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Abstract

A listeriosis outbreak in the United States implicated contaminated ice cream produced by

one company, which operated 3 facilities. We performed single nucleotide polymorphism

(SNP)-based whole genome sequencing (WGS) analysis on Listeria monocytogenes from

food, environmental and clinical sources, identifying two clusters and a single branch,

belonging to PCR serogroup IIb and genetic lineage I. WGS Cluster I, representing one out-

break strain, contained 82 food and environmental isolates from Facility I and 4 clinical iso-

lates. These isolates differed by up to 29 SNPs, exhibited 9 pulsed-field gel electrophoresis

(PFGE) profiles and multilocus sequence typing (MLST) sequence type (ST) 5 of clonal

complex 5 (CC5). WGS Cluster II contained 51 food and environmental isolates from Facility

II, 4 food isolates from Facility I and 5 clinical isolates. Among them the isolates from Facility

II and clinical isolates formed a clade and represented another outbreak strain. Isolates in

this clade differed by up to 29 SNPs, exhibited 3 PFGE profiles and ST5. The only isolate

collected from Facility III belonged to singleton ST489, which was in a single branch sepa-

rate from Clusters I and II, and was not associated with the outbreak. WGS analyses clus-

tered together outbreak-associated isolates exhibiting multiple PFGE profiles, while

differentiating them from epidemiologically unrelated isolates that exhibited outbreak PFGE

profiles. The complete genome of a Cluster I isolate allowed the identification and analyses

of putative prophages, revealing that Cluster I isolates differed by the gain or loss of three

putative prophages, causing the banding pattern differences among all 3 AscI-PFGE pro-

files observed in Cluster I isolates. WGS data suggested that certain ice cream varieties

and/or production lines might have contamination sources unique to them. The SNP-based

analysis was able to distinguish CC5 as a group from non-CC5 isolates and differentiate

among CC5 isolates from different outbreaks/incidents.
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Introduction

Listeriosis can have a relatively long incubation period compared to other foodborne illnesses,

while the contaminated food products linked to the illness, such as milk, cheese, meat, fresh fruit

and vegetable [1], generally have brief shelf lives and may have been discarded before a broad

range of samples can be obtained during source tracking [2, 3]. This has consequences for trace-

back efforts using whole genome sequencing (WGS), as understanding the diversity among clin-

ical, food and environmental isolates is an important part of identifying which isolates are most

likely associated with a given outbreak. However, in 2015 an outbreak of listeriosis in the United

States (U.S.) was linked to various ice cream products, which have a much longer shelf life [4],

enabling collection of different types of samples manufactured over a relatively long period of

time. In addition, L. monocytogenes was able to survive the freezing storage condition [5]. This,

in turn, provided an excellent opportunity to assess the genome-level diversity of L. monocyto-
genes that persisted in production facilities. The outbreak investigation started with positive L.

monocytogenes findings in ice cream products made on a production line (Production line A,

designated in this article only) of a facility (Facility I, designated in this article only). Subse-

quently, isolates from 4 elderly patients, who were hospitalized for other medical conditions

prior to exposure to the contaminated ice cream, were matched to isolates from ice cream prod-

ucts [6]. In this article, these 4 clinical cases in one hospital are designated as Group I illnesses,

with onset dates ranging from January 2014 to January 2015. The identification of contaminated

Facility I products led to the subsequent sampling and identification of L. monocytogenes-posi-

tive products in a second facility (Facility II) operated by the same company. A retrospective

review of the PulseNet database identified a second cluster of listeriosis cases (serotype 3b) in

three states linked to the ice cream products made in Facility II. In this article, these cases are

designated as Group II illnesses, with onset dates ranging from January 2010 to October 2014.

An environmental sample from a third facility (Facility III) operated by the same company also

yielded a L. monocytogenes isolate; however, no clinical cases were linked to that sample [6].

Prophage variation is also an important source of genomic variability that could serve as

markers for epidemiology of L. monocytogenes. Previous studies have demonstrated that pro-

phages are conserved among isolates associated with the same outbreak [7, 8]; further, such

conservation has been observed among isolates that had persisted in a food processing facility

for up to 2 years [7]. In contrast, significant prophage diversification, due to recombination,

was observed among isolates resident in a food processing facility over the course of 12 years,

while only 1 SNP was in the rest of the genome [9]. Prophage variations, such as SNPs in the

PFGE restriction sites and gain/loss of prophages, have also been shown to cause AscI-PFGE

banding pattern changes among genetically close isolates [8, 10, 11]. Due to the availability of a

complete genome for one of the isolates from this ice cream-associated outbreak, we were able

to investigate prophage variations.

L. monocytogenes consists of four evolutionary lineages [1, 12]. Within each lineage, the

population is further structured into clonal groups, the identification of which is very useful

for understanding the biodiversity of L. monocytogenes related to pathogenicity and epidemiol-

ogy. Isolates within each clonal group are relatively closely related and isolates between differ-

ent clonal groups are relatively distant from each other, as illustrated by two core genome

MLST schemes [13, 14]. A system to define clonal groups is clonal complex (CC)/singleton,

defined by a 7-gene MLST scheme [15]. The sequence types (STs) in the same CC differ by

not more than one allele from at least one other ST. A singleton exhibits an ST that differs

from all other existing STs by at least two alleles, meaning a singleton does not belong to any

existing CCs [15]. Our preliminary analysis showed that isolates associated with this ice cream

outbreak had MLST ST5, which belongs to clonal complex 5 (CC5), a clonal group of serotypes

Genome level diversity of Listeria monocytogenes linked to an ice cream outbreak
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1/2b and 3b contaminating a variety of food products and processing environments and/or

causing outbreaks [2, 16–19]. A clonal complex that had been involved in at least two out-

breaks is also classified as an epidemic clone and CC5 was one of the most diverse epidemic

clones [13, 14]. Although reference-based SNP methods have been shown to perform well for

closely related isolates from a single outbreak [20, 21], further validation is necessary to deter-

mine their usefulness for inferring the phylogeny of slightly more diverse isolates in the same

clone but from different outbreaks. Mapping quality and subsequent SNP calling by reference-

based WGS methods, may be affected by ascertainment bias when these methods were applied

to a set of relatively diverse isolates [22].

The objectives of the present study were to 1) describe the SNP-based WGS analyses on the

food, environmental and clinical isolates, most of which were analyzed during the outbreak

investigation, 2) investigate the prophage variations among one cluster of outbreak-associated

isolates, for which a complete genome was available and 3) determine whether SNP-based

analysis can be used for simultaneous identification of CC5 and differentiation of CC5 strains

from different outbreaks/incidents.

Materials and methods

In silico serotyping, WGS and PFGE

The WGS and PFGE data for all isolates were obtained from GenomeTrakr and PulseNet. Two

set of genomes were collected. The first set of genomes was from food, environmental and clini-

cal isolates sequenced during the initial outbreak investigation. These isolates were collected

using enrichment-based isolation according to the L. monocytogenes chapter of FDA Bacterio-
logical Analytical Manual [23]. The second set of genomes was from isolates collected from ice

cream scoops using two methods, 7 by enrichment-based Most Probable Number (MPN) enu-

meration and 29 by enrichment-free direct plating enumeration in a L. monocytogenes enumer-

ation study for ice cream scoops [5, 24] and a growth kinetics study for milkshakes [25]. These

isolates were not subject to PFGE analysis. In silico serotyping was performed using tools built

in the BIGSdb-Lm database (http://bigsdb.pasteur.fr/listeria/) [13]. WGS analyses grouped all

the isolates into two clusters and a branch containing a single isolate (S1 Fig). Cluster I con-

tained 4 clinical isolates, 78 food isolates representing different ice cream varieties and lots man-

ufactured between August 2014 and March 2015 on Production line A of Facility I, and 4

environmental isolates collected from Facility I during the outbreak investigation (S1 Table).

Cluster II contained 5 clinical isolates, 21 food isolates representing ice cream varieties and lots

manufactured between April 2014 and March 2015 in Facility II, and 30 environmental isolates

from Facility II collected during the outbreak investigation, as well as 4 isolates from ice cream

manufactured between March and April 2015 on Production line B of Facility I (S1 Table).

Among the 30 environmental isolates from Facility II, 28 were obtained from 14 samples (2 iso-

lates per sample). The single branch contained one isolate, from the only sample in Facility III,

and thus no further analyses were performed on this isolate.

SNP-based WGS analysis

The SNPs among all isolates were identified using the default settings of the Center for Food

Safety and Applied Nutrition (CFSAN) SNP Pipeline version 0.6.1 [20, 26] that targets the

entire genome, including coding and non-coding regions from the core and accessory

genomes. Briefly, WGS raw reads from each outbreak-associated isolate were mapped to the

reference genomes using Bowtie2 version 2.2.2 [27]. The resulting BAM file was sorted using

Samtools version 1.3.1 [28], and a pileup file was generated for each sample. These files were

then processed using VarScan2 version 2.3.9 to identify high quality variant sites using the
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mpileup2snp option [29]. The Python script was then used to parse the.vcf files and construct a

SNP matrix. GARLI was used to infer topologies based on that SNP matrix [30]. We first

chose an ice cream isolate (CFSAN029793), for which we had a fully closed genome (GenBank

Accession NZ_CP016213.1, https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP016213.1),

as the reference to perform phylogenetic analysis on all isolates. Because accuracy of SNP

calling by reference-based methods may be reduced when these methods were applied to

slightly more diverse isolates [22, 31], we then performed separate phylogenetic analyses on

individual clusters identified in the initial analysis, by using CFSAN029793 as the reference

for Cluster I and a draft genome of an ice cream isolate (CFSAN030683, GenBank Accession

NZ_MAGN00000000.1, https://www.ncbi.nlm.nih.gov/nuccore/NZ_MAGN00000000.1) as the

reference for Cluster II. When analyzing isolates of each cluster, we also identified non-outbreak

isolates from GenomeTrakr and PulseNet that matched the outbreak isolates by PFGE/MLST,

performed preliminary WGS analyses, and then selected genomes that were most closely related

to the outbreak-associated isolates for comparison. The three PFGE/MLST-matched, non-out-

break isolates for Cluster I were CFSAN020389 (PFGE profile P1), CFSAN029618 (PFGE pro-

file P5) and CFSAN022649 (PFGE profile P4). We could not found non-outbreak isolates that

matched outbreak-associated isolates in Cluster II by the two-enzyme PFGE; therefore, we

chose two non-outbreak isolates, CFSAN021784 and PNUSAL000243, which exhibited the

MLST ST in all Cluster II isolates and the AscI-PFGE profile observed in most of the outbreak

isolates in Cluster II (S1 Table). For each cluster, two CFSAN SNP Pipeline analyses were per-

formed. The initial WGS analysis included isolates in each cluster and isolates epidemiologically

unrelated to the cluster to show that WGS distinguished outbreak isolates from PFGE/MLST-

matched, but epidemiologically unrelated isolates. The second analysis included only isolates in

each cluster. For each cluster of closely related isolates, the SNP Pipeline applied a filter to

exclude variant sites in high density variant regions (�3 variant sites in�1000 bp of any one

genome) since they may be the result of recombination, low quality sequencing/mapping and/

or be associated with repetitive elements. Four regions, 55 bp (containing 9 variant sites), 34 bp

(5 sites), 28 bp (10 sites), and 84 bp (8 sites) were excluded for Cluster I; and four regions, 3 bp

(3 sites), 37 bp (3 sites), 27 bp (6 sites) and 260 bp (10 sites), were excluded for Cluster II. In

addition, 16 variant sites within 500 bp of either end of any reference genome contigs were

excluded by the Pipeline for Cluster II because in general less reads were mapped to the end of

contigs, resulting in lower quality of mapping and assembly.

Prophage analysis of Cluster I isolates

A combination of PHAST [32] and PHASTER [33] was used to identify putative prophages

in the complete genome of CFSAN029793. PHAST was used to identify insertion sites and

PHASTER was used to identify the start and end of each prophage. Then the presence/absence

of these putative prophages in draft genomes was determined by a combination of two ap-

proaches: 1) the insertion sites of the CFSAN029793 prophages were identified in the CLC

Genomics WorkBench 8.5.1 (Aarhus, Denmark)-assembled draft genomes by BLAST and the

sequences adjacent to the insertion sites were compared to the prophages of CFSAN029793,

and 2) the CFSAN029793 prophages were searched against draft genomes by BLAST and a

threshold of� 60% query coverage with�80% sequence identity [34, 35] of BLAST alignment

indicated the presence of a CFSAN029793 prophage in a draft genome.

Clonal complex 5 analysis

In silico MLST was performed using CLC Genomics WorkBench 8.5.1 (Aarhus, Denmark)

and the MLST profiles defined in the PasteurMLST L. monocytogenes database (now in

Genome level diversity of Listeria monocytogenes linked to an ice cream outbreak
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BIGSdb-Lm, http://bigsdb.pasteur.fr/listeria). The CFSAN SNP Pipeline was used to construct

a phylogeny of a subset of isolates taken from this ice cream outbreak as well as isolates from

previous CC5-associated outbreaks/incidents: 2011 U.S. cantaloupe outbreak [17], 2013 U.S.

Hispanic-style cheese outbreak [16], and serotype 1/2b isolates from the 2014 U.S. stone fruit

recall [36]. We chose isolates exhibiting different PFGE profiles observed in those incidents.

To avoid using only ST5 to represent CC5, we included a CC5 isolate (CFSAN028312) of

ST745 in the analysis. Four non-CC5 serotype 1/2b isolates were chosen for comparison: the

environmental isolate from Facility III, CFSAN032502 (singleton ST489, the environmental

isolate from Facility III), F4233 (ST3 of CC3), LM07-01067 (ST386 of CC224), CFSAN003423

(ST379 of CC379) and CFSAN003438 (ST379 of CC379); these STs differed from ST5 by 4, 5,

6, 2 and 2 MLST alleles, respectively.

Results

All isolates

All clinical isolates and all food and environmental isolates from the three facilities belonged to

the molecular serogroup IIb, which is comprised of serotypes 1/2b, 3b and 7, and belonged to

lineage I [37]. Two WGS clusters and a branch containing a single isolate were identified (S1

Fig). Cluster I consisted of food isolates from Production line A of Facility I, environmental

isolates from Facility I, and clinical isolates, exhibiting MLST ST5. Cluster II consisted of food

isolates from Production line B of Facility I, food and environmental isolates from Facility II,

and clinical isolates, exhibiting MLST ST5. This suggested that different production lines of

Facility I might have their unique contamination sources. The single WGS branch contained

an environmental isolate from Facility III and belonged to singleton ST489. No clinical cases

were linked to this isolate.

Cluster I PFGE and WGS analysis

Cluster I was comprised of 82 food and environmental isolates from Facility I and 4 clinical

isolates from 4 patients (Group I illnesses). A total of 9 two-enzyme (AscI and ApaI) PFGE

profiles, with brief designations of P1 through P9, were observed from all food and environ-

mental isolates (S1 Table). Three of these profiles matched the 3 PFGE profiles (P1, P5 and P6)

of the 4 clinical isolates (Group I illnesses). A total of 3 AscI-PFGE profiles were observed in all

the clinical isolates, as well as in all the food and environmental isolates. The outbreak-associ-

ated isolates, albeit exhibiting 9 PFGE profiles, were clustered together by WGS; in contrast,

non-outbreak isolates (CFSAN020389, CFSAN029618 and CFSAN022649) that exhibited the

outbreak PFGE profiles were placed outside the outbreak cluster (S2 Fig). These unrelated iso-

lates differed from outbreak-associated isolates by at least 71 SNPs. This clustering supports

the epidemiological findings that ice cream products manufactured on Production line A were

the likely cause of the Group I illnesses. Our reference-based approach was able to identify the

SNPs that specifically distinguished the entire outbreak cluster from the unrelated isolates,

which could be used for future functional genomics (S2 Table).

To precisely determine the SNP differences among all the outbreak isolates, we then per-

formed a second WGS analysis on only the outbreak-associated isolates, identifying a SNP

matrix of 152 polymorphic loci. The 86 isolates differed by 0 to 29 (median, 14) SNPs, calcu-

lated without counting gaps (Fig 1). The 4 clinical isolates differed by 1 to 19 (median, 10.5)

SNPs. Out of the 50 isolates with PFGE information, 38 that exhibited clinical PFGE profiles

(P1, P5 and P6) differed by 0 to 27 (median, 15) SNPs. Any food or environmental isolate dif-

fered from their most genetically close clinical isolate by 0 to 16 SNPs, indicating these food

and environmental isolates were associated with the clinical cases. Two major clades were

Genome level diversity of Listeria monocytogenes linked to an ice cream outbreak
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Fig 1. Maximum likelihood tree of Cluster I isolates. Isolates were obtained from Group I illnesses, food

samples produced on Production line A of Facility I, and environmental samples from Facility I. The SNP

matrix was generated using CFSAN029793 as the reference and contained 152 polymorphic loci. The tree

uses midpoint rooting. Isolate identifier is followed by sample type, abbreviation of production date of the food

samples, and available PFGE profile in the parenthesis. Isolates of the same PFGE profile are in the same

color and isolates without PFGE information are in black. The 36 isolates without PFGE profiles were obtained

from L. monocytogenes enumeration and growth kinetics studies [5, 25] and the method of isolation (direct

plating (DP) or most probable number (MPN)) is listed in the parenthesis after each isolate ID. The 4 clinical

isolates are highlighted in boxes. Blue arrows denote isolates from sandwiches produced in December 2014.

Genome level diversity of Listeria monocytogenes linked to an ice cream outbreak
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identified within Cluster I, Clade Ia isolates exhibiting only PFGE profile P1 (AscI-PFGE pro-

file, GX6A16.0020) and Clade Ib isolates exhibiting the other 8 PFGE profiles (AscI-PFGE pro-

files, GX6A16.0061 and GX6A16.0026) (Fig 1). Clade Ib isolates differed by 0 to 26 (median,

12) SNPs, and 29 of them that exhibited clinical PFGE profiles (P5 and P6) differed by 0 to 25

(median, 11) SNPs. The sub-clades in Clade Ib were not associated with specific PFGE profiles

or food production dates. For example, isolates collected from ice cream sandwiches, taken

from a lot produced in December 2014, exhibited the PFGE profiles of P1, P2, P5, P6, P7 and

P8, and were distributed throughout Cluster I (noted by blue arrows in Fig 1). Isolates col-

lected from ice cream scoops, taken from two lots produced on two consecutive days in March

2015, exhibited the PFGE profiles of P1, P5 and P6, and were also distributed throughout Clus-

ter I (noted by brown arrows in Fig 1). Isolates collected from other ice cream scoops exhibited

the PFGE profiles of P1 and P5, and were again distributed throughout Cluster I (scoops that

are not noted by any arrow in Fig 1). Nine out of 10 isolates from ice cream produced in August

2014 were in Sub-clade Ib.1, but 4 other isolates in this sub-clade were from ice cream produced

in December 2014 and January 2014. Eleven out of the 12 isolates from ice cream bars are in

Sub-clade Ib.1 and the other 2 isolates in this sub-clade were from sandwiches. This led us to

believe that this sub-clade may be strongly associated with the ice cream bars, and thus, it is

likely that there was a contamination source unique to these ice cream bars. The isolates from

enrichment-free direct plating enumeration and enrichment-based detection and enumeration

methods [5, 25] were distributed throughout Cluster I, and did not form distinct clades within

Cluster I; indicating it is unlikely that any bias was introduced by the enrichment process.

Cluster I prophage analysis

PHASTER identified four putative prophages from the complete genome of CFSAN029793

(Table 1). Putative prophage 1 was an intact prophage inserted downstream of tRNA-Arg TCT

(non-disrupting). Putative prophage 2 was an intact prophage inserted into comK (disrupting).

PHAST/PHASTER first identified prophage 2 as between position 1856471 and 1896917. The

examination of comK insertion site subsequently modified the position of this prophage to be

between 1856189 and 1896515. Putative prophage 3 was an intact prophage inserted upstream

of tRNA-Arg CCG (non-disrupting). Putative prophage 4 was an incomplete prophage with

no insertion sites identified. For outbreak-associated isolates, the BLAST alignment of any

Brown arrows denote isolates from scoops produced in March 2015. The bootstrap values for major clades

are listed on top of the root of each clade. The AscI-PFGE profiles, the minimum and maximum numbers of

SNPs with the medians in the parenthesis are listed near the root of each clade.)

doi:10.1371/journal.pone.0171389.g001

Table 1. Putative prophages of the complete genome CFSAN029793 identified by a combination of PHAST [32], PHASTER [33] and prophage

insertion site examination.

Prophage Length (kbp) Completeness Insertion site Positiona Possible phage match and NCBI Accession

1 55.0 Intact tRNA-Arg TCT 693457–748456 Listeria LP-101 (NC_024387)

2 40.3b Intact comK 1856189-1896515b Listeria A118 (NC_003216)

3 41.8 Intact tRNA-Arg CCG 2033993–2075835 Listeria A006 (NC_009815)

4 10.7 Questionable 2604325–2615053 Listeria A118 (NC_003216)

aPosition based on the complete genome of CFSAN029793. PHAST was used to identify prophage insertion sites and PHASTER was used to identify the

start and end of prophages.
bThe entire region was first identified by PHAST/PHASTER. The subsequently identified insertion site, comK, was examined to slightly modify the

PHASTER-identified start and end positions of this prophage.

doi:10.1371/journal.pone.0171389.t001
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CFSAN029793 prophage against a draft genome always yielded >90% query coverage with

>99% sequence identity when the examination of insertion sites confirmed insertion of that

prophage in the draft genome (Table 2). Not all BLAST alignment had 100% coverage proba-

bly because draft sequencing randomly missed certain prophage loci. The BLAST alignment of

any CFSAN029793 prophage to a draft genome always yielded <40% coverage when the

examination of insertion sites revealed no insertion of that prophage in the draft genome

(Table 2). The coverage was not 0 because some coding sequences from different prophages

could be homologous, due to the mosaic nature of prophages. Cluster I isolates differed in the

presence/absence of prophages 1, 2 and 3 and several prophage presence/absence profiles were

identified among all isolates; putative prophage 4 was present and conserved in all isolates.

Outbreak-associated isolates exhibiting the same AscI-PFGE profile always had the same pro-

phage presence/absence profile. In addition, the same prophage present in different outbreak-

associated isolates was conserved, containing 2 or fewer SNPs (Table 2).

Prophage variations were more discriminatory than PFGE for differentiating unrelated iso-

lates because there was greater prophage divergence between outbreak-associated isolates and

non-outbreak isolates that were matched by PFGE, using CFSAN029793 as the reference for

comparison. When the examination of insertion sites confirmed a prophage insertion in a

non-outbreak isolate, its BLAST alignment with CFSAN029793 prophages only yielded 75–

80% coverage with 89–95% sequence identity. For example, PFGE-matched CFSAN30117 and

CFSAN020389 both possessed CFSAN029793 prophage 1; however, CFSAN029793 prophage

1 aligned with the outbreak isolate (CFSAN30117) for 100% coverage while aligned with the

Table 2. Presence/absence and SNPs of CFSAN029793 prophages in Cluster I and PFGE-matched, non-outbreak isolates.

Isolate identifiers and PFGE profiles Prophage variations

CFSAN029793a (P6, GX6A16.0061/ GX6A12.0026b) Phage 1 Phage 2 Phage 3 Phage 4

CFSAN030117 (P1, GX6A16.0020/ GX6A12.0227) + (0) c -d - + (0)

CFSAN020389 unrelated to the outbreak (P1) + (80%) e - - + (1)

CFSAN030113 (P2, GX6A16.0026/ GX6A12.0489) + (1) + (1) - + (0)

CFSAN029803 (P3, GX6A16.0026/ GX6A12.0077) - + (1) - + (0)

CFSAN032531 (P4, GX6A16.0026/ GX6A12.0094) + (0) + (1) - + (0)

CFSAN022649 unrelated to the outbreak (P4) - + (30%)f -f + (1)

SAMN03755224 (P5, GX6A16.0026/ GX6A12.0227) + (0) + (2) - + (0)

CFSAN029618 unrelated to the outbreak (P5) + (75%) + (76%) - + (2)

CFSAN029822 (P6, GX6A16.0061/ GX6A12.0026) + (0) + (2) + (0) + (0)

CFSAN029791 (P7, GX6A16.0061/ GX6A12.1512) - + (1) + (0) + (0)

CFSAN030114 (P8, GX6A16.0061/ GX6A12.2551) + (0) + (1) + (0) + (0)

SAMN03755374 (P9, GX6A16.0061/ GX6A12.2358) - + (1) + (0) + (0)

aThe criteria to select the isolates for inclusion in the table: each PFGE profile is represented by one isolate. If prophage in multiple isolates exhibiting that

PFGE profile differed from the corresponding CFSAN029793 prophage, an isolate with the largest number of SNPs (2 for any prophage) is listed.
bBrief and full two-enzyme PFGE designations of each isolate are in the parenthesis.
c+(integer), the presence of each prophage was confirmed by the examination of prophage insertion sites, and its BLAST alignment with the corresponding

CFSAN029793 prophage yielded �90% query coverage with�99% sequence identity. The number of SNP differences is in parenthesis.
d-, the absence of each prophage was confirmed by the examination of prophage insertion sites and <60% coverage of its BLAST alignment with the

corresponding CFSAN029793 prophage.
e+(percentage), the presence of each prophage was confirmed by the examination of insertion sites, and its BLAST alignment with the corresponding

CFSAN029793 prophage yielded 75% to 80% coverage with 89–95% identity with the exception listed in footnote f. The BLAST coverage is in parenthesis.
fCFSAN022649 had a prophage inserted in the insertion site (comK) of CFSAN029793 prophage 2, but it aligned to CFSAN029793 prophage 2 for only

30% coverage. That prophage aligned to CFSAN029793 prophage 3 for 68% coverage, but it was inserted into comK, not near the tRNA.

doi:10.1371/journal.pone.0171389.t002
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non-outbreak isolate (CFSAN020389) for 80% coverage. Similar results were observed when

CFSAN029793 prophages 1 and 2 aligned to PFGE-matched outbreak isolate, SAMN03755224,

and non-outbreak isolate, CFSAN029618 (Table 2). The prophage variation between PFGE-

matched outbreak isolate, CFSAN032531, and non-outbreak isolate, CFSAN022649, was more

complicated. The prophage variation between CFSAN032531 and reference CFSAN029793

only involved the loss of prophage 3. In contrast, the prophage variation between CFSAN022649

and CFSAN029793 appeared to involve the loss of prophages 1 and partial replacement of

prophage 2 by prophage 3. Specifically, CFSAN022649 had a prophage inserted in the insertion

site (comK) of CFSAN029793 prophage 2, but that prophage aligned with CFSAN029793 pro-

phage 2 for only 31% coverage. Instead, this CFSAN022649 comK prophage aligned with

CFSAN029793 prophage 3 for 68% coverage, while the genomic region of CFSAN022649 next

to the insertion site (tRNA-arg) of CFSAN029793 prophage 3 aligned with CFSAN029793 pro-

phage 3 for only 2% coverage.

None of the SNPs identified among Cluster I isolates were in the AscI or ApaI restriction

sites of CFSAN029793. The gain/loss of prophages caused the AscI-PFGE banding pattern dif-

ferences as discussed below (Fig 2). BLAST analyses showed that the loss of prophage 1, 2 and

3 corresponded to the deletion of ~43 Kbp, ~ 40 Kbp and ~38 Kbp DNA fragment, respectively

(Table 1). Prophage 1 was in a ~887 Kbp DNA restriction fragment (between AscI restriction

sites at positions 662320 and 1549005 of the reference genome). The loss of 43Kbp from this

large fragment was not resolved by PFGE and thus did not contribute to the gel banding pat-

tern changes. Therefore, the AscI-PFGE banding pattern changes were caused by the gain/loss

of prophages 2 and 3 (Fig 2). Isolates exhibiting AscI-PFGE profile of GX6A16.0061 (observed

in PFGE profiles P6, P7, P8 and P9) contained prophages 2 and 3. The ~38 Kbp deletion

resulted from prophage 3 loss caused the shift of a ~275 Kbp DNA fragment (between AscI

restriction sites at positions 1941282 and 2216420 of the reference genome) to ~237 Kbp, and

this ~237 Kbp fragment and a ~240 Kbp fragment (between AscI restriction sites at positions

373927 to 613583) formed a duplet, which explained the AscI-PFGE gel pattern change from

GX6A16.0061 to GX6A16.0026 (observed in PFGE profiles P2, P3, P4 and P5). The ~ 40 Kbp

deletion resulted from prophage 2 loss caused the shift of a ~392 Kbp DNA fragment (between

AscI restriction sites at positions 1549005 and 1941282 of the reference genome) to ~352 Kbp,

which explained the AscI-PFGE gel pattern change from GX6A16.0026 to GX6A16.0020

(observed in PFGE profile P1). The loss of both prophage 2 and 3 resulted in the pattern

change from GX6A16.0061 to GX6A16.0020.

Fig 2. AscI-PFGE banding pattern changes due to the gain/loss of prophages 2 and 3. The AscI-PFGE

profile and corresponding brief two-enzyme PFGE profiles are listed on the right of the gel images. The

corresponding prophage gain/loss profiles are listed to the right. + indicates the gain of a prophage and–

indicates the loss of a prophage. Isolates exhibiting GX6A16.0061 contained both prophages 2 and 3. The

loss of prophage 3 resulted in the change of a ~275 Kbp fragment in the gel pattern of GX6A16.0061 to ~237

Kbp in the gel patterns of GX6A16.0026 and GX6A16.0020, and this ~237 Kbp fragment and a ~240 Kbp

fragment formed a duplet. The loss of prophage 2 resulted in the change of a ~392 Kbp fragment in the gel

patterns of GX6A16.0061 and GX6A16.0026 to ~352 Kbp in the gel pattern of GX6A16.0020. The loss of both

prophages 2 and 3 resulted in the pattern change from GX6A16.0061 to GX6A16.0020.

doi:10.1371/journal.pone.0171389.g002
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Cluster II PFGE and WGS analysis

Cluster II was comprised of 51 food and environmental isolates from Facility II, 4 food isolates

from the Production line B of Facility I, and 5 clinical isolates from the 5 patients (Group II

illnesses). These isolates exhibited 4 different PFGE profiles (P10, P11, P12 and P13) and all

5 clinical isolates exhibited P11 (S1 Table). The epidemiologically unrelated ST5 isolates

(CFSAN021784 and PNUSAL000243) were clearly placed outside Cluster II (S3 Fig); these iso-

lates differed from Cluster II isolates by at least 142 SNPs. In order to precisely determine SNP

differences, we then removed the epidemiologically unrelated isolates and performed a second

WGS on only the Cluster II isolates, identifying a SNP matrix of 169 polymorphic loci. The 4

isolates from Facility I (PFGE profile P10) formed a clade (Clade IIa), and the 51 isolates from

Facility II and 5 clinical isolates formed another clade (Clade IIb) (Fig 3). This clustering,

along with PFGE, supports the epidemiologic finding that ice cream produced in Facility II

were the likely cause of the Group II illnesses, and that ice cream produced in Facility I may

not be linked to Group II illnesses. However, Clade IIa and Clade IIb isolates differed by 40 to

52 SNPs, indicating a relatively close relationship; thus, it is possible that isolates from the two

clades might have a common ancestor outside Facility II. We subsequently identified the SNPs

that specifically distinguished between Clade IIa and Clade IIb isolates (S2 Table).

Clade IIb isolates differed from each other by 0 to 29 (median, 17) SNPs. The five clinical

isolates differed by 2 to 14 (median, 8) SNPs. The isolates exhibiting the clinical PFGE profile

(P11) differed by 0 to 26 (median, 15) SNPs. Any food and environmental isolates in Clade IIb

differed from its most genetically close clinical isolate by 5 to 16 (median, 11) SNPs, indicating

these food and environmental isolates were associated with the clinical cases. Isolates exhibit-

ing PFGE profiles P11, P12 and P13 did not form distinct sub-clades within Clade IIb (Fig 3).

The Sub-clade IIb.1 isolates that exhibited PFGE profile P11 differed by 0 to 20 (median, 11)

SNPs. Food isolates were placed only in Sub-clade IIb.1, and isolates placed outside Clade IIb.1

were only from environmental samples. Twenty-eight isolates were obtained from 14 environ-

mental samples with two isolates from each sample. For each of the samples 22, 74, 80 and 58,

both isolates were outside Clade IIb.1. For each of the samples 69 and 77, both isolates were

inside Clade IIb.1. In contrast, for each of the samples 78, 71, 70, 75, 62, 67, 68, and 52, one iso-

late was placed inside Clade IIb.1 and the other was outside Clade IIb.1. Thus, it is also possible

that the facility locations where samples 22, 74, 80 and 58 were collected had not been directly

cross-contaminated with ice cream products, although only 2 isolates analyzed for each sample

were not sufficient to make definitive conclusions. Within Sub-clade IIb.1, Sub-clade IIb.1.1

contained 12 of all the 14 isolates collected from chocolate ice cream and no isolates from

other ice cream products, indicating that there might be a contamination source unique to

chocolate ice cream.

Clonal complex analysis

The SNP-based WGS analysis clearly clustered together ST5 isolates from different outbreaks/

incidents and a non-ST5 CC5 isolate (CFSAN028312, ST745), when compared to non-CC5

serotype 1/2b isolates (Fig 4). Within the CC5 cluster, our SNP-based analysis was also able to

differentiate isolates from epidemiologically unrelated outbreaks/incidents, which PFGE failed

to achieve (S4 Fig). ST5 isolates did not form a distinct clade separate from ST745, thus in this

case WGS clustering was consistent with the CC but not ST. The PFGE-matched, epidemio-

logically unrelated isolates for Clusters I and II of the ice cream outbreak were distinguished

from Cluster I and II isolates, and they were more close to the ice cream Cluster I and II iso-

lates than to isolates from other incidents.

Genome level diversity of Listeria monocytogenes linked to an ice cream outbreak
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Discussion

The initial recognition of this outbreak, as well as the 2014 stone fruit outbreak [36, 38], started

with pathogen finding in food products and DNA fingerprinting of food isolates, followed by

the identification of clinical cases involved in the outbreaks [6]. This highlights the value of

real-time WGS-based surveillance of L. monocytogenes from food and environmental sources

even when they are not yet implicated by any epidemiological evidence. U.S. federal and state

agencies initiated a real-time Listeria project, in which Food and Drug Administration (FDA)

and Department of Agriculture primarily sequence food and environmental isolates and Cen-

ters for Disease Control and Prevention (CDC) primarily sequences clinical isolates. Fully

sequenced genomes are stored at National Center for Biotechnology Information (NCBI) [39,

Fig 3. Maximum likelihood tree of Cluster II isolates. Isolates were collected from ice cream produced in

Production line B of Facility I (Clade IIa), ice cream/environment from Facility II and Group II illnesses

(Clade IIb). The SNP matrix was generated using CFSAN030683 as the reference and contained 169

polymorphic loci. The tree uses midpoint rooting. Isolate identifier is followed by sample type and abbreviation

of collection date. Isolates from environmental samples are followed by the sample ID in the parenthesis.

Environmental sample IDs ending with A and B indicate two colonies from the same sample. Purple color for

an environmental sample ID indicates that for that sample one colony is inside Sub-clade IIb.1 and the other

colony is outside Sub-clade IIb.1. Blue color for an environmental sample ID indicates that for that sample

both colonies are either inside or outside Sub-clade IIb.1. Only one colony was picked from each of the two

environmental samples (024 and 64) and their sample IDs are in blue. Isolates exhibiting PFGE profiles P10,

P11, P12 and P13 are printed in blue, red, green and purple, respectively. The clinical isolates, all placed

inside Sub-clade IIb.1, are highlighted in boxes. The bootstrap values of major clades are listed on top of the

root of each clade. The minimum and maximum numbers of SNPs with median in the parenthesis are listed

near the root of major clades.

doi:10.1371/journal.pone.0171389.g003

Genome level diversity of Listeria monocytogenes linked to an ice cream outbreak

PLOS ONE | DOI:10.1371/journal.pone.0171389 February 6, 2017 11 / 19



40], which generates a daily-updated single nucleotide polymorphism (SNP)-based whole

genome sequencing (WGS) tree (https://www.ncbi.nlm.nih.gov/pathogens/isolates/). A signal

of clustering (e.g., a WGS match between food/environmental and clinical isolates) could serve

as an early warning, to be followed up by epidemiological investigation and additional WGS

analyses, e.g. reference-based SNP analysis [41] and whole genome multilocus sequence typing

(MLST) analysis [40].

In this study, we analyzed WGS of isolates from multiple product varieties and lots manu-

factured in two facilities that were linked to the clinical cases. Isolates from ice cream bars in

Facility I (in WGS Cluster I) and isolates from chocolate ice cream in Facility II (in WGS Clus-

ter II) appeared to have common sources unique to each of them. However, neither raw mate-

rial was collected nor was sufficient environmental sampling performed to precisely determine

these sources. The production lines A and B of Facility I might have different sources of con-

tamination. Certain environmental samples from Facility II may not have direct cross contam-

ination with the products. Other than these, we did not find strong association between WGS

clades and product varieties, production dates. The relatively long shelf life of ice cream

Fig 4. Phylogenetic analysis of Clonal complex (CC) 5 strains from several outbreaks/incidents and

other serogroup IIb isolates. The tree uses midpoint rooting. Bootstrap values of major clades are listed

near the root of each clade. Serogroup IIb strains differing from CC5 strains by two or more multilocus

sequence typing (MLST) alleles were used for comparison. CC5 isolates formed a cluster, within which

isolates from each of the cantaloupe, cheese, stone fruit, and ice cream outbreak/incident were all sequence

type (ST) 5 and formed distinct clades. The PFGE-matched, epidemiologically unrelated isolates for Clusters I

and II of the ice cream outbreak were distinguished from Cluster I and II isolates. The non-ST5 CC5 strain

(CFSAN028312, ST745) is placed outside clades representing all other incidents. Within the CC5 cluster, ST5

isolates do not form a distinct clade to be separated from the ST745 strain.

doi:10.1371/journal.pone.0171389.g004
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allowed collection of samples yielding isolates that contributed to the overall genomic diver-

sity. For example, PFGE profiles P3 and P9 were only observed in isolates from ice cream bars

produced in August 2014 and collected in February 2015. The collection of these ice cream

bars also contributed to the identification of a sub-clade strongly associated with bars. Some

scoop samples analyzed by the enrichment-free enumeration method were produced in

November/December 2014 and collected in April 2015.

We need to keep in mind that the method of culture isolation could affect the diversity of

food and environmental isolates that were available for analysis, since certain enrichment

schemes could preferentially enrich certain genotypes of L. monocytogenes [42, 43]. The geno-

types favored by selective enrichment may be different from those favored during human gas-

trointestinal passage [44]. In the present study, Cluster I isolates obtained from enrichment-

free direct plating enumeration and those obtained from enrichment-based isolation did not

form distinct WGS clades, suggesting no bias introduced by selective enrichment, however, we

cannot exclude the possibility that the selective agars used for direct plating, Rapid’ L. mono
and Agar Listeria Ottaviani and Agosti [5, 24, 25], could introduce bias, although preferential

growth of different genotypes on Listeria selective agars has not been reported. Isolates repre-

senting multiple production lots and environmental locations were all related to the clinical

isolates, thus, we did not have strong evidence that there was a significant difference between

selective enrichment and human passage in this case.

Previous SNP-based WGS analyses have demonstrated that isolates associated with a com-

mon-source outbreak or isolates associated with foods produced in a single facility can differ

by up to 5 SNPs [45, 46], 10 SNPs [9], 20 SNPs [47] or 28 SNPs [10]. However, data from those

studies are not directly comparable because different WGS analytical tools or SNP calling algo-

rithms were employed. Thus, continuing analysis of isolates associated with listeriosis out-

breaks using the same tool(s) is critical to understanding and comparing isolate diversity.

Using the CFSAN SNP Pipeline, we have previously showed that isolates associated with a lis-

teriosis outbreak linked to stone fruit differed by up to 42 SNPs [38]. Isolates in WGS Cluster I

or Clade IIb differed by up to 29 SNPs and we believe each should represent one strain. In

Cluster I, Clades Ia and Ib could be separated by PFGE, but different PFGE profiles in Clade Ib

(up to 26 SNPs) did not form distinct clades (Fig 1). Different PFGE profiles in Clade IIb did

not form distinct clades either (Fig 3). Therefore, there was no clear evidence of mixed strains

in each clade. CFSAN SNP Pipeline applied a filter to remove high density SNPs when analyz-

ing relatively close isolates because high density SNPs could be the result of recombination

and/or low quality sequencing/mapping, and low quality mapping often occurs in repetitive

regions. We found that 3 removed regions in Cluster I analysis were in prophage regions

between tRNA and phage integrase, also part of repeat regions. By using Tandem Repeats

Finder [48] and/or examination of annotations and sequences, we found 2 removed regions in

Cluster II analysis contained tandem repeats. Our study also helped confirming that the ice

cream products analyzed in two studies on L. monocytogenes enumeration in ice cream and

growth kinetics in milkshakes were linked to the outbreak. These two studies revealed that the

geometric mean levels of L. monocytogenes in scoops produced between November 2014 and

March 2015 ranged from 0.15 to 7.1 MPN/g [5] and milkshakes prepared from these scoops

had a lag phase of 9 h and a growth rate of 0.186 log(CFU)/h when held at room temperature

[25]. We sequenced over 70 isolates from those studies, all of which were clustered together

with the clinical isolates and showed no bias in sample enrichment (data not shown), but we

chose to include only 36 in the present study to avoid over-representing isolates from scoop

products.

Prophage variations among Cluster I isolates were primarily gain/loss of prophages, which

resulted in the 3 AscI-PFGE profiles observed in all the clinical isolates, as well as in all the
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food and environmental isolates. We investigated prophage regions because prophage could

contain significant variations when the rest of the genome had almost no diversity [9]. Cluster

I isolates exhibited multiple PFGE profiles, which allowed comparisons among WGS, PFGE

and prophage variations. Isolates exhibiting the same PFGE profile always had the same pro-

phage gain/loss profile and those prophages were conserved, containing two or fewer SNPs.

Differences in AscI-PFGE profiles were the result of gain/loss of prophages. In contrast, out-

break-associated isolates and PFGE-matched, non-outbreak isolates had significant prophage

divergence. This prophage divergence, often as a result of combination, yields regions contain-

ing high density SNPs. The number of such SNPs does not necessarily reflect the actual genetic

relatedness between isolates; and thus CFSAN SNP Pipeline excluded these regions for WGS

analysis. The Cluster I isolates from the ice cream outbreak described here, CC7 isolates from

the 2011 U.S. cantaloupe outbreak [11], and isolates from the 2008 Canada deli meat outbreak

[10] all exhibited multiple AscI-PFGE profiles caused by the gain/loss of prophages, indicating

that PFGE banding patterns, especially those attributed to prophage gain/loss, may not be suf-

ficient to determine whether an isolate is associated with an outbreak. These different PFGE

patterns were observed in different clinical isolates from each outbreak, indicating that gain/

loss of prophages did not significantly affect the ability of isolates to cause human illnesses in

the aforementioned 3 outbreaks.

PHASTER was an updated version of PHAST for prophage prediction, and they were based

on similar algorithms [32, 33]. We found that PHAST was slightly more accurate in identifying

prophage insertion sites, while PHASTER was slightly more accurate in the identification of pro-

phage start and end positions, although either software was perfect, as illustrated by the comK
prophage identification in this study. Examination of tRNA prophage insertion was not conclu-

sive to evaluate PHAST/PHASTER results because the insertion was non-disruptive. This

should be kept in mind if these prophages will be used for future in-depth analysis. We also

compared the prophages in the ice cream isolate CFSAN029793 and those in the CC5 strain,

CFSAN023459, from the 2014 stone fruit recall [38]. The comK prophage of the ice cream iso-

late, CFSAN029793, aligned with comK prophage of the stone fruit isolate, CFSAN023459, for

83% coverage and 94% sequence identity, indicating significant prophage divergence (over

2,500 SNPs). The CFSAN029793 prophage 4 differed from the CFSAN023459 prophage 1 by 1

SNP (initially identified by PHAST to be 22.9 Kbp, and an updated analysis using PHASTER

revealed it to be 10.7 Kbp). The other two prophages of CFSAN029793 and the other two pro-

phages of CFSAN023459 were totally different (� 8% of BLAST alignment coverage) [38].

Thus, strains in the same clonal group but from different outbreaks/incidents had significant

prophage divergence, possibly due to recombination, and the resulting high density SNPs were

removed when performing WGS analysis of these strains. Our study used a complete genome of

CFSAN029793 as the reference for Cluster I, while the best available reference for Cluster II was

a draft genome. Therefore, we only performed prophage analysis on Cluster I isolates. We did

observe the presence of prophage sequences in Cluster II isolates, which spread across more

than one contig of the draft genome, and thus PHASTER analysis could not identify the com-

plete prophage(s) (data not shown). For the same reason, we could only determine whether

draft genomes of Cluster I isolates contained the prophages identified in CFSAN029793, but not

whether draft genomes contained additional prophages that were not present in CFSAN029793.

Mapping quality and subsequent SNP calling accuracy by reference-based WGS methods

may be affected by genetic diversity of isolates [22, 31]. Here we explored the CFSAN SNP

Pipeline to analyze CC5 strains from different outbreaks/incidents. Phylogenetic analysis

based on identified SNPs successfully separated CC5 strains from non-CC5 strains of the same

serogroup. Further, the analysis distinguished CC5 strains from different outbreaks/incidents,

which PFGE did not accomplish. However, compared to the SNP analysis on only Cluster I
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isolates using the same reference, less variant sites were in the final SNP matrix because more

sites were filtered out by the software when more diverse genomes were mapped to the refer-

ence (data not shown). Thus, the analysis essentially targeted a smaller portion of the genome,

as a result, the numbers of pairwise SNP differences among isolates determined were less than

those obtained when only Cluster I isolates were analyzed (data not shown); however, this

reduced resolution still distinguished the ice cream outbreak-associated isolates from non-out-

break isolates that were matched by PFGE. Therefore, when CFSAN SNP Pipeline is per-

formed on a set of genetically diverse isolates, an initial analysis can be used to identify major

clusters; and if pairwise SNP differences need to be precisely determined, additional analyses

should be performed on individual clusters. CFSAN SNP Pipeline runs in Linux environment,

thus, once the software environment is set up, separate analyses on different clusters are

straightforward.

Conclusions

WGS distinguished outbreak-associated isolates from PFGE/MLST matched, epidemiologi-

cally unrelated isolates. WGS also clustered together outbreak-associated isolates exhibiting

multiple PFGE profiles. Reference-based SNP analysis allowed simultaneous identification of a

CC5 and discrimination of different outbreak strains in the same clone. CFSAN SNP Pipeline

can be an effective tool for both long-term and short-term epidemiology of L. monocytogenes.

Supporting information

S1 Table. Isolates analyzed in the present study.

(XLSX)

S2 Table. SNPs that specifically differentiate Cluster I from the unrelated isolates, genes

containing the SNPs and their encoded proteins.

(XLSX)

S3 Table. SNPs that specifically differentiate Clade IIb from the unrelated isolates, genes

containing the SNPs and their encoded proteins.

(XLSX)

S1 Fig. Maximum likelihood tree of food and environmental isolates from three facilities

as well as clinical isolates. The SNP matrix was generated using CFSAN029793 as the refer-

ence. The tree uses midpoint rooting.

(TIF)

S2 Fig. Maximum likelihood tree of the Cluster I and epidemiologically unrelated isolates

that were matched by PFGE. The SNP matrix was generated using CFSAN029793 as the ref-

erence. The tree uses midpoint rooting. In this analysis, Cluster I isolates contained 148 poly-

morphic loci and differed by 0 to 28 (median, 14) SNPs. The brief PFGE profiles of the

unrelated isolates are listed following the isolate ID. The brief PFGE profiles of outbreak-asso-

ciated isolates are listed under the root of Cluster I.

(TIF)

S3 Fig. Maximum likelihood tree of the Cluster II and PFGE-matched, epidemiologically

unrelated isolates. The SNP matrix was generated using CFSAN030683 as the reference. The

tree uses midpoint rooting. In this analysis, Cluster II isolates contained 165 polymorphic loci

and Clade IIb isolates differed by 0 to 28 (median, 16 SNPs) SNPs.

(TIF)
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S4 Fig. Dendrogram of PFGE profiles associated with the clonal complex 5 isolates. This

dendrogram was constructed by Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) using AscI-PFGE as the primary pattern and ApaI-PFGE as the secondary pattern.

The cantaloupe outbreak strain is placed inside the ice cream Cluster I. The cheese outbreak

strain is placed inside the ice cream Cluster II.

(TIF)
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