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ABSTRACT

Genome-wide transcriptome profiling has enabled
non-supervised classification of tumours, revealing
different sub-groups characterized by specific gene
expression features. However, the biological sig-
nificance of these subtypes remains for the most
part unclear. We describe herein an interactive plat-
form, Minimum Spanning Trees Inferred Clustering
(MiSTIC), that integrates the direct visualization and
comparison of the gene correlation structure be-
tween datasets, the analysis of the molecular causes
underlying co-variations in gene expression in can-
cer samples, and the clinical annotation of tumour
sets defined by the combined expression of selected
biomarkers. We have used MiSTIC to highlight the
roles of specific transcription factors in breast can-
cer subtype specification, to compare the aspects
of tumour heterogeneity targeted by different prog-
nostic signatures, and to highlight biomarker inter-
actions in AML. A version of MiSTIC preloaded with
datasets described herein can be accessed through
a public web server (http://mistic.iric.ca); in addi-
tion, the MiSTIC software package can be obtained

(github.com/iric-soft/MiSTIC) for local use with per-
sonalized datasets.

INTRODUCTION

Correlated gene expression has been studied to infer bio-
logical function, as genes whose expression is highly corre-
lated across a large number of samples often participate in
a common biological process or signalling pathway (1,2). In
particular, this approach can yield valuable information on
the mechanisms of tumourigenesis. Genes that display co-
ordinated changes in expression levels between samples may
be targeted by genetic events resulting in altered expression
or activity of common epigenetic regulators, transcription
factors or miRNAs; alternatively, when correlated genes oc-
cupy a discrete chromosomal locus, their altered expression
may result from localized chromosomal aberrations (dele-
tion or amplification). The precision of gene correlation
analyses has been further boosted by the recent advent of
transcriptome sequencing (RNA-Seq), which offers greater
fidelity and dynamic range compared to gene expression mi-
croarrays (3,4). The availability of large public datasets for
collections of normal or tumour tissues (e.g. datasets pro-
duced by The Cancer Genome Atlas and the International
Cancer Genome Consortium, (5–7)) also offers unique op-
portunities to compare gene correlation patterns between
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different cancers to illuminate the specificity or generality
of the mechanisms of tumourigenesis at play.

Analytic tools such as GOMiner (8), Gene Set Enrich-
ment Analysis (GSEA) (9) and the Database for Anno-
tation, Visualization and Integrated Discovery (DAVID)
(10) have been developed to enable biological interpretation
of gene lists derived from transcriptome profiles. However,
most currently available methods or platforms for gene ex-
pression correlation analysis do not readily enable annota-
tion of gene clusters with information relevant to the poten-
tial mechanisms underlying clustering (e.g. enrichment in
gene sets associated with specific cytobands or containing
sites or chromatin regions bound by specific transcription
factors), or clinical annotation of subsets of samples deter-
mined by expression of genes identified as potential markers
through correlation analysis. Furthermore, there is a lack
of tools for the systematic comparison of gene correlation
structures between different datasets.

The complexity of gene coexpression networks con-
structed from genome-wide expression profiles is an obsta-
cle to a useful visualization of correlation structures en-
abling interactive analyses at different levels of granularity.
The large number of nodes and edges invariably produces a
‘hairball’ in which dense local features are obscured. Using
more stringent thresholds for retaining edges on the other
hand removes gene interactions, and the information that
they impart, from the network. Existing tools designed to
address these issues tend to focus on providing methods for
automated identification of sub-graphs or clusters present-
ing pre-defined criteria. This approach is typified by Cy-
toscape, which includes a number of functionalities to ex-
plore networks based on expression datasets (11). The com-
bination of a dendrogram and a heat map (12,13), the dom-
inant visual representation for gene expression data, is also
unwieldy in the case of human expression profiling, where
the number of elements to cluster is >20 000. Even when
preselecting a few hundred genes, it is difficult to recon-
cile the dendrogram with coloured patterns seen in the heat
map. When lists of co-expressed genes are needed, the den-
drogram is ‘cut’ at a given similarity threshold and gene
clusters are recovered from the resulting disjoint trees. The
selection of a similarity threshold is typically done glob-
ally for a dendrogram, making it difficult to present clusters
forming at different thresholds. The dendrogram and heat
map approach also suffers from the inability to graphically
represent correlation-based comparisons between datasets.

Here, we report the development of a new software tool,
Minimum Spanning Trees Inferred Clustering (MiSTIC),
which addresses a critical unmet need, namely the availabil-
ity of intuitive software for tapping the power of gene ex-
pression correlations and integrative analysis in large quan-
titative datasets to reveal biological insights in the mecha-
nisms of cell differentiation and tumourigenesis. MiSTIC
offers a simultaneous view of all gene correlations in a set
of transcriptomes through the use of minimum spanning
trees (14) and a radial projection of the associated hierar-
chical clustering using an icicle representation (15). Further,
MiSTIC was designed to easily navigate back and forth be-
tween representations of gene correlation at the level of a
global dataset (icicle view), of a gene cluster (by zooming in
on individual clusters in the icicle) or of individual genes or

transcripts (single gene correlations and pair-wise scatter-
plots), enabling both global and targeted analyses. MiSTIC
maximizes the value of high-resolution RNA-Seq gene ex-
pression correlations by providing an interactive interface
for visualizing, analyzing and integrating these data with
other types of information (including gene ontology, chro-
mosomal location, microarrays, ChIP-Seq, TFBS predic-
tions). Importantly, this interface also enables representa-
tion of pair-wise comparisons of dataset correlative struc-
tures. Finally, MiSTIC also enables sorting of sample co-
horts into sub-populations based on expression levels of
genes identified as potential markers through correlation
analysis, and performs enrichment analysis in clinical anno-
tations to better characterize groups of tumours thus iden-
tified.

Several examples are shown where MiSTIC revealed
dataset-specific clusters of gene expression and helped for-
mulate testable hypotheses on the mechanisms responsible
for cluster formation in RNA-Seq datasets. Our examples
are chosen to illustrate the capacity to refine existing biolog-
ical knowledge, reveal novel connections and extend molec-
ular classification in both acute myeloid leukaemia (AML)
and breast cancer.

MATERIALS AND METHODS

Datasets

A total of 27 different RNA-Seq datasets were used in
this study (Supplementary Table S1). Dataset 1 consists of
RNA-Seq results from 152 human AML samples from the
Leucegene project (Gene Expression Omnibus accession
numbers GSE49642, GSE52656, GSE62190, GSE67040,
GSE67039). Dataset 2, also called ‘Leucegene AML NK’,
represents a subset of dataset 1 and consists of normal kary-
otype specimens. Taking into consideration that AML spec-
imens are often heavily contaminated with non-leukemic
cells (16), we took significant care to select samples with
a high proportion of blasts such that the average blast
count (before Ficoll gradient separation) was 85% with
a minimal value of 65% (Supplementary Table S2). This
value is higher than that observed with the TCGA NK-
AML dataset (mean 69%, minimum 30%). Not surpris-
ingly, this selection process resulted in the inclusion of a
large proportion of AML without maturation (WHO clas-
sification) or AML-M1 (FAB classification) representing
over 50% of the cases (Supplementary Table S2). RNA-Seq
data of 17 normal CD34+ cord blood specimens (dataset
5: purity 70–86% CD34+) are also presented as the nor-
mal counterpart of NK-AML, which contained on average
26 ± 15% (range 0–99%, Supplementary Table S2) CD34-
positive cells. Datasets 3, 4 and 6–24 are from The Can-
cer Genome Atlas (TCGA). Dataset 25 is normalized mi-
croarray expression data (Affymetrix U133 plus 2.0) from
the Cancer Cell Line Encyclopedia (CCLE) (17). Datasets
26 and 27 both correspond to the GNE cell line RNA-Seq
dataset from Genentech (rpkm or variance-stabilized data)
(18).
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Leucegene transcriptome dataset

Sample preparation and RNA-Seq data processing were
performed as previously described (19). Briefly, total RNA
from AML patient bone marrow or blood samples (∼5 mil-
lion cells) was isolated using TRIzol (Invitrogen) as recom-
mended by the manufacturer, and then further purified us-
ing RNeasy columns (Qiagen). Sample quality was assessed
using Bioanalyzer RNA Nano chips (Agilent). Transcrip-
tome libraries were generated from 4 �g total RNA using
the TruSeq RNA Sample Prep Kit (v2) (Illumina) follow-
ing the manufacturer’s protocols. Paired-end (2 × 100 bp)
sequencing was performed using the Illumina HiSeq2000
machine running TruSeq v3 chemistry. Cluster density was
targeted at ∼600–800k clusters/mm2. Two transcriptomes
were sequenced per lane. Sequence data were mapped to
the reference genome (hg19) using the Illumina Casava 1.8
package and Elandv2e mapping software. An average of
144 million ± 51 million mapped reads were obtained in
this dataset (Supplementary Table S2). All the patient sam-
ples used in this study were collected by the Leukemia
Cell Bank of Quebec (BCLQ) with informed consent and
approval of the project by the Research Ethics Board of
the Maisonneuve-Rosemont Hospital and Université de
Montréal.

Access to public datasets

Publicly available TCGA datasets (LAML tumour;
BRCA tumour, normal; COAD tumour; KIRC tu-
mour, normal, LUAD tumour, normal) were down-
loaded via the Cancer Genome Atlas data portal
(https://tcga-data.nci.nih.gov/tcga/). RPKM values
(as computed by TCGA and referred to as Illumi-
naHiSeq RNASeq) were used in these analyses. The
AML clinical data matrix (also downloaded via the
TCGA data portal) was used to subset the TCGA AML
dataset to normal karyotype samples. The BRCA clin-
ical data matrix was used to subset the TCGA BRCA
dataset to ER+, HER2+ and triple negative. The Lu-
minal A and B subsets were identified with the PAM50
signature and the genefu R/Bioconductor package (20).
The BRCA miRNA dataset was downloaded from the
Broad Institute’s Genome Data Analysis Center (http:
//gdac.broadinstitute.org/runs/stddata 2013 07 15/data/B
RCA/20130715/gdac.broadinstitute.org BRCA.Merge m
irnaseq illuminahiseq mirnaseq bcgsc ca Level 3 m
iR gene expression data.Level 3.2013071500.0.0.tar.gz).
The normalized expression data from CCLE dataset
was downloaded from GEO (GSE36133) using the R
Bioconductor package GEOquery. The RPKM and
variance-stabilized data from the GNE dataset were
obtained from Array Express (E-MTAB-2706) and
from the Klijn et al.’s supplementary data website
(http://research-pub.gene.com/KlijnEtAl2014/).

Correlation analysis in MiSTIC

We have implemented MiSTIC as a JavaScript front-end
performing AJAX queries to a web server built using
the Pyramid web framework in Python. Data rather than
graphical representations are sent from the server in JSON

format with graphical representation being built on the
client browser. This allows for a high level of interactiv-
ity. Adding new datasets to MiSTIC is achieved by pre-
computation on the server-side of correlation matrices,
minimum spanning trees and graph layouts. These steps
are implemented in Python and C++, launched from the
command-line and typically require a few minutes (e.g. 22
min, Intel i7, 2.7 GHz for a dataset of 60 samples).

Expression data is presented to MiSTIC in matrix form
following quantification analysis. Expression values can be
subjected to log or rank transformation before computing
the correlation matrix (Pearson’s correlation coefficient, r).
The log transformation is implemented as a started-log with
log10(1000x + 1), where x is the untransformed expression
values. The small weight of the constant was chosen to mini-
mize compression in the low range of expression values. The
minimum spanning tree is then constructed with Kruskal’s
algorithm (14)), using (1 – r) as a distance. Algorithmically,
the limiting step is, in most cases, the computation of the
minimum spanning tree, which is done in O(n2 log n) where
n is the number of genes. With datasets containing a large
number of samples, the limiting step can shift to computing
the correlation matrix as it requires time in O(n2 m) where
m is the number of samples.

Enrichment analysis in gene sets and clinical features

In interfaces where subsets of genes (Icicle and MST rep-
resentation, Figure 1) or patient samples (scatter plots, Fig-
ure 1) are selected, an interactive enrichment analysis is per-
formed using Fisher’s exact test and categories that are en-
riched in the selection with a P-value <0.05 are reported.
A q value after correction for multiple testing (false discov-
ery rate, Benjamini–Hochberg) is also presented as a more
stringent evaluation of statistical significance; note however
that this correction does not take into consideration the re-
lated character of different gene lists. Clinical features asso-
ciated with patient samples are treated as categorical vari-
ables. By selecting appropriate thresholds, continuous clini-
cal features are converted into categorical variables (ex. age
> 60 versus age ≤ 60), as often performed for analysis of
clinical data. This enables enrichment analysis and visual-
ization of these categories in the scatterplots as for discrete
categories.

Gene sets from published databases are listed in Supple-
mentary Table S3 (adding new gene sets can be performed
using command line tools on the server). ChIP-Seq gene
sets contain lists of RefSeq and miRNA genes with at least
one ChIP-Seq region associated with a specific TF within
25, 10 or 5 kb of their transcription start site (TSS). They
were created with the IntersectBed program from BED-
Tools (21) using the refGene and wgRna annotation tracks
of the hg19 UCSC Genome browser database (22). When
necessary, the genomic coordinates of the ChIP-Seq regions
were converted to hg19 coordinates with the liftOver pro-
gram from the UCSC (22). Chromosome gene sets con-
tain chromosome and cytoband-restricted lists of RefSeq
and miRNA genes. They were created with the IntersectBed
program from BEDTools (21) using the cytoBand, refGene
and wgRna annotation tracks of the hg19 UCSC Genome
browser database (22).

https://tcga-data.nci.nih.gov/tcga/
http://research-pub.gene.com/KlijnEtAl2014/
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Figure 1. Visualization of gene expression correlations at different levels of resolution in MiSTIC. (A) Conversion from a dendrogram representation (top)
to a classical icicle (bottom). Only clusters of size 3 and above are shown in the icicle. The width and height of peaks indicate the cluster size and the similarity
threshold at which it forms. A deep crevice between adjoining peaks indicates a lack of gene correlation between peaks. (B) The icicle is transformed using
a power-scale for the similarity measure and circularizing the original plot, the angle corresponding to genes and the radius to similarity measures. The
angle at which peaks emerge from the structure reflects the arbitrary ordering of the genes/clusters in the dendrogram. Radius values represent Pearson
correlations. (C) Clicking on a peak (arrow in B) generates a graph representation of the corresponding cluster. (D) Selecting two nodes in the cluster
(orange labels) and clicking on the scatterplot tab generates a scatterplot representation of samples according to levels of expression of selected genes.

TFBS gene sets contain lists of genes with at least one
predicted site within 10, 5 or 2.5 kb of the TSS of Ref-
Seq and miRNA genes determined as previously described
(23). Transcription factor binding sites were searched for in
the reference human genome sequences (hg17, May 2004,
UCSC Genome Browser database). Briefly, different win-
dows (±10, ±5, ±2.5 kb) centered around the TSS of
annotated genes in the refGene and wgRna annotation
track were extracted from the genome. These sequences
were screened with matrices from TRANSFAC Profes-
sional 2010.2 (24) for binding sites using a base matrix score
of 65%. For each matrix, the average number of sites/gene
was calculated in 5% increments between 65% and 100%.
In order to avoid artefactual biases due to overly abundant
or rare site frequencies, the scores with an average closest to
0.25 site/gene were used for each TF.

Scatterplot analyses and manipulation of highlight groups

In the multi-way scatterplot tool, samples can be selected
(green dots) by direct clicking on each sample or by defining
a selection area on the plot with the pointer. By using the
‘select a characteristic’ drop-down menu, the current selec-
tion will be updated to represent the set of samples sharing
this characteristic. A selection can be stored in a ‘highlight
group’ by using the ‘+’ icon of a given group. The ‘–’ icon
will subtract the current selection from the group, the ‘trash
can’ icon will remove all samples from the group and the
‘right arrow’ icon will replace the current selection by the
samples labeled by the group. New highlight groups can be
added using the ‘new group’ button.

The ‘Group settings’ panel appears when clicking on the
group’s symbol. A label can be applied to identify the na-
ture of this group. Several features of the symbol can be ad-
justed: the shape, the fill colour (surface of the symbol), and
the stroke colour and width (outline of the symbol). When
a shape is selected or the fill colour or stroke colour/width
are enabled, selected and saved, samples identified by this
group will present these graphical features, defining its state.
If ‘inherit’ is selected for any feature, then samples defined
by this group will keep the same feature states as in previ-
ous highlight groups. This scheme enables four-way visual

intersections by combining shape, fill and stroke colour and
width linked to different highlight groups.

Since the final state of each graphical feature is depen-
dent on the order of application of highlight groups, it is
possible to modify this order by using the up and down ar-
row icons on the upper-right corner of each group. The ‘x’
icon shown beside the arrows is used to entirely remove a
highlight group.

Using MiSTIC

A tutorial video is available from the Help section to guide
users in the performance of the various analyses described
above; in addition, help buttons provide operational in-
structions for each function. The MiSTIC source code is
available at github.com/iric-soft/MiSTIC.

RESULTS AND DISCUSSION

Global visualization of genome-wide gene expression correla-
tions via circularized icicles

For computational speed and clarity of the resulting rep-
resentation, gene clustering in MiSTIC is performed using
a minimum spanning tree approach (14), edges being cre-
ated by detecting maximum correlations between pairs of
nodes. The associated hierarchical clustering can be visual-
ized using an icicle representation (15), wherein the width
of each peak represents the number of its components at a
given similarity threshold (Figure 1A). The circularization
of the icicle and the use of a power scale for the similarity
measure both magnify the useful region of the plot contain-
ing clusters of genes with highly similar expression profiles.
Concentric lines in the circularized icicle histogram (Fig-
ure 1B) represent different levels of clustering, the similar-
ity measure (indicated on the radius) increasing towards the
outside of the icicle. Each peak at the periphery of the icicle
represents a set of correlated genes (e.g. arrow, Figure 1B)
organized in a single cluster or several aggregated clusters
depending on the correlation thresholds at which genes are
joined to the original cluster giving rise to each peak (see
peak structure in Figure 1A). This representation removes
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the requirement for setting an arbitrary threshold to limit
the dataset under investigation and provides a single-image
view highlighting all gene expression clusters for any set of
transcriptomes included in the MiSTIC server.

We used resampling of 69 Leucegene AML samples and
of the TCGA breast tumour dataset (754 samples) to em-
pirically explore the quantitative impact of sample size on
the matrix of pairwise correlations and the qualitative im-
pact on the resulting icicle plot. For each sample size ex-
plored, 50 randomly sampled datasets were prepared and
correlation matrices built. As the sample size increased, the
variance of the distribution of correlations for independent
gene pairs decreased, converging upon matrices where most
of the calculated correlations are close to zero (Figure 2A).
This trend is clearly demonstrated by plotting the standard
deviation of all pairwise correlations as a function of sample
size (Figure 2B). The Leucegene AML and TCGA breast
tumour datasets displayed similar behaviour when resam-
pled at similar levels. Based on this analysis, our approach
becomes adequate for datasets containing between 20 and
50 samples or when the standard deviation of the correla-
tion reaches <0.25.

Figure 2C depicts icicles generated from sample sets of
different sizes (5,10,20,50) using all protein-coding genes
(n = 20 533) and illustrates that when too few samples are
available, all edges of the spanning tree are correlations close
to 1, making it impossible to identify true clusters among
the noise. When the number of samples is increased to 50
samples, peaks emerge and become sharply defined. Simi-
lar results in terms of peak separation were obtained using
a dataset with a smaller number of features, i.e. genes coding
for transcription factors only (n = 2596), albeit with lower
correlations.

Visualization of gene expression correlation and gene set en-
richment: from whole genomes to individual genes

Icicles can be generated from minimum spanning trees for
each dataset within MiSTIC (log representation is the de-
fault option) in the Dataset and icicle tab (Supplementary
Figure S1A and B). Beyond the visualization of correla-
tion peaks in the icicle view, it is possible to download
the lists of genes associated with these peaks as an Excel
table (Extract peaks tool). It is also possible to perform
an enrichment analysis (Gene set enrichment tool) for pre-
determined gene sets (categories ChIP-Seq, Chromosome,
CNV, CPDB, GeneFamilies, GeneSigDB (25), Microarrays,
MiRNA, MSigDB (9), Target genes, Transcription Factor
Binding sites; see Supplementary Table S3). A gradient from
red to grey is used to display the over-representation (deter-
mined by a Fisher’s exact test) of genes from a selected set in
each cluster (Supplementary Figure S1B). In addition, the
localization of individual genes in the clusters/peaks form-
ing the icicle can be visualized using the Locate tool (Sup-
plementary Figure S1C).

Gene clusters in the icicle can be viewed individually by a
simple click on the corresponding section of the icicle (e.g.
peak highlighted by an arrow in Figure 1B, resulting in the
graph representing the same cluster in Figure 1C); note that
it is possible to zoom in on any region of the icicle to help se-
lect the desired feature. The minimum spanning tree edges

show the highest correlations linking each member in the
cluster, and allow a planar representation without creating
a hairball (Figure 1C). Genes are displayed in an interactive
layout that enables manual rearrangement (dynamic force-
directed layout) for greater visibility. Labels display gene
symbols as the default option but can be converted to full
names with the Change label option or removed using the
Toggle labels option to better display the topology of the
network. A list of all genes in the cluster can be obtained by
clicking on the Select all button. For each displayed clus-
ter, a downloadable table automatically provides statisti-
cally significant enrichment results (Supplementary Figure
S2A, right panel) using all gene sets listed in Supplemen-
tary Table S3. Clicking on individual gene/transcript labels
in the cluster selects them (Supplementary Figure S2A, or-
ange labels) and provides links to external gene databases
(below the enrichment table) for the latest selected item. A
list of selected genes (either from iterative manual selection
in the cluster or from selection of a gene set in the enrich-
ment table) can be downloaded using the Copy button (Sup-
plementary Figure S2A, top left).

The pairwise correlation scatterplot representation can be
accessed from the gene cluster representation by activating
the Go to scatterplot button after manual selection of at
least two genes, revealing specimen-specific expression val-
ues (log-transformed RPKM values) for all gene/transcript
pairs (Figure 1D and Supplementary Figure S2B). It can
also be directly accessed from MiSTIC’s main menu by se-
lecting the desired dataset and serially entering genes to an-
alyze, resulting in a series of pair-wise scatterplot graphs.
Specimens selected individually or as groups in one graph
are automatically labelled also in all other pairwise graphs
(see green dots in Supplementary Figure S2B) and are listed
at the bottom of the page. This view also presents enrich-
ment in patient/tumour annotations (tumour type, age of
patient, survival, gene mutation status, etc.) for selected
specimens in a sample term enrichment table (Supplemen-
tary Figure S2B, red arrow). This greatly facilitates the iden-
tification of novel prognostic genes or the characterization
of clinically-relevant tumour subsets (see below). The simul-
taneous annotation of different subsets of specimens is en-
abled by storing selections iteratively using the + sign in the
Highlight group toolbox (blue arrow in Supplementary Fig-
ure S2B). Samples are thus added to the group’s sample list;
group names and label colour/shape can be modified by
clicking on the coloured dot for each group (red arrow in
Supplementary Figure S2C). Views built with the scatter-
plot representation can be saved either as a pdf or as a link
to the scatterplot html page.

The Single gene correlation tool, accessible from a sepa-
rate tab in the main menu of MiSTIC (Supplementary Fig-
ure S2D, red arrow), displays for a single query gene a scat-
terplot of sorted correlations of this gene with respect to all
others and identifies the most correlated and anti-correlated
genes in the dataset. In this view, it is possible to visually
assess enrichment of a given gene set as a barcode on the
x-axis (Supplementary Figure S2D). Newly identified cor-
related or anti-correlated genes can be in turn visualized in
the icicle using the Locate option (see above).

Thus, the visualization mode of gene correlations in
MiSTIC is adaptable to functional annotation at different
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Figure 2. Effect of sample size on icicle representation. Datasets with reduced sample size were obtained by resampling for both a subset of the Leucegene
AML dataset (69 samples) and of the TCGA breast tumour dataset (754 samples). For each sample size explored, 50 datasets were prepared and correlation
matrices built. (A) Distribution of correlation coefficients for one resampled dataset per sample size. Plain lines are used for resampled datasets derived
from Leucegene AML and dashed lines for resampled datasets derived from TCGA breast tumours. The gray shade indicates the sample size, ranging from
3 (black) to 700 (light gray). (B) Standard deviation of correlation coefficients obtained from resampled datasets. The deviations shown on the vertical axis
correspond to the average computed for the minimum and maximum sample size of both original datasets. Open circles: TCGA; dark circles: Leucegene
(C) Icicle representations were built and displayed in MiSTIC for 5, 10, 20 and 50 samples with either all protein-coding genes or only genes coding for
transcription factors. Note the increase in peak prominence as sample sizes increase to 50 specimens.

levels of analysis, thereby providing a flexible integration
platform for dataset mining (please also refer to the video
tutorial in the Help section).

Comparison of gene correlation clusters between different
datasets

One powerful aspect of icicles is that pairs of datasets can
be superimposed in one image for rapidly assessing conser-
vation of expression clusters. A reference dataset is visual-
ized and a second dataset can be chosen for comparative
analysis in the Dataset comparison section (Supplementary
Figure S1D). In this analysis, gene clusters corresponding to
subsections of the peaks in the reference icicle are each com-
pared to all gene clusters of the comparing dataset using Co-
hen’s kappa coefficient (chosen for computational frugality
due to the need to perform this comparison on demand).
Cluster overlap is represented on the reference icicle view
using a colour scale (from light to dark blue for low to high
levels of overlap, see examples below; pointing the cursor on
a cluster highlights the corresponding kappa coefficient). It
is possible to locate genes within this cluster in the second

dataset if desired using the Locate tool on the icicle corre-
sponding to this dataset.

Superposition of the icicle plot derived from dataset 2
(Leucegene AML normal karyotype (NK), Figure 3A) with
that of dataset 4 (TCGA AML NK) indicates that the vast
majority of the expression clusters are validated in a sec-
ond, unrelated experimental setup (Figure 3B). The strong
correlation between both NK-AML datasets is illustrated
by the deep blue colour of several peaks, which were en-
riched in Gene Ontology, MSigDB/GeneSigDB, or CPDB
terms corresponding to cell cycle (CC), ribosome (R), in-
nate immune response (IR), lymphocyte activation (LA),
Hox-Meis (HM), extracellular space (ES) and haemoglobin
(HB) (Figure 3A and B). On the other hand, superposi-
tion of normal CD34+ human cord blood cells (dataset 5,
Supplementary Table S1) over Leucegene AML (several of
which are also CD34+) indicates that the majority of peaks
are light blue (low degree of conservation) with the excep-
tion of two correlation clusters, the ribosome (R) and the Y
chromosome (Y) (Supplementary Figure S3A).
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Figure 3. Imaging and comparing gene expression clusters in cancer and normal tissues with MiSTIC. (A) Icicle of the Leucegene AML NK dataset
(dataset 2, Supplementary Table S1). Blue circles identify named peaks. The mitosis/cell cycle peak is labeled in red. (B) Comparative icicle of Leucegene
versus TCGA AML NK datasets (dataset 2 versus 4). Dark shades indicate that similar clusters are found in both datasets while light blue indicates lack
of conservation. (C) Icicle of normal TCGA breast samples (dataset 6, Supplementary Table S1). (D) Icicle of the TCGA breast tumour dataset (dataset
7, Supplementary Table S1). Green circles correspond to indicated chromosomal loci. The mitosis/cell cycle peak and peaks corresponding to the ESR1
and ERBB2 gene clusters are labeled in red. (E) Representations of the TCGA breast cancer icicle highlighted for conservation with normal breast tissue
(dataset 6), lung adenocarcinoma (dataset 23) or TCGA AML NK (dataset 4). Abbreviations: CC: cell cycle/mitosis, ES: extracellular space, IFN-R:
interferon response, HB: haemoglobin, HM: Hox Meis, IR: immune response, LA: lymphocyte activation, MHCII: MHC class II antigen processing and
presentation, HIST: histones, PW: Prader-Willi syndrome, R: ribosome, SP: serine-protease activity, TR: transcriptional regulation, Y: Y chromosome.
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Similar to the comparison between leukaemia and nor-
mal CD34+ samples, comparison of the most correlated
expression clusters in normal breast tissue (dataset 6, ici-
cle in Figure 3C) with those of breast cancer (dataset
7, icicle in Figure 3D) also shows a lack of concor-
dance between these 2 datasets (Figure 3E) with the ex-
ception of a few conserved clusters such as the proto-
cadherin alpha/beta and gamma clusters on chromosome
5q31 (PCDHA/B, PCDHG), whose clustering is likely due
to overlapping transcription, and clusters of genes asso-
ciated with MHC class II (MHCII), cellular response to
type I interferon (IFN-R) and serine-protease activity (SP)
when analyzed for enrichment analysis with Gene Ontol-
ogy, MSigDB/GeneSigDB and CPDB gene sets. Peaks con-
served to a lesser extent include the cell cycle (CC) and lym-
phocyte activation (LA) correlation clusters. Similar obser-
vations were made when comparing kidney cancer and, to a
lesser degree, lung cancer with normal tissues (datasets 20–
23, not shown), supporting extensive gene expression repro-
gramming during tumourigenesis (26).

Interestingly, we found that similarity in expression clus-
ters can be greater between different types of cancers than
that observed between each cancer and its normal matched
tissue (e.g. breast cancer versus normal breast or versus lung
cancer, Figure 3E). This is especially true when comparing
different types of solid tumours. However, comparison of
breast cancer and leukaemia datasets revealed little conser-
vation except for cell cycle (CC), HOXA and HOXB, Prader
Willi (PW) syndrome and histones (HIST) clusters (Figure
3E).

Because breast cancer is a heterogeneous disease com-
prising several subtypes, we examined whether some of the
peaks differ between tumour subtypes by separately en-
tering subsets of tumours identified as ER+, HER2+ and
triple-negative by pathological analysis, or subtypes pre-
dicted by transcriptome analysis (e.g. luminal B versus lu-
minal A tumours). Several peaks are indeed specific to cer-
tain subtypes (light blue peaks in Figure 4A and B). For
instance, as expected, one of the peaks present in HER2+
but not conserved in HER2– tumours contains the ERBB2
gene, which encodes the HER2/Neu oncogenic protein
(Figure 4A and C), suggesting this peak reflects the impact
of chromosomal amplification on gene expression (see also
below).

Analyzing the basis for correlation clusters in cancer datasets

Cluster formation can be explained by at least three distinct
mechanisms, which are illustrated below using examples se-
lected from our analysis of AML and breast cancer datasets.

Cellular heterogeneity. Normal human breast is mainly
composed of epithelial cells, adipocytes/fibroblasts and in-
flammatory cells (27). Genes known to be specifically ex-
pressed in these cell types form easily identifiable clusters in
the icicle generated from the TCGA normal breast samples
(Figure 3C), including an ‘epithelial differentiation’ peak,
a ‘mesenchymal/adipocyte differentiation’ and a ‘lympho-
cyte activation’ peak (see Supplementary Table S4 for en-
richment in relevant GO, MSigDB and CPDB terms).

Chromosome amplification or deletions and sex chromosome
differences. Several clusters that are specific to breast can-
cer versus normal tissue could be readily attributed to re-
current amplification or deletion of specific chromosomal
regions using enrichment analysis with chromosomal bands
and with MSigDBgene lists and correspond to known chro-
mosomal deletions or amplifications in breast cancer (28)
(see green dots in Figure 3D for some examples). For in-
stance, the ERBB2 cluster is enriched in genes located in
chromosomal cytobands 17q12 (p = 2.33 × 10−17) and
17q21 (p = 5.32 × 10−8) and in MSigDB terms ‘NIKOL-
SKI breast cancer 17q11-q21 amplicon’ (p = 5.45 × 10−31)
and ‘SMID breast cancer elevated in ERRB2+’ (p = 9.02
× 10−17). Interestingly, the ERBB2 cluster structure reflects
the linear gene organization within the 17q12-21 locus (see
numbers in Figure 4C and D). ERBB2 is best correlated
with the closest genes compared to more distant ones; pair-
wise gene correlations in the scatterplot format indicate that
the percentage of tumours with high expression levels of
ERBB2 also having high expression of another gene in the
cluster decreases with the distance from ERBB2 (Figure
4D), compatible with heterogeneous limits of the amplifica-
tion region (29). Thus, the correlation tree of amplification
or deletion peaks readily provides information on the genes
whose expression is affected by these defects.

Similarly, most of the peaks that differ between breast
cancer subtypes contain genes in single or adjacent chro-
mosomal bands, suggestive of amplifications or deletions
in these regions being more frequent in one subtype ver-
sus the other. This is the case for instance for the ERBB2
amplicon in HER2+ versus HER2– tumours (Figure 4A).
Comparison with copy number annotations of the TCGA
breast cancer dataset (30) indicates that several other peaks
are enriched in genes present in regions of recurrent am-
plification (e.g. 11q14.1, 12q15, 13q34, 19q13.42) or dele-
tion (e.g. 2q37.3, 5q11,2, 6q15, 9q21.11, 10q23.31, 10q26.3,
12q24.31, 14q24.1, 16q24.3, 17q21.3). Note that enrich-
ment in gene sets associated with GISTIC2 predicted re-
gions of amplifications/deletions can be revealed directly
in the icicle using the ‘CNV.BRCA1:1: genes in significant
amplifications/deletions’ gene sets, or in the enrichment ta-
ble for each selected cluster. In addition, several peaks asso-
ciated with specific chromosome bands identified in luminal
B, but not luminal A tumours (Figure 4B), were confirmed
using the cBioportal for Cancer Genomics (6,7) as contain-
ing genes co-amplified with variable but often low frequen-
cies, consistent with the greater genetic instability associated
with the lumB versus lumA subtype (31). Of note, some am-
plification or deletion clusters in breast cancer are also con-
served in other solid tumours, such as lung and colon cancer
(Figure 3E, Supplementary Figure S3B). For instance, the
8q24.3 cluster is conserved between breast cancer and colon
cancer (Supplementary Figure S3B), in keeping with the re-
ported amplification of this region in both cancer types (32–
34), also observed using cBioportal. However, gene expres-
sion clusters associated with discrete chromosomal bands
occur infrequently in leukaemia (Figure 3A and E), in keep-
ing with a different landscape of genetic defects compared
to solid tumours (28).

Heterogeneity of sex chromosomes (rather than chromo-
some amplification or deletion) can also affect gene expres-
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Figure 4. Identification of clusters differentially represented in breast cancer subtypes. (A) The HER2+ breast cancer dataset (#10, Supplementary Table
S1) derived from the TCGA breast cancer dataset (#7, Supplementary Table S1) is shown highlighted for conservation with the complementary HER2–
breast cancer dataset (#11, Supplementary Table S1). (B) The luminal B breast cancer dataset (#15, Supplementary Table S1) derived from the TCGA
breast cancer dataset is shown highlighted for conservation with the luminal A cancer dataset (#14, Supplementary Table S1). (C) Minimum spanning tree
representation of the ERBB2 gene cluster. Numbers show the relative position of each gene in the cluster with respect to ERBB2 (taken as origin). Colours
represent the location of the genes centromeric (blue) or telomeric (red) with respect to ERBB2. (D) Variations in correlation with ERBB2 gene expression
across the 17q12-q21.1 locus. Scatter plots are shown for selected genes within the ERBB2 cluster, evidencing the progressive drop in correlation as the
distance from ERBB2 increases. In addition, correlations with RARA, a gene found at the end of the large ERBB2 amplicon and EZH1, a gene situated
well outside the amplicon, are also shown. Empty circles correspond to tumours with high expression of ERBB2. Between parentheses are minimum and
maximum expression levels in log-transformed RPKM. Gene numbering is shown as in C.

sion within tumours and result in cluster formation. The
most striking example is the Y chromosome gene cluster
in the Leucegene AML dataset (see for instance Figure 3A
and B), which is not correlated with any other group of
genes and results from sex variation in this set of patients.
This correlation peak is observed in all datasets examined to
date that contain patients of both sexes, although it is much
smaller in the TCGA breast cancer dataset, likely due to the
low number of male patients (7/754).

Transcriptional regulatory networks. Some peaks that cor-
respond to genes found in discrete chromosomal bands can-
not be attributed to chromosomal amplification/deletion or
chromosomal heterogeneity in the tumour population. This

is the case for the HOXA/B cluster(s) and their co-factors
MEIS1/PBX3 in the AML dataset (Supplementary Figure
S4A). Intriguingly, HOXA/B cluster genes do not correlate
with their MEIS/PBX co-factors in lung tumours or other
solid tumours (Supplementary Figure S4B and C), suggest-
ing their association due to regulatory mechanisms specific
to leukemic cells. Examination of the results of enrichment
analysis with genes containing predicted TF binding sites
(TFBS category) or regions associated with TFs in ChIP-
Seq experiments (ChIP-Seq category) in the HOXA/B clus-
ter in the TCGA AML NK dataset confirms enrichment of
known retinoic acid target genes (35) (33.38-fold, p = 1.21
× 10−5), of genes with chromatin regions associated with
RAR� in LoVo cells (3.07, p = 4.76 × 10−3) or with RAR�
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in breast cancer cells (3.29-fold, p = 5.37 × 10−3) and of
genes with predicted RAR binding sites conserved in three
species (130.57, p = 1.75 × 10−9) (36), consistent with the
role of retinoic acid signalling in regulating expression of
HOXA/B cluster genes.

The conserved mitosis/cell cycle cluster (CC, Figures 3E
and 5A and B, see also label-free version in Supplementary
Figure S5) contains genes from a variety of chromosomal
locations. It includes several TF genes, including E2F family
members E2F1, E2F2 and E2F8 in breast cancer and E2F1
and E2F8 in leukaemia, as well as MYBL2 and FOXM1
in both datasets. This may indicate transcriptional regula-
tion of cluster genes by these factors, in keeping with previ-
ous reports of their roles in cell cycle control (37,38). Enter-
ing the gene set type term ‘ChIP-Seq’ (Supplementary Table
S3) in the search window of the enrichment table displayed
in the breast cancer CC cluster view reveals enrichment in
genes containing chromatin regions associated with E2F4,
FOXM1 and MYBL2 within 5 kb of their TSS (range of
12- to 217-fold enrichment, p-values between 6 × 10−43 and
1 × 10−86, see representation in Figure 5A). The specificity
of enrichment of these gene sets in the CC cluster versus
other clusters in the leukaemia or breast cancer datasets
can be analyzed by copying their names in the ‘Gene set
enrichment box’ found in the icicle view (Supplementary
Figure S1B). Enrichment in genes containing ChIP-Seq re-
gions for E2F1, FOXM1 and MYBL2 within 5 kb of their
TSS is mostly specific to the CC cluster (Figure 5B–D),
with the exception of a few clusters, such as the ‘replication-
dependent histones’ (HIST, also enriched with MYBL2 and
FOXM1 ChIP-Seq regions, Figure 5B–D). MiSTIC can be
exploited to further dissect the transcriptional regulatory
signals that define this proliferation/cell cycle cluster. For
example, when entering the gene set type term ‘microarray’
(Supplementary Table S3) in the search window of the CC
cluster view, an enrichment in genes upregulated by 17�-
estradiol in MCF7 cells at 24 h is revealed (126-fold, p = 7
× 10−152; Figure 5E and F). Indeed estrogens, acting via es-
trogen receptor alpha (ER, encoded by ESR1), are known
to upregulate FOXM1 and E2F genes (23,39,40). In ad-
dition, both FOXM1 and MYBL2, which contain E2F1-
associated regions in HeLa cells (Supplementary Table S5),
are transcriptionally regulated by E2Fs (41,42), forming a
transcriptional regulatory network that controls expression
of CC cluster genes in response to extra-cellular signals such
as estrogens in breast cancer cells.

The examples described above derived from well-
characterized correlation clusters illustrate that it is pos-
sible using gene set enrichment in MiSTIC to formulate
testable hypotheses on the mechanisms responsible for clus-
ter formation in RNA-Seq datasets. These hypotheses can
be supported directly in MiSTIC by experimental annota-
tions such as known amplification/deletions, genes regu-
lated by signalling molecules in microarray/transcriptome
sequencing experiments or genes with TF-associated flank-
ing regions in ChIP-Seq experiments.

From correlation clusters to molecular classification of can-
cer

As correlation clusters are formed by sets of genes whose
expression co-varies in the dataset, they represent poten-
tial biomarkers for the source of heterogeneity that created
them (see above). Of particular interest are clusters reflect-
ing genetic aberrations, biological subtypes and/or tran-
scriptional networks. The transcriptome of breast tumours
has been previously analyzed to uncover markers of biolog-
ical subtypes and/or prognosis such as the PAM50, Onco-
type DX, Mammaprint, Endopredict and GGI signatures
(43–47). Enrichment analysis in the breast cancer icicle in-
dicates that most prognostic gene signatures capture mainly
the cell cycle proliferation peak (Figure 6). PAM50 and On-
cotypeDX are also enriched in the ER/FOXA1 (ER sub-
cluster for OncotypeDx) and ERBB2 peaks. In addition,
the PAM50 gene set, used for determination of molecular
subtypes of breast tumours, is enriched in two other peaks,
containing genes for transcription factors FOXC1 and p63,
respectively. The latter two peaks are statistically enriched
in gene sets associated with basal-like tumours (Supplemen-
tary Figure S6 and Tables S7 and S8). Note that these signa-
tures may contain genes that are found in a high correlation
cluster without yielding statistical enrichment, or have in-
formative value despite low correlation with other genes at
the transcriptional level; see for instance the localization of
all genes in the PAM50 and Oncotype Dx signatures on the
icicle using the Locate the genes of a set tool (Supplementary
Figure S7). Nevertheless, this analysis reveals that a consid-
erable portion of the correlation peaks is not represented in
these signatures, and may contain information that is perti-
nent for either breast cancer classification or prognosis.

The multi-way scatterplot tool can readily reveal how tu-
mours are distributed with respect to expression levels of se-
lected biomarkers. Expression of genes in the proliferation
cluster did not partition tumours in clearly distinct groups,
yielding rather a continuum of tumours with increasing lev-
els of markers such as AURKA and CENPA (Figure 7 and
Supplementary Figure S8). However, tumours with low lev-
els of both markers were enriched in luminal A tumours
in the sample term enrichment analysis, while tumours with
the highest expression levels of these markers were triple-
negative and/or basal-like tumours (Supplementary Fig-
ure S8A and B). Highlighting tumours identified as luminal
A, B, HER2+ and basal-like by PAM50 analysis using the
Highlight groups tool (Supplementary Figure S8C) further
indicates that HER2+ and luminal B tumours have inter-
mediate expression levels of these markers (Figure 7A).

Contrary to the proliferation cluster genes, mRNA lev-
els for ESR1 and ERBB2, two genes encoding breast can-
cer driver genes found in two separate correlation clus-
ters (Figure 3D), define four distinct tumour popula-
tions, ESR1hi/ERBB2lo (∼70% of the TCGA breast can-
cer dataset), ESR1hi/ERBB2hi (∼7%), ESR1lo/ERBB2hi

(∼5%) and ESR1lo/ERBB2lo (∼18%). Each of these pop-
ulations can be highlighted in a different colour using the
Highlight groups tool (Supplementary Figure S9A). Using
the select characteristic tool, which is populated with tu-
mour lists associated with specific clinical characteristics,
it is possible to examine the coincidence of these groups
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Figure 5. Transcriptional networks in the cell cycle/mitosis (CC) cluster. (A) Compilation of genes with ChIP regions associated with at least one of the
three factors. Genes associated with one factor (yellow), with two factors (orange) or with three factors (red) are highlighted (see also Supplementary Table
S5). (B–D) Specificity of the enrichment of gene sets associated with the presence of ChIP regions for E2F1, MYBL2 or FOXM1 in the CC cluster. (E)
Enrichment analysis for the gene set ‘Microarray up MCF7 24 h E2’ from Bourdeau et al. (23) indicates that it is enriched in the CC cluster. Up-regulated
estradiol target genes are highlighted in orange in the cluster representation. (F) Selective enrichment of the gene set ‘Microarray up MCF7 24 h E2’ in
the CC cluster in the breast cancer icicle.
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Figure 6. Enrichment analysis of gene signatures used for breast cancer prognosis and subtype classification in the correlation clusters of the TCGA breast
cancer icicle. Enrichment is visualized for the gene sets PAM50, Oncotype DX, Mammaprint, GGI and Endopredict.
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Figure 7. Proliferative genes discriminate between intrinsic breast cancer subtypes and between blood and bone marrow leukaemia samples. (A) Samples
in the breast cancer dataset (#7, Supplementary Table S1) were ordered according to expression levels of AURKA and CENPA. Tumours annotated as
LumA, LumB, HER2+ and Basal-like were highlighted in different colours as shown in Supplementary Figure S8C. (B) Samples in the AML Leucegene
dataset (#1, Supplementary Table S1) were ordered according to expression levels of AURKA and CENPA. Samples annotated as Blood or Bone Marrow
were highlighted in different colours as shown in Supplementary Figure S10C. (C) Samples in the AML Leucegene dataset (#1, Supplementary Table S1)
are presented according to expression levels of CD34 and HOXA9. Samples in favourable and adverse cytogenetics risk groups are respectively shown in
orange and light blue. (D) Data from TCGA showing inclusion of promyelocytic AML (M3: large dots).

with the ER and HER2 status of tumours as determined
at pathological examination. There was a general very good
overlap between the ESR1hi and ER+ tumours identified by
immunohistology (Supplementary Figure S9B). Of interest,
however, several ER+ tumours had in fact ESR1 mRNA
levels as low as most ER– tumours (ER+ ESR1lo group, red,
Supplementary Figure S9C). Levels of the ER target genes
GREB1, CA12 and AGR3 are also mostly low in this se-
lected tumour population (Supplementary Figure S9D and
not shown), suggesting lack of ER signalling in the tumour
fragment from which transcriptomes were generated. Con-
versely, several ER– tumours were found to have high lev-
els of ER expression at the mRNA (Supplementary Figure
S9E) and high levels of ER target gene expression (Supple-
mentary Figure S9F), indicating that ER signalling is intact
in the tumour fragment analyzed for transcriptome profil-
ing. These discrepancies may be attributed either to vari-
able standards of ER positivity by IHC, to a heterogene-
ity of ER status within the tumour sample, or to contami-
nating normal tissue leading to detection of ESR1 expres-
sion by RNA-Seq in spite of an ER– status by IHC. Simi-
larly, there was a very good concordance between HER2–
and ERBB2lo tumours, indicating a low level of false nega-
tives. However, several tumours with a HER2+ clinical sta-
tus had low levels of both ERBB2 and GRB7 mRNA (Sup-
plementary Figure S9G–H, red tumours); most of these also
did not have predicted amplification of the ERBB2 gene
by CNV analysis (6,7,28), suggesting false positives or dis-
crepancy between tumour fragments. Together, these results

suggest that the mRNA levels of ESR1, ERBB2 and associ-
ated genes provide useful complementary diagnostic infor-
mation.

ESR1 is part of a gene cluster in breast cancer (Figure
8A) that is not conserved in any of the non-breast cancer
datasets analyzed (list in Supplementary Table S1), indica-
tive of a tissue-specific function. The breast cancer ESR1
cluster contains other genes encoding TFs that play roles
in the control of luminal cell differentiation (48–51), such
as GATA3, SPDEF and FOXA1 (Figure 8A). Genes en-
coding the XBP1 transcription factor (XBP1), an estro-
gen target gene (23), and the androgen receptor (AR) are
also part of this cluster. A role of luminal TFs in regulat-
ing cluster genes is suggested by the fact that genes with
ChIP-Seq binding sites for ER, FOXA1, GATA3 and/or
SPDEF in MCF7 or for AR in LNCaP cells were enriched
in the entire cluster (see Supplementary Table S6 for the
presence of binding sites in the TSS flanking regions of clus-
ter genes). Although a detailed analysis of the transcrip-
tional network underlying formation of this cluster will re-
quire modulation of expression of each TFs and character-
ization of the impact on cluster genes (H.I. and S.M., in
preparation), co-recruitment of these TFs at cluster genes is
consistent with previous reports that FOXA1 and GATA3
enhance ER binding to chromatin (52,53). In addition, the
waterfall plot tool revealed that FOXA1 gene expression is
most anti-correlated with that of FOXC1 (blue labels, Fig-
ure 8B), whose expression is associated with triple-negative
status (54). Strikingly, FOXA1 and FOXC1 mRNA expres-
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Figure 8. FOXA1 and FOXC1 mRNA levels define two main sub-populations of tumours corresponding to basal-like versus other tumour types. (A)
Minimal spanning tree for the ‘luminal’ cluster. Transcription factor-encoding genes, AR, ESR1, FOXA1, GATA3, SPDEF and XBP1 are highlighted in
orange. (B) Waterfall analysis of FOXA1 most correlated and anti-correlated genes. FOXA1 and FOXC1 are highlighted in blue. (C). Breast tumours were
sorted according to expression levels of FOXA1 and FOXC1, revealing two main groups of tumours. FOXA1hiFOXC1lo tumours include the lumA, lumB,
HER2+ and normal-like groups, while the FOXA1loFOXC1hi group coincides with basal-like tumours.

sion levels defined two well-segregated breast tumour sub-
sets (Figure 8C). The FOXA1loFOXC1hi group was enriched
in basal-like tumours (Figure 8C, second last panel, open
black dots), and the FOXA1hi FOXC1lo tumours included
the lumA, lumB and HER2+ groups (Figure 8C, see sam-
ples highlighted by open back dots in each panel). This
striking anti-correlation between two FOX transcription
factor family members suggests negative cross-talk between
their transcriptional networks. This hypothesis is in part
supported by the recent observation that FOXC1 counter-
acts GATA3 activity and ER expression (55).

These examples illustrate the usefulness of MiSTIC for
exploring the significance of genes identified via correlation
analyses as markers of heterogeneity within a tumour sam-
ple population, and for comparing different tumour sub-
types via multidimensional tracking of biomarkers and en-
richment analysis.

Correlation with clinical data

MiSTIC is also designed to interface clinical data with gene
expression profiles. For example, in a scatterplot of AML
samples (dataset 1, Leucegene AML) based on AURKA
and CENPA expression levels, we observed in the sample

term enrichment table that specimens expressing high levels
of these two genes (or any other genes found in the prolif-
eration peak) were collected from bone marrow aspiration
whereas blood-derived specimens are low expressers (Sup-
plementary Figure S10C). To better assess the impact of the
tissue of origin (blood versus bone marrow) on proliferation
gene expression profile, we selected these two clinical char-
acteristics in MiSTIC and indeed observed a marked dif-
ference in expression levels of proliferative genes between
these two groups (Figure 7B). These results suggest for the
first time that leukaemia blasts in peripheral blood are much
less proliferative than those in the bone marrow. Support-
ing these findings, it was previously reported that long-term
culture-initiating cells (LTC-IC) are mostly quiescent in hu-
man blood while those derived from human bone marrow
are cycling (56), suggesting that leukemic cell proliferation
is under the same environmental control as that operating
with normal cells. However, tumours associated with longer
term survival (>3 years) did not cluster together in this rep-
resentation (Supplementary Figure S10C, green dots), indi-
cating that expression levels of proliferative genes have little
prognostic value in leukaemia.

High levels of HOXA9 (57) or CD34 (58,59) have been
proposed as risk predictors for AML. Unfortunately, each
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of these genes on its own fails to completely segregate
favourable from intermediate to poor prognosis AML pa-
tients. Scatterplot analysis of these two genes however pro-
vides four distinctive populations (Figure 7C and D for the
Leucegene and TCGA dataset). The first population con-
sists of CD34hiHOXA9lo specimens (upper left quadrant in
Figure 7C and D). This cohort of patients includes all (45
of 45; >100-fold enrichment, p = 8 × 10−28) favourable
cytogenetic AML (t(8;21) and inv(16)) and all four speci-
mens with CEBPA biallelic mutations which are also known
for good prognosis AML (60). Not surprisingly, this group
is enriched for long-term survivors (>3 years). The sec-
ond population consists of CD34hiHOXA9hi specimens (up-
per right quadrant in Figure 7C and D) and is highly en-
riched for adverse cytogenetic risk (4.1-fold enrichment; p
= 0.0007), tandem duplication in the MLL gene (20.8-fold
enrichment; p = 0.001) and failure to achieve complete re-
mission (3.8-fold enrichment; p = 0.0037). Importantly, this
population is also enriched for TP53 mutated specimens
(5.5-fold enrichment, p = 0.025). The subgroup character-
ized by CD34loHOXA9hi AML (lower right quadrant in
Figure 7C and D) is highly enriched for NPM1 mutations
(19.6-fold enrichment, p = 7 × 10−11) and for intermediate
cytogenetic risk (9.9-fold enrichment; p = 8 × 10−10). The
TCGA AML dataset reveals a fourth population of patients
(lower left quadrant in Figure 7D) corresponding to cases
of M3 AML (t(15;17)), a group yet represented in the cur-
rent Leucegene dataset but of very good prognosis.

Analysis of other types of datasets with MiSTIC

Examples of analyses shown above were performed with
RNA-Seq datasets. However, datasets generated using gene
expression microarray platforms can also be used. For in-
stance, we entered normalized expression data from the
CCLE dataset, derived from Affymetrix U133 plus 2.0 mi-
croarray characterization of cell lines (17). Comparison
with the GNE dataset, obtained by RNA-Seq of polyA+
transcriptomes, indicates a high degree of cluster conser-
vation (Supplementary Figure S11A), in agreement with
the reported high mean gene correlation between the two
datasets despite differential representation of cell lines (18).
This demonstrates that MiSTIC can be used for analysis
of transcriptomes across different types of platforms. As
expected from the heterogeneity of these tumour cell col-
lections, conservation is weaker when comparing to indi-
vidual cancer or normal tissues (e.g. Supplementary Fig-
ure S11B). However, it is possible to detect differentia-
tion clusters such as the epithelial differentiation cluster
observed in normal breast tissue (Supplementary Figure
S11C). Genes within this cluster differentiate a group of
cell lines enriched in the carcinoma annotation from one
enriched in the hematopoietic-lymphoid origin annotation
(Supplementary Figure S11D). However, variable propor-
tions of carcinoma cell lines depending on the cancer type
are associated with lack of epithelial cluster gene expres-
sion, suggesting loss of epithelial identity and acquisition of
mesenchymal traits (Supplementary Figure S11E). Similar
results were obtained with the GNE dataset (not shown).

It is also possible to construct icicles from miRNA RNA-
Seq datasets. In this case, the number of features is lower,

fewer peaks are formed and correlations reach lower val-
ues. Comparison across datasets is possible, identifying
dataset-specific or common clusters (Supplementary Fig-
ure S12A). Enrichment analysis can be performed as above
to assess whether miRNA clusters are linked to individual
chromosomal loci (whether due to amplification/deletion
or to coregulation of miRNA clusters) or coregulated by
common TFs. Correlations between protein-coding genes
and miRNAs can be explored by fusing these datasets.
An example of this approach is shown in Supplementary
Figure S12B–D, illustrating the anticorrelation between
MIR200A/B/C, found in the epithelial cluster, and genes
in the mesenchymal cluster and the enrichment in binding
sites for mesenchymal genes ZEB1/2 in regulatory regions
of epithelial cluster genes including MIR200C. In addition
to miRNAs, other non-coding RNA whose expression can
be quantified using RNA-Seq can also be used either alone
or combined to protein coding genes to construct correla-
tion networks. This will become all the more interesting in
the future as these transcripts become more systematically
detected, mapped and annotated.

Finally, quantitative profiles other than gene expression
profiles can also be used in MiSTIC. For instance, we have
verified that biological responses of AML specimens to
small chemical compounds can be entered and analyzed
in MiSTIC, revealing compound clustering based on their
ability to selectively kill primary AML samples (61).

CONCLUSION

In conclusion, MiSTIC is a tool that visualizes and com-
pares collections of gene expression profiles, instantly high-
lighting differences and similarities in gene clustering be-
tween cancer types or subtypes. Its integrative concept
greatly improves the accessibility of complex datasets by
end-users and enables the generation of hypotheses on
mechanisms driving correlated gene expression. It should
also facilitate identification of new prognostic markers and
accelerate improvements in the molecular classification of
cancers. Finally, MiSTIC is adaptable to the analysis of any
collection of quantitative profiles.
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