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Abstract

The ever-increasing availability of transcriptomic and metabolomic data can be used to

deeply analyze and make ever-expanding predictions about biological processes, as

changes in the reaction fluxes through genome-wide pathways can now be tracked. Cur-

rently, constraint-based metabolic modeling approaches, such as flux balance analysis

(FBA), can quantify metabolic fluxes and make steady-state flux predictions on a genome-

wide scale using optimization principles. However, relating the differential gene expression

or differential metabolite abundances in different physiological states to the differential flux

profiles remains a challenge. Here we present a novel method, named REMI (Relative

Expression and Metabolomic Integrations), that employs genome-scale metabolic models

(GEMs) to translate differential gene expression and metabolite abundance data obtained

through genetic or environmental perturbations into differential fluxes to analyze the altered

physiology for any given pair of conditions. REMI allows for gene-expression, metabolite

abundance, and thermodynamic data to be integrated into a single framework, then uses

optimization principles to maximize the consistency between the differential gene-expres-

sion levels and metabolite abundance data and the estimated differential fluxes and thermo-

dynamic constraints. We applied REMI to integrate into the Escherichia coli GEM publicly

available sets of expression and metabolomic data obtained from two independent studies

and under wide-ranging conditions. The differential flux distributions obtained from REMI

corresponding to the various perturbations better agreed with the measured fluxomic data,

and thus better reflected the different physiological states, than a traditional model. Com-

pared to the similar alternative method that provides one solution from the solution space,

REMI was able to enumerate several alternative flux profiles using a mixed-integer linear

programming approach. Using this important advantage, we performed a high-frequency

analysis of common genes and their associated reactions in the obtained alternative solu-

tions and identified the most commonly regulated genes across any two given conditions.

We illustrate that this new implementation provides more robust and biologically relevant

results for a better understanding of the system physiology.
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Author summary

The recent advances in omics technologies have provided us with an unprecedented

abundance of data spanning genomes, global gene expression, and metabolomes. Though

these advancements in high-throughput data collection offer an excellent opportunity for

a more thorough understanding of metabolic capacities of a wide range of species, they

have caused a considerable gap between “data generation” and “data integration.”. In this

study, we present a new method named REMI (Relative Expression and Metabolomic

Integrations) that enables the co-integration of gene expression, metabolomics and ther-

modynamics data as constraints into genome-scale models. This not only allows the better

understanding of how different phenotypes originate from a given genotype but also aid

to understanding the interactions between different types of omics data.

Introduction

The turnover rates of metabolites through a pathway are called fluxes, and genome-wide intra-

cellular metabolic fluxes are the ultimate regulator of cellular physiology. Perturbations on the

normal physiology, such as those that occur in a disease state, directly influence the metabolic

fluxes. The well-established experimental approach for determining these metabolic fluxes is
13C metabolic flux analysis, though this experimental technique that directly measures metabo-

lite levels is costly and time-consuming, such that computational tools for flux prediction have

become a very popular alternative. Genome-scale metabolic models (GEMs), which essentially

associate an organism’s genotype with its phenotype, integrate genomic information with

known information about metabolite levels to comprehensively describe an organism’s metab-

olism [1]. These models can predict metabolic fluxes, growth rates, or the fitness of gene

knockouts using constraint-based approaches, which mainly require the knowledge of net-

work stoichiometry that is available from the annotated genome sequences and metabolic

pathway databases. One of the most routinely used constraint-based approaches is flux balance

analysis (FBA), which relies on the stoichiometry and optimization principles to predict the

steady-state metabolic flux distribution according to an objective function in a given metabolic

network [2]. Due to network complexity, FBA commonly results in a span of alternative opti-

mal solutions indicating different flux distributions with the same objective value rather than a

unique steady-state flux distribution profile, and then selects one of these solutions at random

to present back to the user, which is a major limitation of this method. To remedy this, it has

been shown that integrating additional layers of constraints, such as thermodynamics, can

effectively reduce the overall solution space of feasible flux distributions in an organism to

limit the number of alternative solutions [3, 4].

With the growing availability of high-throughput data for different organisms under a wide

range of genetic or environmental perturbations, GEMs became popular because of their abil-

ity to incorporate omics data as additional regulatory constraints for FBA problems. Because

GEMs associate a genotype with a phenotype, it is essential to understand that a single genome

can result in thousands of different physiologies through different regulatory mechanisms.

Therefore, the integration of static snapshots of the metabolism, obtained from transcriptomic

and metabolomic data, provides more biologically relevant constraints for the system and

helps to increase the precision of the flux prediction, therefore better deducing the observed

physiology. However, despite the high number of methods that have been introduced in recent

years for the integration of omics data into constraint-based metabolic models, the enhanced
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prediction of flux profiles using omics data, particularly in cases using multi-omics data, is still

far from being resolved. Recently, these methods, their scopes, and limitations were extensively

reviewed [5], and the authors concluded that using gene-expression data does enhance flux

predictions, though they inferred that the accurate predictions of the physiology is not achiev-

able with the available reviewed methods.

The existing methods for integrating gene-expression data into GEMs can be classified into

two categories with the first relying on the integration of absolute gene-expression data into

GEMs. This includes techniques such as gene inactivity moderated by metabolism and expres-

sion (GIMME) [6] and the use of continuous and discrete formulations to find a flux distribu-

tion that is consistent with given context-specific gene-expression data, including integrative

metabolic analysis tools (iMAT) [7, 8] [5, 9–11]. However, the assumption that absolute gene-

expression data can be directly correlated with flux values is questionable and might not hold

true for all genes. Moreover, these methods require user-defined thresholds to identify and cat-

egorize the expression levels of metabolic genes (high, moderate, or low expression), and the

results are sensitive to the set thresholds. These drawbacks motivated the development of (ii)

the second class of methods, which integrate the relative gene-expression data while aiming to

maximize the correlation between differential changes in gene-expression and reaction fluxes.

The underlying assumption for this class of methods is that the relative changes in gene expres-

sion between two conditions correlate with the resulting differential flux profiles [12, 13].

The increasing availability and quality of metabolomic data have promoted the development

of methods that can be integrated into GEMs to refine model reconstruction, to reduce the solu-

tion space of feasible fluxes, and to better predict the physiological state of a system. These

methods, their scope, and their limitations have been reviewed by Töpfer et al. [14]. One of

these methods, thermodynamic-based flux balance analysis (TFA), integrates the absolute

metabolite concentration data into GEMs, as the metabolite concentrations are intrinsically

associated with the Gibbs free energy of metabolic reactions [3, 4]. Another available method is

gene inactivation moderated by metabolism, metabolomics, and expression (GIM3E), an exten-

sion of the GIMME algorithm with added metabolomic data in addition to gene-expression

data [15]. However, this method only considers the presence/absence of metabolites to refine

the model, therefore preventing a full utilization of the quantitative metabolomic data. A time-

resolved expression and metabolite-based prediction of flux values, named TERM-FLUX, inte-

grates time-series expression and metabolomic data, and predicts flux distribution for a given

time point t. [16]. However, the application of TERM-FLUX is limited to studies with time-

series data, which are not widely available. More recently, a method for the integration of rela-

tive metabolite levels for flux prediction, iReMet-flux, has been introduced to predict differential

fluxes at the genome-scale [17], and it requires an assessment of the differential changes of all

existing metabolites in a GEM. This limits its application, as metabolomic data are mostly mea-

sured not at a genome-wide level but rather for only a few metabolites in a system.

For multi-omic data, methods have recently been introduced for integrating different layers

of data, such as genomic, transcriptomic, proteomic, and fluxomic, into metabolic models [18]

or multi-scale models [19]. However, a method that couples the thermodynamic constraints

into GEMs with relative transcriptomic and metabolomic data is not yet available.

To address this deficiency, we herein propose a novel method, termed Relative Expression

and Metabolite Integration (REMI), to integrate relative expression and relative metabolite abun-

dance data into thermodynamically curated GEMs. REMI is the first method that integrates ther-

modynamics together with relative gene-expression and metabolomic data as constraints for

FBA. We demonstrate that REMI’s ability to integrate different layers of constrictive data signifi-

cantly reduces the solution space of feasible fluxes. REMI also extensively enumerates alternative

optimal and sub-optimal solutions, bringing a robustness and flexibility to the flux distribution
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analysis. We applied REMI to a GEM of E. coli to estimate the central carbon metabolism flux

measurements that were determined by 13C metabolic flux analysis (13C-MFA) and were pro-

vided by two independent experimental studies [20, 21]. Although there is limited number of

such fluxomic datasets for validation and the measurements are not available at a genome-wide

level, our results suggest that the integration of gene-expression, metabolite abundance, and ther-

modynamic data within REMI’s optimization framework allows for improved flux predictions.

Comparing REMI’s predictions with a similar method (GX-FBA [12]), we also show that REMI

has on average a 32% higher Pearson correlation coefficient (r = 0.79) indicating a more precise

exploration of organismal metabolism under wide-ranging conditions.

Results

We designed REMI as the first method to integrate relative gene-expression and metabolite

abundance data into thermodynamically curated GEMs, reducing the solution space of opti-

mal fluxes to provide results that are better at predicting cell physiologies closer to the experi-

mental observations than can be reached using existing methods. The REMI workflow along

with an illustration of the method performed on a toy model is presented in Fig 1. REMI

requires a GEM (FBA model) and sets of gene-expression and/or metabolomic data. The first

step consists of data pre-processing wherein the FBA model is converted to a thermodynamic-

based flux analysis (TFA) model [3] that incorporates the Gibbs free energy of metabolites and

reactions into the model. The gene-expression/metabolite-level ratios are further systemati-

cally converted into reactions ratios to integrate them into the REMI methods. Based on the

type of integrated data, there are three different REMI methods. REMI-TGex integrates ther-

modynamic and gene-expression data, REMI-TM integrates thermodynamic and metabolo-

mic data, and REMI-TGexM integrates thermodynamic, gene-expression, and metabolomic

data into an FBA model. Note that the REMI methods can be used without thermodynamic

data, such as in REMI-Gex, which integrates gene-expression data into a FBA model.

The REMI framework was applied to integrate the E. coli transcriptomic and metabolomic

data obtained from two studies under 8 [20] and 3 [21] different conditions into the thermody-

namically curated E. coliGEM iJO1366 and to estimate the differential steady-state fluxes. We

call the data and information from [20] “Dataset A” and data and information from [21] “Data-

set B”. We formulated different optimization models which hierarchically integrated different

combinations of available data to investigate the effectiveness of multi-omics data integration in

reducing the metabolic flexibility of the provided solutions. REMI-TGex is an integrated model

obtained by incorporating relative gene-expression data into a thermodynamically constrained

model, which is represented by iJO1366 in this work. Furthermore, we integrated relative

metabolite concentration data into the REMI-TGex model to produce REMI-TGexM and com-

pared experimentally measured fluxes with the steady-state flux prediction results of REMI-T-

Gex and REMI-TGexM. We also compared our prediction results with those of the previously

existing GX-FBA [12], though as this method does not employ thermodynamic constraints, we

used REMI to incorporate gene-expression data lacking thermodynamics constraints into E.

coliGEM iJO1366 (REMI-Gex). The comparison of REMI-Gex and REMI-TGex highlights the

significance of the thermodynamic constraints in reducing the solution space of flux analysis.

We also performed some studies with only metabolite changes with thermodynamic constraints

(REMI-TM) and without thermodynamic constraints (REMI-M).

Consistency score and enumeration of alternative solutions

The underlying assumption of the REMI method is that the perturbation of gene-expression

and metabolite levels influences the flux levels in the metabolic network. To this end, REMI

Integrating relative gene and metabolite levels with thermodynamic data
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maximizes the consistency between relative experimentally observed changes in gene expres-

sion and metabolite abundance with the flux levels (the objective function of the REMI con-

straint-based method). The maximum consistency is then calculated as an integer number,

called the maximum consistency score (MCS). This represents the maximum number of con-

straints that can be incorporated into a FBA model from a given set of constraints (gene-

expression or metabolite abundance levels) while ensuring that the model still achieves the

required metabolic functionalities and remains feasible. MCS is a unique number, however, in

that the complex nature and interconnectivity of metabolic networks can result in several alter-

native solutions for a given MCS, meaning that numerous combination of different constraints

from the input data could result in the same MCS. The theoretical maximum consistency

score (TMCS) indicates the number of genes (or metabolites or both) with available experi-

mental data that can potentially be integrated into the model, and MCS indicates the number

of these available constraints that could be consistently integrated into the model.

Case study I: REMI analysis of the Dataset A with gene-expression and

metabolomic data

We first applied REMI to the integration of eight datasets from Ishii et al. [20], which included

genome-wide transcriptomics together with some metabolomic data obtained for one refer-

ence condition and seven different conditions or mutations, into an E. colimodel. After inte-

grating the gene-expression data of each condition into the model and comparing it with the

Fig 1. The REMI workflow requires two inputs: a genome-scale flux balance analysis (FBA) model and sets of gene-expression and/or metabolomic

data. In the pre-processing step, the FBA model is converted into a thermodynamic-based flux analysis (TFA) formulation, and the relative flux ratios are

further assessed based on the omics data. Also based on the omics data provided, REMI translates to the REMI-TGex, REMI-TM, and REMI-TGexM

methods (third block). Examples of gene-expression and metabolomic data (second block) together with a toy mode (third block) are used to illustrate the

applicability of the REMI methods. The theoretical maximum consistency score (TMCS) is the number of available omics data (for metabolites, genes

(reactions), or both) and the maximum consistency score (MCS) is the number of those constraints that are consistent with fluxes and could be integrated

into REMI models. The MCS is always equal to or smaller than the TMCS.

https://doi.org/10.1371/journal.pcbi.1007036.g001
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reference model, we computed TMCSs, MCSs, and the number of alternative solutions for the

REMI-Gex method (without thermodynamic constraints) and the REMI-TGex method (with

thermodynamic constraints). In contrast to other methods, REMI finds all possible alternative

solutions of a given maximum consistency score, which involves all possible combinations of

the given set of constraints that always result in a feasible model. These alternative solutions

provide flexibility in the biological interpretation of the results as they are equally consistent

with the provided experimental data (applied as constraints to the model). Note that in the

GEM analysis, the alternate flux solutions are conventionally considered as equivalent pheno-

typic states [22]. In this study, however, alternative solutions represent the equivalent states of

the maximum consistency between gene-expression (or metabolite abundance or both) data

and the flux levels. Therefore, each feasible alternative solution provides an opportunity to ana-

lyze and interpret the given phenotypic state based on the condition-specific omics data, from

a different standpoint.

We further integrated the available metabolomics measurements into the E. colimodel

using REMI-TGexM and obtained the MCS for the integrated metabolites as well as the global

maximum consistency score (GMCS), which encompasses both genes and metabolites

(Table 1). Although different pairs of conditions showed a very close TMCS variability across

the seven case studies based on gene-expression data integration (mean = 103.6, standard devi-

ation [sd] = 0.5) and on metabolic data (mean = 4.7, sd = 0.5), the MCS significantly varied

across the four REMI methods: REMI-Gex (mean = 58.7, sd = 4.1), REMI-TGex (mean = 49.7,

sd = 3.5), REMI-GexM (mean = 63.3, sd = 4), and REMI-TGexM (mean = 54.3, sd = 3.3)

(Table 1). As Table 1 shows, the gene-expression and metabolite abundance constraints for the

deregulated metabolites were consistent across the conditions. Therefore, the REMI-TM and

REMI-GexM consistency scores sum up to the REMI-TGexM consistency score. This means

that there is no conflict between the gene-expression and metabolite abundance data and that

they can be co-integrated without confronting each other. We found in our results that MCS

was noticeably lower than TMCS, suggesting that the assumption that the relative changes in

gene expression correlate with those in fluxes does not always hold. This is probably because

the relative changes in gene expression depend on the mechanism of post-transcriptional and

translational processes which are currently not captured in metabolic models. However, the

number of enumerated alternative solutions highly differs across the conditions in all four

methods: REMI-Gex (mean = 80.6, sd = 80.3), REMI-TGex (mean = 104.6, sd = 168.5),

REMI-GexM (mean = 156.1, sd = 241.8), and REMI-TGexM (mean = 25.1, sd = 26.4)

Table 1. Maximum consistency score and the number of alternative solutions for different models. The reference refers to the wildtype growth rate of 0.2/hour. Gens

and Metabolites represent the number of differentially regulated genes and metabolite between two conditions, respectively. TMCS, theoretical maximum consistency

score; MCS, maximum consistency score; # Alt, number of alternatives; HFC, high frequency constraint. SD represents the standard deviation across comparisons.

Genes Gex TGex Metabolites GexM TGexM

Comparisons TMCS MCS # Alt HFC MCS # Alt HFC TMCS MCS GMCS # Alt HFC GMCS # Alt HFC

pgm vs Ref 104 56 11 50 49 8 45 5 5 61 12 55 54 8 50

gapC vs Ref 104 60 16 56 48 16 44 5 5 65 16 61 53 16 49

zwf vs Ref 104 62 8 59 54 4 52 5 5 67 8 64 59 4 57

rpe vs Ref 104 58 67 48 49 512 40 5 5 62 735 52 53 4 46

pgi vs Ref 103 59 236 50 49 64 43 4 4 63 96 56 53 16 49

wt5 vs Ref 103 65 160 58 55 80 49 4 4 69 160 62 59 80 53

wt7 vs Ref 103 51 66 43 44 48 38 5 5 56 66 48 49 48 43

Mean 103,6 58,7 80,6 52,0 49,7 104,6 44,4 4,7 4,7 63,3 156,1 56,9 54,3 25,1 49,6

SD 0,5 4,1 80,3 5,4 3,5 168,5 4,5 0,5 0,5 4,0 241,8 5,4 3,3 26,4 4,2

https://doi.org/10.1371/journal.pcbi.1007036.t001
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(Table 1), which suggests that the numbers of alternative solutions are condition-specific, as

expected. As shown in the Table 1, wherever the sd is very high, for example sd = 241.8 in

REMI-GexM for the rpe vs Ref case, we observe a high number of alternative solutions

(n = 735 in this case). Different conditions (mutations) alter the cell metabolism differently,

leading to different levels of metabolic adaptations and metabolic flux rerouting. Hence, we

speculate that the differences in flux rerouting across conditions results in differences in the

numbers of alternative solutions across the seven relative conditions. Note that for REMI-TM

and consequently for REMI-M, the constraints for all the deregulated metabolites were consis-

tently integrated into the model, so we found only one solution for the REMI-TM models

without any alternative solution.

Alternative solutions and consistency scores of REMI-TGex and

REMI-TGexM

For the metabolomic integration, the GMCS was higher in the REMI-TGexM models com-

pared to REMI-TGex because in REMI-TGexM, the GMCS was computed based on both rela-

tive metabolite (Table 1; Metabolites) and relative gene-expression levels (Table 1; Genes),

whereas the MCS for the REMI-TGex model was computed based on only relative expression

levels. We further investigated the consistency between gene-expression and metabolomic

data and whether the data contradicted each other in certain scenarios. All the available experi-

mental metabolomic data (Table 1; TMCS and MCS) were integrated using the REMI-TGexM

method for the pgm vs Ref, gapC vs Ref, zwf vs Ref, wt5 vs Ref, and wt7 vs Ref comparisons.

We observed that the number of alternative solutions for these five cases was identical between

REMI-TGexM and REMI-TGex. This implies that the relative expression constraints and the

relative metabolite constraints were not contradictory for these five cases. However, in rpe vs
Ref and pgi vs Ref, all the metabolic data were integrated in the model, but the number of alter-

native solutions differed (and in the case of rpe vs Ref was noticeably reduced) between

REMI-TGexM and REMI-TGex. To see if this indicated a contradiction, further investigation

into the alternative solutions revealed that in the rpe vs Ref and wt5 vs Ref comparisons,

REMI-TGexM and REMI-TGex have the same set of constraints, which means that the con-

straints from metabolomics and expression data were not contradictory. However, we found

that the metabolomics integration resulted in a reduction in the number of alternative solu-

tions (Table 1). We hypothesized that further integration of metabolomics (on the top of the

gene-expression constraints) imposed a flux rerouting in the metabolic network.

High-frequency constraint (HFC) analysis

As REMI allows enumerating all the possible alternative solutions for a given consistency

score, we further interrogated the alternative solutions by High-frequency constraint (HFC)

analysis.

The results of this analysis indicate the core constraints that consistently operate in all the

alternative solutions (the constitutive part of all solutions). Meaning that such core constraints

certainly perturb fluxes within each pair of conditions. Therefore, these constraints could

potentially be the indicators of the regulators of the condition-specific metabolism, which

assist biologist in determining which metabolic subsystems to deregulate or to mutate. We

believe that the capability to analyze and identify these regulators is a key advantage of REMI.

As shown in the Table 1, the computed HFCs differ across conditions for all four cases:

REMI-Gex (mean = 52, sd = 5.4), REMI-TGex (mean = 44.4, sd = 4.5), REMI-GexM

(mean = 56.9, sd = 5.4), and REMI-TGexM (mean = 49.6, sd = 4.2). Constraints that were

common amongst all the alternative solutions, indicating key regulators, were the potential

Integrating relative gene and metabolite levels with thermodynamic data
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candidates for further investigations. After analyzing HFCs across conditions and between the

four cases, we found that a reaction catalyzed by glycolate oxidase (GLYCTO4) from the alter-

nate carbon metabolism and another reaction from the murine recycling pathway

(MDDEP4pp) were always deregulated in the pgm, gapC, zwf, rpe, pgi, and wt7 conditions.

These reactions are likely key regulators of mutation in E. coli because they were found to be

deregulated in all mutant conditions.

REMI-Gex vs REMI-TGex: Flux variability analysis to investigate the

influence of thermodynamic constraints

To study the effect of thermodynamics on the model, we compared the reduction in solution

space for the predicted flux profiles from the REMI-TGex and REMI-Gex methods when cou-

pled with the gene-expression data (Table 1). The MCS was consistently reduced in the

REMI-TGex model compared to REMI-Gex for all pairs of conditions, as REMI-TGex elimi-

nates flux solutions that are not thermodynamically feasible.

To better illustrate the positive influence of thermodynamic constraints in reducing the

solution space, we show the example of pgm vs Ref as a case study, where we obtained

MCS = 56 in REMI-Gex and MCS = 49 in REMI-TGex (Table 1). First, we enforced the mod-

els to satisfy any given consistency score (56 and 49 in this example) by adding a new con-

straint, which would further allow us to perform conditional FVA. Then, we performed the

FVA that satisfies the consistency score (MCS = 56) in REMI-Gex and the consistency score

(MCS = 49) in REMI-TGex. Comparing the FVA results of REMI-Gex and REMI-TGex

revealed that there exist 45 reactions in REMI-Gex that operate in a thermodynamically infea-

sible direction and which also contribute to the MCS = 56. The flux ranges of these reactions

are shown in S1 Table and indicate that the TGex method is indeed eliminating the infeasible

solutions to enrich for more relevant results. For more clarification, two reactions out of the 45

are shown as examples in S1 Fig. As expected, the flux ranges for these reactions are less flexi-

ble for the REMI-Gex (MCS = 56) compared to the REMI-TGex (MCS = 49), which confirms

some extent of the thermodynamic infeasibility in the REMI-Gex predictions as infeasible flux

ranges directly indicate the model infeasibility. On the other words, if we integrate thermody-

namic constraints to the model and allow the consistency score (MCS = 56) then the model

certainly generates infeasible solutions. To investigate whether the higher consistency score

caused thermodynamic infeasibility in the REMI-Gex, we performed a FVA of REMI-Gex

while forcing lower consistency scores (MCS = 49 and 10). We found that the flux ranges of

reactions became more flexible at lower consistency scores in the REMI-Gex model compared

to the REMI-TGex model (S1 Fig), indicating that if both REMI-TGex and REMI-Gex have

the same consistency scores, the REMI-Gex cannot allow thermodynamic infeasibility. In con-

trast, if the consistency score is higher in the REMI-Gex compared to the REMI-TGex, then it

leads to thermodynamic infeasibility. The same results were obtained for all other reactions

(S1 Table).

Case study II: REMI analysis of the Dataset B with gene-expression data

To further benchmark REMI with the available experimental data, we used a second data set

(2 overexpression compared to the ref condition) from an independent study where the role of

metabolic cofactors, such as NADH and ATP in different aspect of metabolism is studied by

overexpressing NADH oxidase (NOX) and the soluble F1-ATPase in E. coli [21]. REMI inte-

grated the gene-expression data from Holm et al. [21] into the E. colimodel, and a summary of

the results is shown in Table 2. Like the previous analysis, we observed a reduction in the MCS

value within REMI-TGex as compared to REMI-Gex, as REMI-Gex satisfies fluxes that were
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not thermodynamically feasible. The number of alternative solutions highly differs between

NOX overexpression and ATPase overexpression for both REMI-TGex and REMI-Gex, which

is likely due to the condition-specific regulations (NOX vs ATPase overexpression) that do not

necessarily involve the same set of deregulated genes.

Bidirectional reaction analysis with and without thermodynamics

To investigate the influence of thermodynamic constraints on flux ranges, we identified the

overlapping constraints (HFCs) across all the alternative solutions and then enforced them to

be active to build the most consistent model. An active HFC satisfies differential gene expres-

sion (or metabolite levels) between two conditions form a given experimental data. Thus, for

each condition, we built the most consistent model despite having many alternatives. We next

performed FVA on the REMI-Gex and REMI-TGex models. As REMI is based on pair-wise rel-

ative constraints (for two conditions) and builds two models that are then compared, as

opposed to modifying one solution based on a given condition, we obtained two FVA solutions,

i.e. one for each condition. We identified less bidirectional reactions (BDRs) in the REMI-TGex

case compared to the REMI-Gex case (Table 3), which means that thermodynamic constraints

reduce the solution space and consequently the number of BDRs. This is consistent with the

fact that thermodynamic constraints eliminate infeasible reaction directionalities. The number

of BDR reductions differs across conditions, and we identified the highest BDR reduction for

the rpe vs. Ref case and the lowest BDR reduction for the NOX vs. Ref case, which therefore

indicates more reduction in the feasible flux solution space in the rpe vs. Ref case compared to

the NOX vs. Ref case. For the all comparisons, we found a further reduction in BDRs upon the

integration of relative metabolomic data into the REMI-TGex model. In most of the cases, we

found a similar decrease in BDRs, which means that the metabolomic data further constrained

the solution space. Except for the wt7 vs Ref case, we observed a decrease in BDRs for all cases

Table 2. Maximum consistency score and alternatives for REMI-Gex and REMI-TGex in the second E. coli study. “Ref” represents the wildtype, and ATPase overex-

pression and NOX overexpression are relative to the wildtype. TMCS, theoretical maximum consistency score; MCS, maximum consistency score; # Alt, number of alter-

natives; HFC, high frequency constraint.

REMI-Gex REMI-TGex

Comparisons TMCS MCS # Alt HFC MCS # Alt HFC

NOX vs Ref 202 64 48 58 61 16 57

ATPase vs Ref 200 75 384 66 65 96 58

https://doi.org/10.1371/journal.pcbi.1007036.t002

Table 3. Uni- and bidirectional reactions for the REMI-Gex and REMI-TGex models in the second E. coli study. Table entries are in the form of S (n1,n2), where n1 is

the number of bidirectional reactions for the mutant model, n2 represents bidirectional reactions for the reference model, and S represents the sum of n1 and n2.

Comparisons BDRs in

REMI-Gex

(model1, model2)

BDRs in

REMI-TGex

(model1, model2)

BDRs in

REMI-TGexM

(model1, model2)

BDRs

reduction

(GeX-TGeX)

BDRs in

REMI-GexM

(model1, model2)

BDRs in

REMI-TM

(model1, model2)

BDRs in

REMI-M

(model1, model2)

pgm vs Ref 222 (109,113) 188 (92,96) 186 (93,93) 34 209 (103,106) 204 (102,102) 224 (112,112)

pgi vs Ref 247 (132,115) 205 (103,102) 169 (78,91) 42 209 (103,106) 204 (102,102) 224 (112,112)

gapC vs Ref 201 (103,98) 158 (77,81) 156 (76,80) 43 195 (100,95) 205 (103,102) 224 (112,112)

zwf vs Ref 226 (114,112) 200 (102,98) 192 (98,94) 26 220 (110,110) 204 (102,102) 224 (112,112)

rpe vs Ref 260 (135,125) 201 (99,102) 169 (89,80) 59 224 (112,112) 198 (100,98) 218 (110,108)

wt5 vs Ref 223 (112,111) 202 (102,100) 200 (100,100) 21 223 (111,112) 204 (102,102) 224 (112,112)

wt7 vs Ref 223 (112,111) 198 (101,97) 194 (100,94) 25 224 (112,112) 204 (102,102) 224 (112,112)

NOX vs Ref 208 (104,104) 188 (96,92) 20

ATPase vs

Ref

229 (116,113) 202 (101,101) 27

https://doi.org/10.1371/journal.pcbi.1007036.t003
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that were constrained by metabolites and expression data together (GexM) as compared to only

expression (Gex) data. Unexpectedly and unlike all the other cases, by incorporating metabolo-

mics data for the wt7 vs Ref case, we found an increase of one reaction in the BDRs. This sug-

gests that for the wt7 vs Ref case the integration of gene expression and metabolites reroutes

fluxes through the metabolic networks differently compared to other cases. As expected, we

consistently find a reduction in BDRs for the REMI-TM model (thermodynamics and relative

metabolomics) compared to without thermodynamics (the REMI-M model). This is in agree-

ment with the fact that integrating thermodynamic constraints into a model eliminates infeasi-

ble reaction directionalities and consequently the flux feasible optimal space.

Relative flexibility analysis with and without thermodynamics

To further illustrate the positive influence of thermodynamic constraints in reducing the opti-

mal solution space, we performed a relative flexibility (Materials and Methods) analysis using

the REMI-TGex and REMI-Gex methods. To perform a relative flexibility analysis, a reference

model is compared to a target model to investigate the relative flux reduction. For a reference,

we used the iJ01366 model without integrating any data, meaning that the reference model

implies only mass balance constraints. We took the pgi vs. Ref case as an example to demon-

strate the average relative flexibility (ARF) reduction at a global (e.g. all reactions) level as well

as at the subsystem level.

For the pgi vs. Ref case, we found a 10%, 20%, 50%, 77%, and 80% reduction in the global

ARF in REMI-M, REMI-Gex, REMI-TGex, REMI-GexM, and REMI-TGexM models com-

pared to the reference model, respectively (Fig 2A). We found 40% and 80% more reduction

in the global ARF for the REMI-TGex and REMI-TGexM models compared to REMI-Gex

(Fig 2A), which was expected as the REMI-TGex and REMI-TGexM models are more con-

strained by thermodynamic and metabolomic data compared to REMI-Gex. We further ana-

lyzed the ARF at the subsystem/pathway level to investigate the reduction in ARF for each

specific subsystem using the REMI-TGex and REMI-Gex methods. Consistently, each subsys-

tem for the REMI-TGexM and REMI-TGex models was more reduced than REMI-Gex (Fig

2B). For REMI-TGex and REMI-TGexM, we observed a remarkable ARF reduction in the gly-

cerophospholipid metabolism, lipopolysaccharide biosynthesis, murein recycling and biosyn-

thesis, and the biomass and maintenance function subsystems. We further performed the

same analysis for the pgi vs. Ref, rpe vs. Ref, pgm vs. Ref, wt5 vs. Ref, wt7 vs. Ref, NOX vs. Ref,

and ATPase vs. Ref data (S2 Fig). We found a similar reduction in ARF for REMI-TGex and

REMI-TGexM compared to REMI-Gex for the cases of gapC vs. Ref and zwf vs. Ref and found

a small reduction in pgi vs. Ref and rpe vs. Ref (S2 Fig). We identified a remarkable reduction

in ARF (more than 90%) across all the comparisons using the REMI-TGexM method for the

glycerophospholipid metabolism, murein recycling, and lipopolysaccharide biosynthesis/recy-

cling subsystems (S2 Table). This suggests that these subsystems are more perturbed based on

our available gene-expression and metabolite level data, which indicates that they might be key

regulator pathways for the studied mutations.

Comparing predictions of different REMI models with the GX-FBA

method

To demonstrate the efficacy of the REMI methods in reducing the solution space and therefore

predicting flux profiles close to the experimental measurements, we compared the flux predic-

tions of the REMI-Gex, REMI-TGex, and REMI-TGexM methods with those of the alternative,

previously used GX-FBA method and compared both methods to the available experimental

measured fluxes from 13C experiments. In both GX-FBA and REMI methods, it is assumed
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that the differential changes in gene expression correlate with flux changes. GX-FBA uses a lin-

ear optimization to address the problem, while the REMI method employs mixed-integer lin-

ear optimization that enables enumerating alternative states of the maximum consistency.

Additionally, unlike GX-FBA method, REMI allows the integration of thermodynamics and

relative metabolite abundances. To implement the GX-FBA method, we integrated the relative

gene-expression datasets into the iJO1366 model using GX-FBA and computed the flux distri-

butions. For the comparisons, we computed two metrics: 1) the Pearson correlation between

the predicted and measured intracellular fluxes, and 2) the average percentage error (see Mate-

rials and Methods) between the measured and predicted fluxes. A good prediction requires a

noticeable correlation and a small average percentage error.

The results of the first set of experimental data [20] (pgm vs. Ref, rpe vs. Ref, zwf vs. Ref, wt5

vs. Ref, and wt7 vs. Ref) showed a considerably improved flux prediction for the REMI-Gex,

REMI-TGex, REMI-TGexM, and REMI-GexM models as compared to the GX-FBA method,

indicated by Pearson correlation and average percentage error (Fig 3A). The GX-FBA and

REMI-Gex methods predicted a similar flux correlation for the experimental fluxes for the pgi

vs. Ref and gapC vs. Ref cases (Fig 3A). For the second set of experimental data [21] (Nox vs.
Ref and ATPase vs. Ref), REMI-TGex predicted better correlation than REMI-Gex and

GX-FBA, and the average percentage error of GX-FBA was higher than that of REMI-TGex

and REMI-Gex (Fig 3B). On average, across all nine comparisons (excluding references) we

found that the REMI-Gex method has 32% higher Pearson correlation coefficient compared to

the GX-FBA method, which indicates a remarkable improvement in the flux prediction. Since

the REMI methods use an additional objective that is the minimization of the sum of fluxes

(see Materials and Methods), we modified GX-FBA to imply the minimization of the sum of

fluxes as an objective in order to perform an unbiased comparison. This modified GX-FBA

prediction agreed less with the experimental results than the REMI predictions (S3 Fig), mean-

ing that REMI outperforms GX-FBA in terms of predictions. REMI also has two advantages

over GX-FBA and other relative expression methods in that, first, we do not need to estimate a

reference flux distribution a priori, because two flux distributions for two different conditions

are obtained in the same optimization framework in REMI (see Materials and Methods), sec-

ond, REMI enumerates alternative solutions at the MCS, providing a higher confidence when

investigating and analyzing results. Generating two separate flux distributions for the two

compared conditions allows REMI to be more suitable to study the differential flux analysis

between two conditions, and the extensive enumeration of alternative solutions provides

robustness and flexibility in the biological interpretations of the provided data.

Although all REMI methods were in relative agreement with the experimental fluxomic

measurements, we did not observe a significant difference in the predicted results of REMI-

Gex, REMI-TGex, and REMI-TGexM. However, as the fluxomic measurements were very lim-

ited around the central carbon metabolism, we cannot draw any overarching conclusions

about the accuracy of REMI from these results, as this could only indicate that the major fluxo-

mic differences occur in pathways outside of this one specific metabolic pathway. We believe

that to investigate the differences in flux predictions across REMI methods, fluxomic and

metabolomic measurements will be required on a grander scale, such as the genome level.

Fig 2. Relative flexibility for the pgm mutant vs. reference case. A) Cumulative relative flexibility of the reactions. Solid lines

represent the distribution of relative flexibility of reactions and dotted lines represent the average relative flexibility of reactions.

Average relative flexibility for models with thermodynamic (TGexM, TGex, and TM) are smaller compared to their respective in

models without thermodynamic (GexM, Gex, and M). This designates the elimination of flux solution space due to thermodynamically

infeasible reaction directionality. Interestingly, we found the most reduction in TGexM model which is the most constrained model by

three data types. B) The average relative flexibility is shown for the top ten (according to TGexM) metabolic subsystems. Similar to part

A, thermodynamically constrained models show a bigger reduction in the feasible flux solution space at the metabolic subsystem level.

https://doi.org/10.1371/journal.pcbi.1007036.g002
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Materials and methods

Omics datasets and genome-scale model

Eleven total sets of experimental data that had been previously integrated into the genome-

scale model (GEM) of E.coli by Kim et al. [23] and were originally obtained from two indepen-

dent studies done by Ishii et al. (8 datasets) [20] and Holm et al. (3 datasets) [21] were used for

the evaluation of the REMI methodology.

The three datasets from Holm et al. [20] comprise genome-wide transcriptomic data

together with fluxomic data (21 measured fluxes) collected from three experimental condi-

tions: wildtype E. coli, cells overexpressing NADH oxidase (NOX), and cells overexpressing

the soluble F1-ATPase (ATPase). The eight datasets from Ishii et al. [20] include genome-wide

transcriptomic, fluxomic (31 measured fluxes), and metabolomic (42 metabolites) data

obtained under eight different experimental conditions: wildtype E. coli cells cultured at differ-

ent growth rates of 0.2, 0.6, and 0.7 per hour along with single-gene knockout mutants of the

glycolysis and pentose phosphate pathway (pgm, pgi, gapC, zwf, and rpe).

All analyses were performed using IJO1366, the latest GEM of E. coli [24]. The model com-

prises 2,583 reactions, 1,805 metabolites, and 1,367 genes. The REMI code is implemented in

Matlab R2016a, and it is available on GitHub at https://github.com/EP-LCSB/remi. Mixed-

integer linear programming (MILP) problems were solved using the CPLEX solver on an Intel

12-core desktop computer running Mac.

Integration of thermodynamic constraints into the genome-scale model

It has been previously shown that thermodynamic constraints not only effectively reduce the

solution space of FBA by eliminating the thermodynamically infeasible fluxes from the solu-

tion space, but also allow the integration of metabolite concentrations. This provides impor-

tant links between mass and energy balance and the phenotypic characteristics of the

organism. The thermodynamic constraints, as depicted in Eq (1), were integrated into the

IJO1366 model [3]. The standard Gibbs free energy DrG
�

i without corrections for the pH and

ionic strength was estimated using the group contribution method [25].

DrG
0

i ¼ DrG
0o
i þ RT �

Pm
j¼1
nij � lnðxjÞ j for all known DrG

0o
i ð1Þ

For each reaction of a GEM, the Gibbs free energy of the reaction (DrG0i) was computed, which

considers the charge and the activity (xj) of each metabolite j given the pH, the metabolite concen-

tration range, and the ionic strength at the cellular compartment where the reaction occurs.

Assessment of tentative reaction flux ratios from the gene-expression and

metabolomic data

We used the gene-protein-reaction (GPR) association rules acquired from the E. coliGEM to trans-

late the relative gene-expression levels (being relatively up- or downregulated) to the differential and

relative flux values of corresponding reactions. GPRs are not mapped as one gene to one reaction,

meaning there are many cases in which one gene is mapped to several reactions and multiple genes

are mapped to a single reaction, which are depicted with “and” and “or” affiliations, respectively.

Fig 3. The comparison of steady-state fluxes between GX-FBA and REMI. The blue bar represents the Pearson correlation coefficient (PCC) between

the experimental fluxes and predicted fluxes for the wildtype or reference state and the green bar represents the PCC for the mutant or overexpressed state.

The third bar denotes the average percentage error between the experimental fluxes and predicted fluxes. Error bars (available only for the REMI method)

represent the standard error of the mean of the alternative solutions. (A) The comparison between the mutant and wildtype for the pgm, pgi, gapC, zwf,

and rpe mutants as well as the comparison of the wildtype at growth rates of 0.5 hour-1 (wt5) and 0.7 hour-1 (wt7) compared to a reference wildtype with a

0.2 hour-1 growth rate (Ref). (B) The comparison of NOX overexpression and ATPase overexpression against the wildtype.

https://doi.org/10.1371/journal.pcbi.1007036.g003
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To capture this, we followed the same procedure for the mapping between GPRs and reac-

tions fluxes introduced by Fang et al [13]. In that study, the authors showed that using a geo-

metric mean of expression ratios where several genes are jointly required for a complex

reaction to occur, is the most efficient way to capture the condition that all reaction ratios are

required. For the isoenzyme case when any of the several potential genes are sufficient to carry

out the reaction, the arithmetic mean of reaction ratios of the genes is suggested, as it captures

the minimum condition where any of the reaction ratios is required. However, other types of

assumptions were used by other methods for mapping GPRs to fluxes [7, 12, 15, 23, 26]. For

example, minimum expression value is used for complex reactions and maximum or sum of

expression values are used for isoenzyme case [23, 26].

In REMI, if the reaction R is associated with two genes (g1 “and” g2), the expression level

ratios for genes g1 and g2 in the two corresponding conditions are calculated to obtain the

geometric mean of the g1 and g2 ratios. Whereas, if the reaction R is associated with two genes

(g1 “or” g2), the arithmetic mean of the obtained expression data ratios is calculated. Thus,

from GPR associations, REMI computes the so-called tentative “reaction flux ratios” to further

constrain the model. For the metabolomic data, the ratio of metabolite concentration for each

metabolite (if available) is calculated for any two given conditions.

Evaluating the differentially regulated metabolites and reactions

To evaluate whether a reaction or metabolite was up- or downregulated, we sorted the ratios

(calculated as explained in the previous section), and selected the top 5% as upregulated and

the bottom 5% as downregulated. The fold changes greater than two are considered as signifi-

cant in many studies. For comparison purposes, we used the two-fold change as the cut-off

threshold to identify the significant gene expression and metabolite changes. We found that

across all mutants, the set of significant changes identified with our threshold of the top and

bottom 5% encloses the corresponding set identified with the two-fold change, meaning that

the proposed cutoff criterion is conservative. However, this threshold is a user-defined param-

eter and one could use different threshold cutoff.

Integration of relative gene-expression levels as constraints into a model

(REMI-Gex)

For a given metabolic network that includes R reactions andMmetabolites, bidirectional reac-

tions are decomposed into forward and backward reactions to allow all fluxes to have positive

values. Assuming that S is a stoichiometry matrix, Smr is the stoichiometric coefficient associ-

ated with the metabolite m (m = 1, . . ., M) in reaction r (r = 1, . . ., R). Positive and negative

stoichiometric coefficients of metabolites signify the substrate or products of a reaction. A

binary variable zr was assigned to each reaction r to ensure a positive flux vr (Eq (2)) through

the reaction r, and when zr = 0, there was no flux. An additional constraint was formulated

using Eq (3) to ensure that only one reaction directionality could be active and carry flux. α
and β indicate the forward and reverse directions of a reaction.

vr � M
0 � zr r ¼ 1; . . . ;R ð2Þ

za þ zb ¼ 1 ½for all reversible reactions� ð3Þ

In REMI, two models are described for each given condition. For both models, we con-

strained the cellular growth rate to be at least 0.1 mmol g-1 DW-1 h-1, to ensure that the

model is able to synthesize all the biomass building blocks required for the cellular growth.

Throughout the manuscript, the terms “wildtype” and “mutant” are used to better differentiate
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between the two conditions (or models) when describing the REMI framework. REMI can,

however, be used for any two given conditions and is not restricted to the wildtype and mutant

labels. Eq (4) specifies the mass balance constraints for the wildtype and mutant conditions at

the steady state.

Svwild ¼ Svmutant ¼ 0 ð4Þ

The relative information about the gene-expression levels or metabolite levels between the

two given experimental conditions was formulated as additional constraints and integrated

into the two representative models of the conditions. To do this, binary variables for the up-

and downregulated reactions were assigned as u and d, respectively, where n is the total num-

ber of up- and downregulated reactions. For the upregulated reactions, a higher flux was

enforced in the mutants as compared to the wildtype, while for downregulated reactions, a

higher flux was enforced for the wildtype as compared to the mutant.

For u upregulated and d downregulated reactions, a total of n binary variables were gener-

ated (B1, . . .Bi, . . .Bn), where Bi = 1 indicates the up- or downregulation of a reaction. Next, n
constraints (Eqs (6 and 7)) were added to enforce a basal flux in both the wildtype and mutant

conditions. For u upregulated reactions, constraints (Eq (8)) were added to ensure a mutant

flux could be higher (p�vr
wild) than a wildtype flux, where p is a reaction ratio between the

wildtype and mutant (computed from gene-expression ratio). Constraints were added (Eq (9))

for d downregulated reactions that ensured a mutant flux was lower compared to a wildtype

flux. In Eq (10), n constraints were added to form the boundary for the slack variables that are

used in Eqs (8) and (9), where ε = 10−5,M0 = 1000.

n ¼ uþ d ð5Þ

vmutanti � ε � Bi ½i ¼ 1; ::; n for both upregulated and downregulated reactions� ð6Þ

vwildi � ε � Bi ½i ¼ 1; ::; n for both upregulated and downregulated reactions� ð7Þ

vmutanti � p � vwildr � si ½i ¼ 1; ::; u for upregulated reactions� ð8Þ

vmutanti � p � vwildr þ si ½i ¼ 1; ::; d for downregulated reactions� ð9Þ

ε � ð1 � BiÞ � si � εþ ð1 � BiÞ �M
0 i ¼ 1; ::; n ð10Þ

Integration of relative metabolite levels as constraints into the model

(REMI-M)

In GEMs, gene-level perturbations can mediate both reactions and their subsequent metabo-

lites. Available studies show a correlation between gene changes and metabolite changes and

infer that perturbations at the metabolite level are formed from perturbations in genes or reac-

tion levels [27, 28]. Thus, if experimental evidence shows remarkable changes in a given

metabolite abundance level across two conditions, the assumption is that there is an imbalance

in the incoming or outgoing fluxes around that metabolite.

If the experimental data indicates that a metabolite is upregulated, it is assumed in REMI

that either the sum of production ϕp in condition 2 is greater than the ϕp in condition 1 or the

sum of consumption ϕc in condition 2 is less than the ϕc in condition 1 (Fig 4B). Due to mass

balance, ϕp and ϕc will be equal.
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In Eq (11), the sum of production and of consumption of a metabolite i is shown, where the

metabolite is produced by reactions 1 and 2 and is consumed by reactions 3 and 4 (Fig 4A).

�i;p ¼ �i;c ¼ V1 þ V2 ¼ V3 þ V4 ð11Þ

ð�
mutant
i;p � �

wild
i;p � p

0 � siÞBi þ ð1 � BiÞð�
mutant
i;c � �

wild
i;c � p

0 � siÞ i ¼ 1; ::; u0 ð12Þ

ε � ð1 � BiÞ � si � εþ ð1 � BiÞ �M
0 i ¼ 1; ::; n0 ð13Þ

ð�
mutant
i;p � �

wild
i;p � p

0 þ siÞBi þ ð1 � BiÞð�
mutant
i;c � �

wild
i;c � p

0 þ siÞ i ¼ 1; ::; d0 ð14Þ

Based on available experimental measurements of metabolite abundance, REMI finds

the total number (n’) of up- and downregulated metabolites, where u’ and d’ are up- and

downregulated metabolites, respectively. For an up-regulated metabolite i (i.e. in the

mutant vs. wildtype), either more production or less consumption is enforced in the

mutant compared to the wildtype using Eqs (12) and (13). In Eq (12), a binary variable (Bi)
is introduced, which switches to production if Bi = 1 and to consumption if Bi = 0. Simi-

larly, for downregulated metabolites i, less production or more consumption is enforced in

the mutant compared to the wildtype (Eqs (13) and (14), see supplementary description for

more detail).

The objective function and the consistency score based on the relative

expression data

Based on the assumption that alterations in gene-expression or metabolite levels within two

different physiological conditions results in differential flux profiles, REMI defines such alter-

ations as constraints and integrates them accordingly into the two metabolic models corre-

sponding to the two conditions. However, as additional constraints reduce the solution space

of FBA, particularly in the case of multi-omic data integration, the resulting models might not

be feasible. Therefore, the objective function (Eq (15)) was formulated in such a way as to

obtain feasible models with a maximum agreement between the relative expression and metab-

olite levels and their corresponding constraints. Eq (15) maximizes the agreement with experi-

mental data using mathematical optimization principles subject to Eqs (5)–(10), where n is the

total number of up- and downregulated reactions. The maximum consistency score (MCS) is

the sum of the binary variables (Eq (15)) in the outcome of the optimization that is formulated

Fig 4. The relative metabolite integration within REMI. (A) an example of a metabolite (M) that is produced by two reactions (v1 and v2) and consumed by

two reactions (v3 and v4). (B) sum of production and sum of consumption are denoted ϕpby and ϕc respectively.(C) the possible scenarios of ϕp and ϕc

comparison when the metabolite (M) is upregulated.

https://doi.org/10.1371/journal.pcbi.1007036.g004
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in REMI.

Consistency Score ¼ Maximize
Xn

i¼1

Bi ð15Þ

Alternative enumeration for consistency score

An aforementioned mathematical optimization model (objective function (15) subject to

Eqs 1–9) allows us to maximize the total number of consistent reactions between the dif-

ferential gene-expression or metabolite levels with the differential flux profiles between

two models and to obtain a maximum consistency score (MCS). Depending on the flexi-

bility of the model, many alternative flux distribution profiles for a given MCS, and subse-

quently MCS-n, are possible. MCS and MCS-n represent optimal and suboptimal

consistency, respectively. To enumerate alternative solutions, integer cut constraints (Eq

(16) [29] were used as follows:

Xn

i¼1

B0iBi �
Xn

i¼1

B0 i

 !

� 1 ð16Þ

The left-hand side of Eq (16) determines the number of up- and downregulated reac-

tions in the current solution that carries fluxes in the first MCS solution. The right-hand

side represents the number of reactions that carry fluxes in MCS-1. The inequality ensures

that the new solution differs at least by one new reaction that carries flux compared to the

previous solution. Repeating this procedure allows the enumeration of alternative solu-

tions for each MCS.

Combined consistency score using relative expression and relative

metabolite (REMI-GexM)

To concurrently integrate both the relative gene-expression data and the relative metabolite

levels, an integrated mathematical optimization model was built with a global objective func-

tion (Eq (17) subject to a combined set of constraints, i.e. Eqs (5)–(14). This optimization

model was then solved to maximize the objective, which is the combined consistency score of

the two sets of constraints.

Global Consistency score ðGCSÞ ¼ Maximize
Xnþn0

i¼1

Bi; ð17Þ

where n and n’ represent a total number of up- and downregulated metabolites and up- and

downregulated genes, respectively.

Representative flux distribution profiles

To compare the REMI-predicted fluxes with the experimentally measured ones, predicted flux

distribution profiles were required. To obtain such predicted flux profiles, all the alternative

solutions at MCS were first enumerated. REMI method optimizes consistency and identifies

alternative sets of consistency. Then, for each consistency set we build a model by fixing binary

variables which enforces constraints are applied in the model. Then, an additional optimiza-

tion was performed by minimizing the sum of the fluxes for each alternative solution to obtain

a representative flux profile for benchmarking REMI against the experimental flux

measurements.
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Metrics for comparing the predicted in silico fluxes with experimentally

measured fluxes

To effectively compare the predicted in silico fluxes from REMI with the corresponding 13C-

determined in vivo intracellular fluxes, the following two metrics were used: the uncentered

Pearson correlation coefficient (Eq 18), and the average percentage error in predicted fluxes

(Eqs (18)–(20)). The uncentered Pearson correlation is a good metric for the flux comparison,

as fluxes are usually not centered, and it has been used for comparing two flux vectors [23].

Uncentered Pearson correlation coefficent rð Þ ¼
vi:vm
jvijjvmj

ð18Þ

In Eq (18), vi and vm are the in silico and measured vectors of the fluxes, respectively. The

correlation coefficients +1 and -1 indicate a strong positive and negative linear relationship

between vi and vm, and the 0 correlation coefficient indicates no linear relationship between vi

and vm.

The average percentage error has been used in the GX-FBA method [12] to compare two

fluxes. In Eq (19), the dr is used to measure the relative deviation between the two fluxes in two

conditions, where x and y correspond to the flux of a given reaction in condition 1 and condi-

tion 2, respectively. Since |dr| lies between 0 and 1, one can consider dr as a percentage flux

change from condition 1 to condition 2. The average (per reaction) percentage error, e, in the

predicted in silico fluxes was calculated using Eq (20), where diinsilico and diexp indicate relative

deviation in predicted in silico flux using methods such as REMI and GX-FBA, and experi-

mentally measured flux and N represent the number of reactions with available experimental

flux data.

dr ¼
x � y
jxj þ jyj

ð19Þ

e ¼
1

N

XN

i¼1

jdi
insilico � di

expj ð20Þ

Assessing the relative flexibility of metabolic systems

For a given system, the FBA results in a solution space of optimal flux profiles, and the magni-

tude of this solution space indicates the metabolic flexibility of the system. The integration of

the thermodynamic knowledge of reactions as well as condition-specific experimental data,

e.g. gene-expression or metabolomic data, constrains the metabolic system to a less flexible

one. Thus, the solution space and the subsequent range of the metabolic responses are reduced.

Comparing and quantifying the relative flexibility of a metabolic system before and after con-

straint is a decent indication of the effectiveness of the data integration [30]. Performing a flux

variability analysis (FVA) outlines the flux variability range of each reaction in the system for

the two conditions as follow:

FR1

i ¼ ½v
1

min;i; v
1

max;i� ð21Þ

FR2

i ¼ ½v
2

min;i; v
2

max;i� ð22Þ

The relative flexibility (RF) for reaction i is calculated using the following equation:

RFi ¼ ½ðv
2

min;i � v
2

max;iÞ=ðv
1

min;i � v
1

max;iÞ� ð23Þ

where FR1
i and FR2

i represent the flux variability range of reaction i at each of the two

Integrating relative gene and metabolite levels with thermodynamic data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007036 May 13, 2019 19 / 23

https://doi.org/10.1371/journal.pcbi.1007036


conditions, one condition is usually designated as a reference condition or reference state,

such as when comparing the relative flexibility of a metabolic system with (condition 1) and

without (condition2) thermodynamic constraints. The value of RF that is computed for each

reaction i reflects the relative changes in the flux variability range of one condition compared

to the other condition. The global relative flexibility change between two given condition is then

computed by averaging the Fi values for each reaction i that carry flux in the reference state.

Discussion

We developed the computational tool, REMI, which combines gene-expression, metabolo-

mics, and thermodynamics constraints with the mass balance constraints imposed in meta-

bolic models to predict phenotypic changes in an organism upon environmental or genetic

perturbations. As the integration of these three additional physiological constraint results in a

highly reduced flexibility of the predicted optimal flux profiles, REMI enhances the quality of

the computationally predicted fluxes. REMI’s novel formulation permits the extensive enu-

meration of alternative solutions because there exist several alternative sets of pathway that

result in the same phenotype due to the complexity and interconnectivity of metabolic net-

works, meaning that the results provided by REMI more accurately reflect natural biological

states than previously existing methods. Within several examples, we showed the effectiveness

of incorporating thermodynamic data with gene-expression and metabolomics in reducing

the flexibility of predicted optimal flux profiles. This means that we can obtain manageable set

of physiological consistent hypothesis and physiological interpretations which have a higher

confidence as they are consistent with a larger set of data. Applying REMI to experimental

data has shown that there is not always a full consistency between gene-expression and meta-

bolomic data, which shows that there is still much to learn about how gene expression and

metabolism are linked.

The application of REMI goes beyond the study of physiology of a mutant versus a wild-

type cell presented in this work. With a slight modification in the formulation, REMI can be

employed for investigating the physiology of several mutants simultaneously against the wild

type physiology within a single optimization. Although in this study we showcased REMI for

constraining internal fluxes, REMI can also be applied to study the perturbation of external

fluxes and metabolites whenever omics data are available. This has a potential application in

studying the overflow metabolism, e.g., the acetate overflow in fast-growing E.coli or the War-

burg effect in the cancer cells. Furthermore, REMI can also be used to investigate metabolism

of diseased states compared to the healthy one, where numerous sets of omics data are

available.

Various REMI methods introduced in this work permit a wide range of applications

depending on the type of available data (thermodynamics, single or multi omics data). How-

ever, whenever gene-expression, metabolite abundance, and thermodynamic data are avail-

able, our results suggest that the most extensive data integration method, REMI-TGexM,

provides the best results and the most reduced optimal solution space. As systematic multi-

omics integration remains a challenge, REMI opens the possibility of not only multi-omics

integration, but also the identification of the crosstalk between the various omics present in a

system.
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