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Abstract
The study aimed to seek potential biomarkers for acute myocardial infarction (AMI) detection and treatment.
The dataset GSE48060 was used, consisting of 52 peripheral blood samples (31 AMI samples and 21 normal controls). By limma

package, differentially expressed genes (DEGs) between 2 kinds of samples were identified, followed by enrichment analysis,
subpathway analysis, protein–protein interaction (PPI) network analysis, and transcription factor network (TFN) analysis. Weighted
gene co-expression network analysis was used to further extract key modules relating to AMI, followed by enrichment and TFN
analyses. Expression validation was performed via meta-analysis of 2 datasets, GSE22229 and GSE29111.
A set of 428 DEGs in AMI were screened out, and the upregulated toll-like receptor (TLR) family genes (TLR1, TLR2, and TLR10)

were enriched in wound response, immune response and inflammatory response functions, and downregulated genes (GBP5,
CXCL5,GZMA,CCL5, andCCL4) were correlated with immune response. CCL5, GZMA, GZMB, TLR2, and formyl peptide receptor
1 (FPR1) were predicted as crucial nodes in the PPI network. Signal transducer and activator of transcription 1 (STAT1) was the key
transcription factor (TF) with multiple targets. The grey module was highly related to AMI. Genes in this module were closely related to
regulation of macrophage activation, and spermatogenic leucine zipper 1 (SPZ1) was identified as a TF. Expressions of TLR2 and
FPR1 were confirmed via the integrated matrix.
Several potential biomarkers for AMI detection were identified, such asGZMB,GBP5, FPR1, TLR2, STAT1, and SPZ1. They might

exert their functions via regulation of immune and inflammation responses. Genes in grey module play significant roles in AMI via
regulation of macrophage activation.

Abbreviations: AIM2 = absent in melanoma 2, AMI = acute myocardial infarction, CC = correlation coefficient, DEGs =
differentially expressed genes, FC = fold change, FPR1 = formyl peptide receptor 1, GEO = Gene Expression Omnibus, GS = gene
significance, HTRI = Human Transcription Regulation Interaction, MPA =monocyte-platelet aggregates, MS =module significance,
PPI= protein–protein interaction, SPZ1= spermatogenic leucine zipper 1, STAT1= signal transducer and activator of transcription 1,
TFN = transcription factor network, TLR2 = toll-like receptor 2, WGCNA = weighted gene co-expression network analysis.

Keywords: acute myocardial infarction, differentially expressed genes, inflammation response, macrophage activation, weighted
gene co-expression network analysis
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1. Introduction

Acutemyocardial infarction (AMI) is amajor cause for death in the
world.[1] Although the incidence ofmyocardial infarction (MI) has
Editor: Ovidiu Constantin Baltatu.

SZ participated in the conception and design of the research. WL and XL carried
out acquisition of data, analysis, and interpretation of data. JQ performed the
statistical analysis. CD drafted the manuscript. SZ revised manuscript for
important intellectual content. All authors read and approved the final manuscript.

The authors report no conflicts of interest.

Department of Cardiology, Daqing People’s Hospital, Daqing, Heilongjiang,
China.
∗
Correspondence: Shu Zhang, Department of Cardiology, Daqing People’s

Hospital, No. 241 Jianshe Street, Kaifa District, Daqing, Heilongjiang Province
163316, China (e-mail: zhangshu780118@163.com).

Copyright © 2017 the Author(s). Published by Wolters Kluwer Health, Inc.
This is an open access article distributed under the terms of the Creative
Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-
ND), where it is permissible to download and share the work provided it is
properly cited. The work cannot be changed in any way or used commercially
without permission from the journal.

Medicine (2017) 96:47(e8375)

Received: 24 November 2016 / Received in final form: 7 July 2017 / Accepted: 3
October 2017

http://dx.doi.org/10.1097/MD.0000000000008375

1

a decreased trend between 1997 and 2008 in the United State,
approximate 155,000 new asymptomatic silent cases occur
annually,[3] and in developing countries, AMI is still a significant
health burden.[4]Many advanced approaches havebeendeveloped
for the management of patients with AMI, such as pharmacologi-
cal reperfusion therapy and catheter-based interventions. Howev-
er, AMI remains a major problem worldwide.[5]

Early detection of AMI contributes to early treatment inter-
ventions, which can significantly reduce the mortality rate.[6] Many
studies have been conducted to seek potentialmolecular biomarkers
for AMI detection. As expected, several genes and proteins such as
monocyte-platelet aggregates, heart fatty acid–binding protein, and
troponin I have been established as potent markers for AMI
diagnosis.[6–8] Moreover, substantial miRNAs have been proposed
as crucialmarkers formanagement ofAMI, such as circulatingmiR-
1, miR-19a, miR-208a (cardiac-specific), and miR-499.[9–12]

However, interactions between these molecules and the potentially
altered functions and pathways are rarely reported. The pathogenic
mechanisms of AMI pathogenesis remain obscure. Suresh et al[13]

establish agene expressionprofilingbymicroarray, andcompare the
differentially expression genes (DEGs) between AMI samples and
normal samples, and the dysregulated pathways of these DEGs.
However, theyonly focuson thepathways and recurrent events.The
regulatory correlations between these genes are not further
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investigated. Thus, a recent study by Gao et al reanalyzes this
GSE48060 microarray data, and performs protein–protein interac-
tion (PPI) network analysis and transcription factor network (TFN)
analysis after identifying DEGs in AMI samples. Although they
predict several crucial genes in AMI progression, such as CCL5,
BCL3, and NCOA7, the subpathway analysis and coexpression
network analysis are not involved.
Weighted Gene Co-expression Network Analysis (WGCNA) is

a useful approach that has been widely used for gene expressions
to identify key disease-related modules.[15] For instance, using
WGCNA, Saris et al[16] select two large co-expressed modules
that related to amyotrophic lateral sclerosis. By estimating gene
expression patterns, Azuaje et al[17] identify a WGCN in MI,
which is used to determine the potential role of Col5a2 and its
transcriptional pattern. Therefore, we reanalyzed Suresh’s
microarray data, GSE48060, and carried out WGCNA for gene
expressions, in addition to enrichment analysis, PPI network
analysis, and TFN analysis of the DEGs.Moreover, in the aspects
of the DEG screening, we applied more rigorous criteria with fold
change (FC)>1.2 and P<0.05, compared with Gao et al[14] with
P<0.01. Furthermore, we performed expression validation of
DEGs by using other databases, which could powerfully verify
our results from other experimental data. We aimed to reveal
molecular underpinnings in AMI development and provide novel
biomarkers for the AMI detection and treatment.
2. Methods

2.1. Data resource

The dataset GSE48060,[13] which consisted of 52 microarray
expression profiles, was downloaded from the Gene Expression
Omnibus (GEO, http://www.ncbi. nlm.nih.gov/geo) database.
The gene expression data were derived from the peripheral blood
tissues of 31 first-time AMI patients within 48 hours after MI
with (n=5) or without (n=26) recurrent events (AMI samples)
and 21 normal cardiac function controls (control samples). The
platform of the dataset was GPL570 (HG-U133_Plus_2,
Affymetrix Human Genome U133). The samples were recruited
from the Mayo Clinic Rochester echocardiography laboratory,
and all participants signed informed consent approved by the
Mayo Clinic Rochester Institutional Review Board.

2.2. Data pretreatment and differentially expressed genes
selection

Firstly, the series matrix profile that has been undergone
pretreatments such as background correction, quantile normali-
zation, and probe summarization was downloaded. Then, the
probes did not correspond to gene symbols were eliminated.
When multiple probes corresponded to 1 gene symbol, the
expression value of gene was adopted to their mean expression
values. Thereafter, the Linear Models for Microarray Analysis
(limma, http://www.bioconductor.org/packages/3.0/bioc/html/
limma.html) package of R was used to identify DEGs between
AMI and control samples.[18] The thresholds for DEG screening
were the FC>1.2 (jlog2 FCj>0.263) and P< .05.

2.3. Functional and pathway enrichment analyses,
protein–protein interaction network analysis and
transcription factors identification

Based on the Database for Annotation, Visualization and
Integration Discovery (DAVID, http://david.abcc.Ncifcrf.gov/)
2

online tool, functional and pathway enrichment analyses for
the DEGs were conducted. The significant analysis of the
enriched go terms and pathways were conducted by using
hypergeometric test. The cut-off value for functional enrichment
analysis was P< .05, and that for pathway enrichment analysis
was adjusted P< .05.
Combining information in the Search Tool for the Retrieval

of Interacting Genes (STRING, http://string-db.org/) database
with DEG expressions, we explored potential interactions of
these DEGs at protein level.[20] PPI score was set as 0.4 to
construct a PPI network, which was then visualized by the
Cytoscape (http://cytoscape.org/) software.[21] In the network, a
node represents a protein encoded by corresponding DEG, and
the degree of a node is deemed as the number of interactions
with other DEGs. A node with high degree serves as a hub gene
in the PPI network.
The Human Transcription Regulation Interaction (HTRI,

http://www.lbbc.ibb.unesp.br/htri) is an open-access database
that contains experimentally validated human transcriptional
interactions.[22] Based on information in HTRI database, we
screened out TFs amongst these DEGs, and identified their
downstream targets to build the TF-target regulatory
network.
2.4. Subpathway analysis

To further elucidate potential pathways of the DEGs, subpath-
way analysis was carried out for up- and downregulated DEGs,
respectively, using the isubpathwayMiner package in R.[23] The
cut-off value for significant subpathway was P< .05.
2.5. Construction of weighted gene co-expression network

WGCNA has been widely applied to establish a scale-free
network from gene expression data.[24] TheWGCNA package in
R (http://www.inside-r.org/packages/cran/WGCNA/docs/bicor)
was used to construct this network, and to get more genes for
WGCNA analysis, the genes with the looser threshold value of
P< .05 from results of difference expression analysis between
AMI samples and normal samples in GSE48060 were selected.
There were 3 steps to construct the WGCNA network: definition
of the gene co-expression matrix. In brief, the Pearson correlation
coefficient (CC) was calculated for all gene interactions. The
correlation between 2 genes, m and n, was deemed as Smn= jcor
(m,n)j, based on which the gene co-expressed matrix was built as
S= [Smn]; definition of adjacent function. The adjacency coeffi-
cient amn was used to determine the correlations of gene
interactions, based on the function amn=power (Smn, b)=jSmnjb;
determination of parameter in the adjacent function. The
weighting coefficient b was determined according to the scale-
free principle. Herein, i represents numbers of nodes, and p(i)
represents the probability of a node. For WGCNA network
construction, it was required that the CC between log (i) and log
[p(i)] was at least 0.8.
After the network establishment, the hierarchical average

linkage clustering was used to divide different gene co-expression
modules.[25] Then the correlations between genes in amodule and
a disease were recognized according to the following methods:P
value of a DEG between 2 kinds of samples was calculated; the
log P was defined as the gene significance (GS), and the average
GS in a module was deemed as module significance (MS).
Commonly, a module with a higher MS indicates a greater
possibility to be associated with the disease.
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2.6. Expression validation of differentially expressed genes
via other datasets

The expression data of 9 blood tissue samples from healthy
individuals in the expression dataset GSE22229 (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE22229) and 36 blood
tissue samples from patients with AMI in the dataset GSE29111
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29111)
were downloaded from the GEO database. The platforms of the 2
datasets were both GPL570 (HG-U133_Plus_2, Affymetrix
Human Genome U133).
CONOR package in R, which is available through the CRAN

repository (https://cran.r-project.org/web/packages/),[26] was
used to perform meta-analysis for the 2 datasets. Then data
were normalized using median method, and an integrated
expression matrix was obtained as the validation data. Next,
limma package was used to select the DEGs between 2 kinds of
samples, with the same criteria as aforementioned (jlog2 FCj>
0.263 and P< .05). We checked whether DEGs identified in
Figure 1. Heat map of clustering analysis of the gene expressions. X-axis represen
clusters of genes. The color toward red represents high expression values, and
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GSE48060 were also differentially expressed in this integrated
expression matrix.
3. Results

3.1. Identification of differentially expressed genes
between acute myocardial infarction and normal samples

Based on the aforementioned criteria, we obtained a total of 428
DEGs, including 160 upregulated and 268 downregulated genes.
Heat map of clustering analysis of gene expression was listed in
Figure 1, in which these DEGs could well distinguish the 2 kinds
of samples, indicating the DEGs could be used for further
analysis.

3.2. Enrichment and subpathway results

As a result, we found that the upregulated genes were mainly
associated with functions such as response to wounding [e.g.,
ts the names of each sample in dataset GSE48060, and Y-axis represents the
color toward green represents lower expression values.
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Table 1

Significant function of the differentially expressed genes (top 5).

Category Term Count Genes P

Upregulated genes
GOTERM_BP_FAT GO:0009611∼response to wounding 22 TLR10, CR1, S100A8, LY96, TLR2, etc 1.33E-08
GOTERM_BP_FAT GO:0006955∼immune response 23 IL1R2, TLR10, CR1, AQP9, TLR2, etc 2.69E-07
GOTERM_BP_FAT GO:0006954∼inflammatory response 16 CR1, TLR10, TLR1, S100A9, TLR2, etc 2.78E-07
GOTERM_BP_FAT GO:0006952∼defense response 21 TLR10, CR1, HCK, TLR1, TLR2,etc 7.43E-07
GOTERM_BP_FAT GO:0009617∼response to bacterium 10 ADM, SOCS3, LY96, HCK, TLR2, etc 7.03E-05

Downregulated genes
GOTERM_BP_FAT GO:0006955∼immune response 24 GBP5, TNFSF4, CXCL5, GZMA, FASLG, etc 6.38E-06
GOTERM_BP_FAT GO:0006968∼cellular defense response 8 KLRC3, KLRG1, GNLY, CX3CR1, CCL5, etc 7.25E-06
GOTERM_BP_FAT GO:0006952∼defense response 18 IL15, CCL5, CCL4, GCH1, CXCL10, etc 9.80E-04
GOTERM_BP_FAT GO:0002697∼regulation of immune effector process 7 TBX21, IFNG, KLRK1, IL15, CD226, etc 1.25E-03
GOTERM_BP_FAT GO:0007243∼protein kinase cascade 13 STAT4, NLRC3, LAX1, TGFBR3, THBS1, etc 1.50E-03

TLR = toll-like receptor.

Zhang et al. Medicine (2017) 96:47 Medicine
toll-like receptor 10 (TLR10), CR1, and TLR2), immune
response (e.g., IL1R2, TLR10, and TLR2), and inflammatory
response (e.g., TLR10, TLR1, and TLR2). Although the
downregulated genes were significantly enriched in immune
response (e.g., GBP5, CXCL5, and GZMA), cellular defense
response (e.g., KLRC3, CX3CR1, and CCL5), and defense
response (e.g., IL15, CCL5, and CCL4) functions (Table 1). In
addition, pathways analysis for all the DEGs were significantly
associated with IL12-mediated signaling events (e.g., CCL4,
GZMA, and GZMB), endogenous TLR signaling (e.g., CD14,
TLR1, and TLR2), interferon gamma signaling (e.g., FCGR1B,
GBP1, and GBP3), and cytokine–cytokine receptor interaction
(e.g., CCL4, CCL5, and CSF2RB) related pathways (Table 2).
Moreover, 32 subpathways in the 8 pathways were identified

for upregulated DEGs, such as starch and sucrose metabolism
(e.g., HK3, PYGL, and MGAM), pantothenate and CoA
biosynthesis (e.g., VNN2 and VNN1), and pentose phosphate
pathway (e.g., PGD and TKT). For the downregulated DEGs,
only 1 subpathway as retinol metabolism was identified
(ALDH1A1) (Table 3).
Table 2

Significant pathways of the differentially expressed genes.

Pathway Bonferroni adjusted P value

IL12-mediated signaling events 2.02E-03
Endogenous TLR signaling 2.10E-02
Interferon gamma signaling 4.22E-02
Cytokine–cytokine receptor interaction 4.24E-02

Table 3

Subpathway analysis results (partly).

Pathway ID Pathway name

Upregulated genes
path:00500_16 Starch and sucrose metabolism
path:00770_2 Pantothenate and CoA biosynthesis
path:00030_4 Pentose phosphate pathway
path:00561_5 Glycerolipid metabolism
path:00562_13 Inositol phosphate metabolism

Downregulated genes
path:00830_2 Retinol metabolism
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3.3. Protein–protein interaction network

According to the STRING database, a PPI network of the DEGs
was constructed, containing 205 nodes and 590 interactions. In
the network, formyl peptide receptor 1 (FPR1) (degree=34),
CCL5 (degree=32), GZMA (degree=32), TLR2 (degree=31),
and GZMB (degree=30) were the highlighted nodes (Fig. 2).

3.4. Transcription factors and the corresponding targets

Based on HTRI database, a total of 6 TFs that regulated 42
downstream targets were searched. Among them, signal
transducer and activator of transcription 1 (STAT1) was the
predominant one with multiple targets (Fig. 3).

3.5. Weighted gene co-expression network analysis
network and key module selection

A set of 2892 genes (P< .05) from results of difference expression
analysis between AMI samples and normal samples in GSE48060
were screened out to establish theWGCNA network. As revealed
Count Genes

10 CCL4, CD247, GZMA, GZMB, IFNG, etc
6 CD14, LY96, S100A8, TLR1, TLR2, etc
9 FCGR1B, GBP1, GBP3, GBP4, GBP5, etc
18 CCL4, CCL5, CSF2RB, CX3CR1, CXCL5, etc

P Genes

1.13E-03 HK3, PYGL, MGAM
1.53E-03 VNN2, VNN1
5.60E-03 PGD, TKT
2.51E-02 MBOAT2, DGAT2
2.63E-02 IMPA2

2.04E-02 ALDH1A1



Figure 2. Protein–protein interaction network of the DEGs. The nodes denote the protein product of DEGs, and the lines between 2 proteins denote their
correlations. In addition, the grey square-shaped nodes represent downregulated proteins of DEGs, and the white square-shaped nodes represent upregulated
proteins of DEGs. The size of each node indicates the number of the interactions with other DEGs, and the boldness of the line is directly proportional to combined
score between the proteins. DEG = differentially expressed gene.

Figure 3. Transcription factor-target regulatory network. Square shape represents target and rhombus represents transcription factors. Arrows between them
predict their correlations. In addition, the grey square shape indicates the downregulated gene, and the white square shape indicates the upregulated gene,
whereas the black square shape indicates gene with no differential expression.

Zhang et al. Medicine (2017) 96:47 www.md-journal.com
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Figure 4. Branches of the cluster dendrogram of the most connected genes in
13 modules. A line in the cluster dendrogram represents one gene, and the
height in Y-axis indicates the distance between two genes. Different colors
represent different modules.

Table 5

Significant pathways of genes in the grey module.

Category Term Count P

GOTERM_BP_FAT GO:0033555∼multicellular
organismal response to stress

3 9.09E-03

GOTERM_BP_FAT GO:0043030∼regulation of
macrophage activation

2 3.99E-03

GOTERM_BP_FAT GO:0021522∼spinal cord
motor neuron differentiation

2 4.70E-03
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in the hierarchical clustering tree, there identified a total of 13
modules (Fig. 4), and their correlations with AMI was listed in
Table 4. As a result, the grey module has the highest correlation
withAMI (CC=0.88). Therefore,we further analyzed genes in this
module, and found that theywere significantly related to functions
such as multicellular organismal response to stress, regulation of
macrophage activation, and spinal cord motor neuron differentia-
tion (Table 5). In addition, spermatogenic leucine zipper 1 (SPZ1)
was identified as only 1 TF in the grey module.

3.6. Expression validation of differentially expressed genes
by other datasets

As a result, there identified a total of 6249DEGs from the validation
dataset (GSE22229 and GSE29111), including 3409 upregulated
and2840downregulatedgenes.ComparedwithDEGs in thedataset
of GSE48060, we found 147 overlapped DEGs, including 53
upregulated and 10 downregulated genes, were both in the
GSE48060 dataset and validation dataset. Especially, we focused
on the expressionof several geneswhichwerepredictedas important
nodes in the PPI network, such asFPR1,CCL5,GZMA,TLR2, and
GZMB. Interestingly,we found thatFPR1andTLR2bothbelonged
to the overlapped DEGs (Table 6).
4. Discussion

Via a series of bioinformatics methods, we identified a total of
428 DEGs in AMI, which were mainly enriched in IL12-mediated
Table 4

Correlations between each module and acute myocardial
infaction.

Module Correlation P Gene count

Grey 0.88 8.58E-18 103
Light green 0.48 2.94E-04 37
Purple 0.48 3.34E-04 343
Light yellow 0.47 3.85E-04 34
Orange 0.46 5.38E-04 17
Light cyan 0.46 5.73E-04 44
Saddle brown 0.43 1.27E-03 13
Green yellow 0.39 4.06E-03 79
Dark turquoise �0.47 5.12E-04 91
Cyan �0.48 3.48E-04 220
Sky blue �0.49 2.56E-04 1815
Dark red �0.55 2.50E-05 74
Dark grey �0.56 1.69E-05 22
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signaling events (e.g., GZMA and GZMB), endogenous TLR
signaling (e.g., TLR1 and TLR2) and cytokine–cytokine receptor
interaction (e.g., CCL4 and CCL5)-related pathways. Upregu-
lated TLR family genes (TLR1, TLR2, and TLR10) were
significantly associated with wound response, immune response
and inflammatory response functions, and downregulated genes
(GBP5, CXCL5, GZMA, CCL5, and CCL4) were also
correlated with immune response. CCL5, GZMA, GZMB,
FPR1, and TLR2 were predicted as crucial nodes in the PPI
network. STAT1 was the key TF with multiple targets. By
WGCNA, we found the grey module was highly related to AMI,
and genes in this module were closely related to regulation of
macrophage activation. In addition, SPZ1 was identified as a TF
in the grey module. Notably, FPR1 and TLR2 as DEGs in AMI
samples were validated in other datasets.
The Granzyme 2, Cytotoxic T-Lymphocyte-Associated Serine

Esterase 1 (GZMB) encoded protein is an activate enzyme of
caspases, which are involved in the signaling pathways of
necrosis and inflammation. Reportedly, GZMB is one of the
DEGs enriched in the IL12-mediated signaling events pathway, in
the comparison of inflammatory with noninflammatory synovial
biopsies.[27] SOCS3 is a vital protein that regulates the immediate
response to cytokines. Through the inhibition of IL12-mediated
signaling, SOCS3 plays an important role in Th2 develop-
ment.[28]CCL5 is one of the chemokine genes involved in
inflammatory process.[29]GBP5 is an activator of NLRP3
inflammasome assembly that has significant roles in inflamma-
tion.[30] In our present study, we found that GZMB, GBP5, and
CCL5 were linked in the PPI network, and GZMB was enriched
in IL12-mediated signaling events pathway, whereas GBP5 and
CCL5 in immune response. Inflammation reaction is an
important reaction of immune system,[31] and immune response
is often accompanied by inflammation response during the
Table 6

Overlapped differentially expressed genes in GSE48060 and the
integrated matrix.

Gene log2FC (data 1) P (data 1) log2FC (data 2) P (data 2)

LILRA5 0.299584 2.32E-03 1.212045 1.23E-19
ANXA3 0.903241 1.85E-03 1.072664 4.38E-06
TLR1 0.275282 4.64E-02 0.376538 1.75E-04
FPR1 0.364627 7.21E-02 0.285373 8.55E-03
MAK 0.328732 2.45E-02 0.220378 7.68E-02
IL4R 0.393595 2.48E-04 0.197372 9.81E-03
TLR5 0.562566 4.04E-04 0.024332 8.51E-01
FES 0.358457 1.18E-04 0.024153 8.09E-01
PYGL 0.416482 1.09E-02 �0.00848 9.34E-01
TMEM88 0.350136 6.39E-04 �0.03968 6.14E-01

Data 1: GSE48060; data 2: the integrated matrix via meta-analysis of GSE22229 and GSE29111.
FC = fold change, TLR = toll-like receptor.
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disease progression. Thus, we speculated that IL12-mediated
signaling events pathway might associate with inflammation to
cause AMI development, and the above 3 genes might work
together in regulating these function and pathways.
The protein encoded by TLR2 is a member of TLR family

which has a critical role in activating innate immunity. AMI is
reported to have close relationship with increased expression of
TLR2.[32] During AMI, the high-mobility group box 1 protein
can induce myocardial repair, and it can activate NF-kB signaling
pathway through the receptors such as TLR2/4/9.[33] A study
suggests that sTLR2 might involve in the innate immunity
response in pathogenesis of heart failure after AMI.[34] The
inflammatory response is reduced by the activation of TLR, and
this may badly influence the reperfusion therapy of MI. Arslan
et al[35] find that TLR2 regulates myocardial ischemia, and anti-
TLR2 antibody causes a pronounced reduction of leukocyte
influx and cytokine production. In our study, we discovered TLR
family genes (TLR2, TLR10, and TLR1) were crucial DEGs in
AMI that enriched in immune response and inflammatory
response, suggesting these genes might be closely associated with
development of AMI, via involvement of these responses.
Moreover, TLR2 was predicted as a hub node in the PPI
network. Notably, differential expression of TLR2 in AMI
samples was validated by integrating analysis another 2 datasets,
and this provided potent evidence that it is an important gene for
AMI management and could be used as a therapeutic target.
The FPR1 is one of the FPRs that participant in inflammation

reaction. Reportedly, it can protect against myocardial ischemia-
reperfusion.[36] In adult rat cardiomyocytes, it is found activation
of FPR1 contributes to the Ac-ANX-A12–26 cardioprotective
actions.[37] Notably, FPR1 is also identified as a DEG in human
AMI blood tissue, compared with normal blood tissue using
microarray data.[38] In addition, activation of FPR2, the family
member of FPR1, is involved in cardiac repair after MI via
mobilization of circulating angiogenic cells.[39] Therefore, the
deregulated expression of FPRsmight account for the occurrence
of AMI. In our study, FPR1 was predicted as a crucial node in the
PPI network. More importantly, its altered expression was
validated by integrating analysis another 2 datasets, which
further confirmed our prediction that it was an important gene
for AMI prevention.
Activation of the transcription STAT1 is elevated in primary

cardiac myocytes under exposure of simulated ischemia.
Deficiency of STAT1 exerts a protective function against MI
through the control of autophagy.[40] Absent in melanoma 2
(AIM2) is a protein involved in inflammatory regulation.
Reportedly, AIM2 limits the transcription of proinflammatory
cytokine in cardiomyocytes via inhibition of STAT1 phosphor-
ylation.[41] In the present study, STAT1was identified as a critical
TF that targeted multiples genes, suggesting its central role in
AMI pathology.
Macrophages take part in the progression of various

inflammatory-related diseases. The inhibitor of COX-2, whose
expression is elevated by macrophage under exposure to
proinflammatory stimuli, can increase risk of AMI in patients
without cardiovascular risk factors.[42] In mice, deletion of
matrix metalloproteinase-28 inhibit M2 macrophage activation,
and may aggravate left ventricle dysfunction and rupture after
MI.[43] Our findings by WGCNA indicated that the grey module
was highly related to AMI and genes in this module were
significantly enriched in regulation of macrophage activation,
suggesting genes in this module were highly related to AMI, via
regulation of macrophage activation.
7

SPZ1, a bHLH-zip TF, acts as a downstream gene of mitogen-
activated protein kinase (MAPKs) and is important in MAPKs
signaling pathway via phosphorylated by MAPK1/ERK2 and
MAPK3/ERK1.[44] Reportedly, brain MAPK1/ERK2 signaling
pathways are activated in AMI rats.[45] In our result, SPZ1 was
only 1 TF with significant P value in the grey module and we
predicted this is a novel TF might be related to AMI due to no
direct relationships between its expression alteration and AMI
has been reported.
Despite these valuable findings, there remains a limitation that

we did not perform experimental validations in vitro. However,
we should note that the sample collections are very hard because
they are from blood tissues in patients with AMI. The eligible
samples from patients with AMI would be collected in our future
studies as much as possible.
Our findings provide important values in prediction of

molecular events related to AMI as well as potential biomarkers
for detection and prevention. However, the results need to be
validated by substantial experiments, as well as the performance
of those potential biomarkers such as sensitivity, superiority to
the current, cost, and convenience should also be analyzed in our
future study. In addition, in our future study, prediction of
miRNAs that regulate the DEGs in PPI network, as well as
submodule analysis and transcriptional regulatory network
construction for the genes in the grey module are still needed
to potentially provide a more comprehensive insight into AMI.
In conclusion, several novel potential biomarkers for AMI

detection were identified, such as GZMB, GBP5, TLR2, FPR1,
STAT1, and SPZ1. They might exert their functions via
regulation of immune and inflammation responses. The grey
module was most related to AMI, and genes in this module play
significant roles via regulation of macrophage activation.
However, future experimental verification is still needed to
confirm those speculations.
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