Fernandez-Conradi 
et  al.,  2020; Godschalx et  al.,  2019). This is thought to be the re-
flection of the climate becoming colder and harsher, and growing 
seasons becoming shorter at high elevation (Chapin & Korner, 1995), 
a pattern that we also observed: a decrease in mean diurnal tem-
perature range, along with an increase in mean precipitation and a 
decrease in precipitation seasonality with the increasing elevation. 
Nematodes, in contrast, we observed to increase in abundance and 
functional (trophic) diversity with elevation. Other studies have 
shown the ability of nematodes to inhabit the harshest environ-
ments, such as the extreme polar regions (Loof, 1971; Yeates, 2010). 
Accordingly, we might speculate that nematodes can actually thrive 
more at high elevation, as they display adaptations to extreme low 
temperatures, such as the ability of supercooling and anhydrobiosis 
(Pickup, 1990; Pickup & Rothery, 1991; Wharton, 1995, 1996), while 
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on the other hand, they might suffer from desiccation in warmer and 
drier conditions of low-elevation sites (Procter, 1990).

Along with climatic variables, we also observed that soil condi-
tions varied with elevation, and that they were also correlated with 
variation in nematodes' trophic groups. This is in line with previous 
results showing that soil variables are indeed important determinants 
of the composition of soil nematode communities (Li et  al.,  2020; 
Nielsen et al., 2014; Song et al., 2017; Wu et al., 2011). For instance, 

increased free water availability at high elevation is an important 
aspect for nematode movement and might thus be a contributing 
factor for promoting nematode populations in the alpine environ-
ment (Landesman et al., 2011). Taken together, we could argue that 
variation in nematode community composition and diversity along 
the elevation gradient could be explained by the shared effects of 
soil and climatic factors, highlighting the crucial role of interaction 
among multiple ecological factors on soil biodiversity. Nonetheless 

F I G U R E  3   Effect of the coupled climate/soil variation along elevation and the abundance of different nematodes' trophic groups. 
(a) Herbivores, (b) fungivores, (c) bacterivores, (d) predators, (e) omnivores, (f) parasites. Abundances of nematodes represent densities 
per 100 g fresh soil. Different colors represent the sampling sites belonging to four mountain transects as shown in Table S1. Gray 
shading shows best fitting of the linear model with confidence intervals when the correlation is significant (p < .05). Dots are colored for 
distinguishing the four different elevation transects
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the climatic and edaphic factors explained only a proportion of the 
total variation in nematode diversity and composition (from 20% to 
68%), suggesting that other potential and indirect explanatory vari-
ables, such as the vegetation characteristics or soil microbes, provid-
ing the habitat as well as food for nematodes, could also influence 
soil nematode diversity (Decaëns, 2010; Wardle, 2006). One caveat 
of our study is that we did not include classic diversity measures (e.g., 
Shannon, Simpson measures of entropy) of nematode communities 
along elevation gradients. The principal reason for this omission is 
that the taxonomic level at which we were working with, mostly 
using trophic and functional groups, does not allow a sufficient 
fine taxonomic resolution for these calculations to be any meaning-
ful. Future work that scores soil nematode communities based on 

precise taxonomy, such as using DNA metabarcoding techniques, 
or through morphospecies scoring (Dell'Anno et  al.,  2015; Schenk 
et al., 2019), will very likely enable better estimates of alpha and beta 
diversity changes along elevation gradients.

4.2 | Elevational variation in soil nematode 
functional indices related to ecosystem properties

While studies of taxonomic variation can inform on biodiversity 
changes along ecological gradients, the functional characterization of 
major players in the community, such as nematodes, is necessary to link 
biodiversity to ecosystem functioning (van den Hoogen et al., 2019, 

Indices SQ NumDF DenDF F Pr(>F)

Σ-maturity 24.202 1 35.441 169.38 4.60E−15 ***

Channel 2,854.3 1 37.365 9.2445 0.0043 **

Enrichment 4,548.9 1 37.727 18.323 0.0001231 ***

MF 46,968 1 38 36.046 5.62E−07 ***

Note: Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

TA B L E  2   Type III Analysis of Variance 
Table with Satterthwaite's method for 
(1) The ΣMI, (2) The enrichment index, (3) 
The channel index, and (4) The metabolic 
footprints (MF)

F I G U R E  4   Effect of the coupled 
climate/soil variation along elevation 
and soil nematode functionality. 
Shown are linear model regression 
between the climate/soil coinertia axis 
1 (see Figure S1), and (a) the ΣMI, (b) the 
Enrichment index. Gray shading shows 
best fitting of the linear model with 
confidence intervals when the correlation 
is significant (p < .05). Dots are colored for 
distinguishing the four different elevation 
transects
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2020; Tilman,  2001; Wall & Lynch,  2000). We here addressed the 
functional composition of nematodes by studying multiple integrative 
functional indices, including the ΣMI, which increased with elevation. 
Such patterns was likely driven by an increase in plant parasitic nema-
todes index (PPI) and stable soil conditions, that is, less disturbed envi-
ronment (Bongers, 1990) at high elevation. We suspect that the reason 
for the observed increase in PPI with elevation goes hand in hand with 
changes in soil moisture, conductivity, and the climatic variables, par-
ticularly seasonality, precipitation, and temperature. Such conditions 
provide convenient environment for soil-dwelling nematodes of larger 
body size, longer life cycles, that is, ‘persistent group’ of nematodes. 
That said, the increase in ΣMI along the elevational gradient depends 
on both the free-living and the plant-parasitic nematodes; however, 
high elevations were mostly inhabited by plant-parasitic and omni-
vore nematode genera, likely due to their better tolerance to stress 
conditions (Bongers, 1990). A general decrease in the temperatures 
can also contribute to the maintenance of nematodes with long life 
cycles and low reproduction rates, thus, favoring the persister groups 
at high elevations. Furthermore, at high elevations, a denser root sys-
tem provides a more suitable environment for herbivore and omnivore 
nematodes, by providing shelter from various abiotic stress, as well 
potentially providing enemy-free zones (Kergunteuil, 2016).

Another index portraying the functional structure of nematode 
communities is the enrichment index (EI), which showed a negative 
correlation with elevation, although we detected strong variability 
right above the tree line (Figure  4b). Higher EI values indicate re-
source enrichment, and can be used to classify more undisturbed and 
more stable habitats (Ferris et al., 2001). Therefore, our findings sug-
gest that across the elevational transects, soil resources are richer at 
lower than at higher altitudes. This might be explained by the slower 
erosion processes, and faster decomposition rates at lower eleva-
tions (Murphy et al., 1998), which lead to higher concentrations of 
nutrients in low-elevation soils. Plant adaptations to high elevations 
include long leaf life span and slow growth. Moreover, high-elevation 
soil organic matter decomposition is slow, likely due to thermal in-
hibition of the metabolic machinery (Pellissier & Rasmann,  2018). 
All together, these patterns result in decreased mineralization pro-
cesses and decreased soil fertility (e.g., as shown by a decrease in soil 
conductivity at high elevation) (Wardle, 2006), and thus likely favor-
ing enhanced fungal-based energy flow at higher elevation (Wardle 
& Yeates, 1993; Zhao & Neher, 2014). Therefore, the EI can be used 
to extrapolate at which elevation the soil was sampled, as well as the 
quality of the soil in relation to productivity (Tsiafouli et al., 2017).

5  | CONCLUSIONS

Changes in ecological factors like soil quality (Bongers,  1990), 
soil characteristics (de Goede & Bongers,  1994), habitat sta-
bility (Wasilewska,  1994), and climate (Crawford et  al.,  1991; 
Papatheodorou et  al.,  2004; Ruess et  al.,  1999; Sohlenius & 
Bostrom, 1999) strongly reflect on soil nematode functional compo-
sition, and therefore, it has been predicted that different ecosystems 

or habitats should sustain different communities of soil nematodes. 
Accordingly, we here showed that along elevation gradients, soil nem-
atodes are particularly good bioindicators of local ecosystem prop-
erties (Overgaard, 1949; Procter, 1984; Yeates, 2003). Particularly, 
we showed that alpine ecosystems sustain a wider range of func-
tional and taxonomic diversity than their respective low-elevation 
sites. These results are in line with previous findings obtained along 
elevation gradients in the Alps (Kergunteuil, 2016), or across broad 
latitudinal gradients (van den Hoogen et al., 2019), and future work 
should focus on extending similar research to study the stability of 
such patterns across sites and years. Indeed, mountain ranges are 
unusually biodiverse, with copious accumulations of endemic spe-
cies, which is the reflection of high variation in hydrology, in meteor-
ology, as well as in ecological and evolutionary processes (Hoschitz 
& Kaufmann, 2004; Rahbek et al., 2019). Accordingly, mountains play 
an important role in sustaining Earth's biodiversity and ecosystem 
functioning (Körner, 2004). Soil nematodes contribute tremendously 
to such diversity, in terms of both taxonomic and functional diversity. 
Therefore, a better understating of the causes that generate nema-
todes biodiversity can inform on the impact of climate change and 
land-use change on ecosystem functioning worldwide.
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