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ABSTRACT

Structural genomics initiatives aim to elucidate
representative 3D structures for the majority of
protein families over the next decade, but many
obstacles must be overcome. The correct design of
constructs is extremely important since many
proteins will be too large or contain unstructured
regions and will not be amenable to crystallization.
It is therefore essential to identify regions in protein
sequences that are likely to be suitable for structural
study. Scooby-Domain is a fast and simple method
to identify globular domains in protein sequences.
Domains are compact units of protein structure and
their correct delineation will aid structural elucida-
tion through a divide-and-conquer approach.
Scooby-Domain predictions are based on the
observed lengths and hydrophobicities of domains
from proteins with known tertiary structure. The
prediction method employs an A*-search to identify
sequence regions that form a globular structure and
those that are unstructured. On a test set of 173
proteins with consensus CATH and SCOP domain
definitions, Scooby-Domain has a sensitivity of 50%
and an accuracy of 29%, which is better than
current state-of-the-art methods. The method does
not rely on homology searches and, therefore, can
identify previously unknown domains.

INTRODUCTION

Completion of 200 genome-sequencing projects has led to
an astronomical growth in sequence data, leaving the
massive task of structural and functional annotation to be
addressed. The vast and growing gap between protein

sequence and structural data has motivated structural
genomics initiatives, which aim to elucidate representative
3D structures for the majority of protein families. A major
bottleneck in structural studies is the correct design of
constructs: many proteins are either too large or contain
unstructured regions, and are thus unsuitable for struc-
tural solution (1). It is therefore essential to identify
regions in protein sequences likely to be amenable to
structural elucidation (2).

The component of globularity in proteins is the
domain: a compact, semi-independent, structural unit (3).
Wetlaufer (4) first proposed the concept: defining domains
as stable units of protein structure that can fold autono-
mously. Nature often brings several domains together to
form multidomain and multifunctional proteins with the
possibility of a vast number of combinations. Because
domains mostly fold independently, large proteins that
may not be amenable to structural solution may yield to a
divide-and-conquer approach.

Methods for domain prediction can be divided into
three groups: homology searches, analysis of sequence
features and de novo structure prediction. Domain assign-
ment methods that are based on homology searches
include Domaination (5) and PASS (6). Other such
methods include those used to generate domain data-
bases such as Pfam (7–10). Both Domaination and
PASS identify domains using the positions of the
N- and C-termini of aligned homologous sequences.
While effective at identifying distant family members,
homology-based methods will not identify the exact
structural limits of a domain, which is essential for
structural elucidation (11) and will fail to identify domains
that have not been rearranged during evolution (5).

Many methods have been developed to delineate
domains using sequence features. The amino acids that
make up inter-domain linking peptides are distinct from
those in domain or loop regions (12). This signal has been
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utilized by several groups. Armadillo (13) and Domcut
(14) predict linkers using a table of likelihood scores for
each amino acid to be within a linker region. Bae et al. (15)
uses a hidden Markov model and linker index with
combined Gibbs sampling and Markov Chain Monte
Carlo to estimate the parameters and posterior probabili-
ties. Miyazaki et al. (16), Dong et al. (17) and Sikder and
Zomaya (18) utilize position-specific scoring matrices
(PSSM) generated from PSI-BLAST to predict domain
boundaries. Miyazaki et al. (16) employs a neural network
to identify signals between linkers and domains while
Dong et al. (17) applies a linker propensity index and
Sikder and Zomaya (18) utilizes a support vector machine
and linker predictions made by Domcut.

Other methods apply predicted secondary structure and
multiple sequence alignment to predict domain location
(19–22). DomSSEA (20) applies a simple threading
protocol while CHOPnet (19) utilizes a neural network
using amino acid flexibility, secondary structure, solvent
accessibility and amino acid composition.

Many of these sequence-feature-based methods are no
better than a simple guess based on the predicted number
of domains, as applied in Domain Guess by Size (DGS)
(23). Furthermore, few methods tackle the prediction of
discontinuous domains. Discontinuous domain prediction
is an important problem because 45% of multidomain
proteins have one or more domains wound from non-
contiguous sequence in the polypeptide chain (24).

Finally, SnapDragon (25) and Ginzu-RosettaDOM (26)
are programs that utilize de novo protein structure
prediction to delineate domains. Although these methods
showed some success, exact domain boundary placement
is often limited to proteins with two or three domains and
the time required for prediction is too long for genome-
scale assignment.

The Scooby-Domain (SequenCe hydrOphOBicitY pre-
dicts DOMAINs) web application was recently introduced
to visually identify foldable regions in a protein sequence
(27). Here we present benchmark performance of a new
algorithm to automatically predict domain boundaries.
Scooby-Domain uses the distribution of observed lengths
and hydrophobicities in domains with known 3D structure
to predict novel domains and their boundaries in a protein
sequence. It utilizes a multilevel smoothing window to
determine the percentage of hydrophobic amino acids
within a putative domain-sized region in a sequence.
Using the observed distribution of domain lengths and
percentage hydrophobicities, the probability that the
region can fold into a domain or be unfolded is then
calculated. A novel algorithm is then applied to calculate
the most likely domain architecture of the protein.

Scooby-Domain was benchmarked on proteins with
known 3D structure and defined domain architecture.
Precise domain definition, even with a known structure, is
a difficult problem and several databases with alternative
definitions exist. To fairly test our methodology we have
used two databases, CATH (28) and SCOP (29), as well as
a consensus definition. The benchmark sets contain
proteins with a range of domain number and domain–
domain connectivity and is a challenging test for domain
prediction algorithms.

MATERIALS AND METHODS

Domain size and percentage hydrophobicity

The distribution of domain size and hydrophobicity was
calculated using the S35 domain representatives from the
CATH domain database version 3.0.0 (28). No domain
in this set has >35% sequence identity with any other
domain. Only the first three classes of the CATH
classification were used since class-four proteins have
few secondary structures and are unlikely to be comprised
of globular domains. Full-sequence data was taken from
the corresponding CATH COMBS file. Unlike the ATOM
sequences, which may have missing residues, the COMBS
sequences attempt to provide the full sequence, by filling
in any missing residues in the PDB atom fields with
those in the PDB SEQRES fields. The length of the
domain sequences was restricted to between 34 and 251
residues. Domains outside this range are unlikely to have a
single hydrophobic core (30). For each domain, percen-
tage hydrophobicity was calculated using a simple binary
hydrophobicity scale, where 11 amino acid types are
considered as hydrophobic: Ala, Cys, Phe, Gly, Ile,
Leu, Met, Pro, Val, Trp and Tyr (31). Other scales were
trialled but were found to produce poorer results in
benchmarking.
A 3D histogram of the distribution of domain sequence

lengths versus their corresponding hydrophobicities was
created using a square averaging window. The window
sums the number of domain sequences that it encapsulates
within the distribution. The resulting value is then placed
at the central position of the window. The window moves
along the distribution one unit at a time, covering the
entire dataset. The square window has a size of 19 residues
by 1 unit percentage hydrophobicity, which means that
it captures all domain sequences within a length of 19
residues and with an average hydrophobicity resolution
of 1%. Each position in the final 3D histogram was
then scaled to a value between 0 and 1, where 1 is the
highest point in the distribution corresponding to the
most frequent observation (Figure 1a). These values were
used as a reference to judge whether a sequence fragment
can form a domain based on its length and average
hydrophobicity.

Generating the domain probability matrix

Scooby-Domain uses a multilevel smoothing window to
predict the location of domains in a novel sequence
(Figure 1b). The window size, representing the length of a
putative domain, is incremented starting from the smallest
domain size observed in the database to the largest
domain size. The window size must be an odd number and
the size is incremented by two each time. Each smoothing
window calculates the fraction of hydrophobic residues
it encapsulates along a sequence, and places the value at
its central position. This leads to a 2D matrix, where the
value at cell (i, j) is the average hydrophobicity encapsu-
lated by a window of size j that is centred at residue
position i. The matrix has a triangular shape with the apex
corresponding to a window size equal to the length of the
sequence.
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Matrix values are converted to probability scores by
referring to the observed distribution of domain sizes and
hydrophobicities described earlier, i.e. given an average
hydrophobicity and window length, the probability that it
can fold into a domain is found directly from the observed
data. Visualization of Scooby-Domain plots can be used
to effectively identify regions that are likely to fold into
domains, as well as unstructured regions (27).

Automatic domain boundary assignment

Scooby-Domain employs an A*-search algorithm to
search through a large number of alternative domain
annotations. The top ten highest probabilities in the
Scooby-Domain plot are identified, each one becoming
the first predicted domain in a set of alternative
predictions (Figure 2). To encourage alternative predic-
tions that are distinct, a new start site must not be within a
diamond-shaped region, of width 17 residues, surrounding
an old start site.
The corresponding sequence stretch for the first

predicted domain is removed from the sequence
(Figure 2a). Therefore, the first predicted domain will
always have a continuous sequence and further domain
predictions can encompass discontinuous domains. If the
excised domain occupies an interior position in the
sequence, the resulting N- and C-terminal fragments are
rejoined and a new probability matrix is recalculated
(Figure 2b).
Upon rejoining the sequence fragments, once a domain

has been removed, it is important that the probabilities on
either side of a join are down-weighted to avoid small
fragments being involved in subsequent domain delinea-
tions. To enforce this, a minimum discontinuous segment
size of 15 residues is applied (Figure 2c).
The search process is repeated until there are <34

residues remaining—the size of the smallest domain; or
until there are no probabilities greater than 0.33—an
arbitrary cutoff to prevent non-domain-like regions from
being predicted as a domain.

The A*-search algorithm considers combinations of
different domain sizes, using a heuristic function to guide
the search (Figure 3). Instead of just considering the
domain prediction with the highest score for each step of
the algorithm, A*-search memorizes a list of up to ten
possible domain predictions, and each of these are
represented as a node in the tree-like search space. Each
possible domain solution will be a path or branch in the
search tree. The heuristic score of new predictions is
compared with the heuristic scores from domains pre-
dicted in the previous step. Consideration of these
alternative paths to other possible solutions would avoid
the search being trapped in a local maximum. Since A*-
search is a generic algorithm, its description can be found
in other texts that cover artificial intelligence, for example,
the original paper by Hart et al. (32). The implementation
details specific to domain prediction are discussed below.

The heuristic score, h, is defined by the following
equation:

h ¼
lðL� lÞ
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Figure 1. (a) Domain probability matrix. CATH domains as a function of their sequence length and percentage hydrophobicity. The red areas
represent regions that have a high frequency of domain occurrence, while the blue areas represent regions that have a low frequency of domain
occurrence. (b) Multilevel smoothing window. Smoothing windows of increasing length are used to calculate the average hydrophobicity along the
sequence. The horizontal axis corresponds to the sequence position, i, and the vertical axis represents the window length, j. Hydrophobicity values are
plotted at the position representing the sequence position of the centre point of the smoothing window and the window length (i, j). (c) Domain
prediction. For each position in the multilevel smoothing (b) the length of the smoothing window and calculated average hydrophobicity is converted
to a probability that it will fold into a domain, based on the lengths and hydrophobicities observed in the distribution of CATH domains (a).

(a) (b) (c)

Figure 2. Protocol for domain assignment. (a) The highest scoring
window (first predicted domain) is identified in the probability matrix
and the sequence region it encapsulates (dark grey triangle) is removed
from the sequence. (b) The resulting sequence fragments are rejoined
and the probability matrix recalculated. (c) The smoothing windows
that encapsulate the last 15 residues of the N-terminal fragment and the
first 15 residues of the C-terminal fragment have their probabilities set
to zero (white bands). If the next highest scoring region is found in the
light grey region, then the excised domain will be discontinuous,
otherwise it will be continuous.
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where
P

P is the sum of probabilities for each domain
predicted so far; b represents the number of boundaries
assigned; L is the length of the original sequence and l is
the remaining length of the sequence in which no domain
has yet been predicted.

To prevent large numbers of connections between
domains, a penalty is applied when a discontinuous
domain segment is assigned: b+1 equals the number of
protein domains if all domains are continuous, otherwise
this value will be larger and effectively lowers the score.

Other heuristic measures were trialled, but the one
described here had the best benchmark results. The
heuristic increases the likelihood of a boundary being
close to the middle of the sequence, but this had no
detrimental effect on discontinuous domain predictions,
where boundaries are often not in the middle of the
sequence.

In an optimal A*-search, an admissible heuristic
function would be used, which means the estimated cost
to reach the optimal solution would always need to be
larger than the actual cost of finding the optimal solution,
otherwise the optimal solution is not guaranteed. Since
the equation used is not proven to be admissible, there

is no guarantee that an optimal solution will always be
reached (33).

Integration of multiple sequence alignment

The performance of Scooby-Domain was assessed with the
inclusion of homology information. Homologues of the
query sequence were detected using PSI-BLAST (34)
searches of the SWISS-PROT database (35) and multiple
sequence alignments (MSA) were generated using
PRALINE (36). Only those sequences with <90%
sequence identity and >70% coverage of the query
sequence were kept for alignment to the query sequence.
All sequences in the alignment were trimmed such that they
matched the start and end points of the query sequence.
A domain-probability matrix was constructed for each

sequence in the MSA and the scoring matrices from each
of the multiply-aligned sequences were summed and
cumulated into a master array for tallying scores. Each
value in the master matrix is divided by the number of
sequences in the MSA. The positions in the master matrix
that correspond to gaps in the query sequence are
removed, resulting in a matrix with the same width as
the length of the query sequence. This final matrix is used
for automatic domain-boundary assignment as discussed
earlier.

Integration of linker propensities

Two linker prediction scoring systems, Domcut (14) and
PDLI (17) were used independently to complement
Scooby-Domain’s prediction. A negative number repre-
sents a higher propensity for a linker in both of these
scoring schemes. Therefore, the scores were multiplied
by �1 to reverse the polarity of the scoring. Scaling was
performed on these scoring schemes such that the range of
the scores is within 0.0 and 0.5. The Scooby-Domain
multi-dimensional smoothing window adds the linker
prediction scores at its N- and C- termini to the domain
probability matrix (the combined linker prediction will
have a maximum score of 1.0). To avoid increasing the
chance of assigning a domain in a large unstructured
region, the scores were added to the triangular matrix only
if the domain probability value exceeds a threshold
probability score. A threshold of 0.25 was found to be
best after assessing a number of test cases.
To test the added value of the combined approach,

the Domcut and PDLI methods were re-implemented and
their domain-prediction performances were compared
with Scooby-Domain: as a stand-alone predictor; or
with complementary predictions made by Domcut or
PDLI. When Scooby-Domain was combined with
Domcut, the raw Domcut score, rather than the normal-
ized score was used for Scooby-Domain predictions.
For the Scooby-Domain, Domcut and MSA combination,
Domcut predictions were obtained for the query sequence
only, and not for each sequence in the MSA. This is
because when Domcut is applied to all sequences in
the MSA prediction, results for Domcut are close to
random. When PDLI and MSAs are combined with
Scooby-Domain, PDLI uses all sequences in the MSA to
make a prediction.

7 3 6

5 2 2 2 2 4

(a)

(b) (c)

(d)

Figure 3. Different stages in the A*-search algorithm. (a) The top-most
triangle represents the Scooby-Domain domain-probability matrix for a
protein sequence. The search for protein domains in a query sequence is
like travelling through a maze. The centre of the maze being the best
domain prediction. In this figure, each triangle is like a different path
through the maze, and each level below the first triangle represents one
more domain region being predicted. Each ‘hotspot’ in the triangular
matrix, is used to locate the exact region of the sequence with highest
probability of a globular domain being formed. Three highest scoring
hotspots in the first matrix are identified and highlighted with a dot in
the figure, with scores of 7, 3 and 6, respectively. This leads to the
addition of three new paths, with each one being the recalculated
matrix for the remaining sequence, after the first domain region was
predicted and removed from the original sequence. (b) Each triangle
also represents a node in the search tree, where each node could branch
to a different path that may lead to the solution. The highest scoring
triangle (7) is searched for new hotspots, which have scores of 5, 2 and
2. (c) Regardless of level, the node with the next highest score would be
searched upon, until no further domain regions can be predicted. In
this example, it is the node with a score of 6. This allows the algorithm
to consider different parallel paths through the ‘maze’, covering a larger
area, and avoiding the search being confined to a ‘dead end’ path.
(d) The next node to search following the highest scoring predictions
has a score of 5.
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Benchmarking

Predictions were assessed using a set of proteins with
known structural domain assignments. A non-redundant
list of protein sequences, with known 3D structures, was
obtained from the VAST non-redundant PDB chain set
(www.ncbi.nlm.nih.gov/Structure/VAST/nrpdb.html).
This was matched with the corresponding entries in
CATH (28) and SCOP (29), to create two test sets: a
non-redundant CATH test set and a non-redundant
SCOP test set. Where a domain boundary consists of
several residues, the central position between the start and
end of the boundary is used. Full-length sequences were
taken from the PDB SEQRES fields of the ASTRAL
database (37). Our test sets are much more rigorous than
those used by other methods, as they contain sequences
with three or more domains and sequences with discontin-
uous domains. These sequences were often under-
represented or omitted by other groups, for example Liu
et al. (19) and Dong et al. (17).
Both the CATH and SCOP databases define a domain

as a particular core structure of secondary structure
elements. Both of these databases allow some degree of
elaboration upon domain definition, however, CATH’s
definition is more flexible and delineates smaller domains
in comparison to SCOP (38). Direct comparisons of the
two databases showed that they agree on the majority
of domain annotations (39, 40). As an additional test, the
intersection of CATH and SCOP was also used as an
optimal test set, using a consensus approach (CATH \

SCOP). For this set, only proteins that had boundary
assignments corresponding to within 10 residues between
the two definitions were used.
Scooby-Domain performance was compared to PDLI,

Domcut and an equal-cut method. Equal-cut is a naive
method, similar to DGS (23), that is used as an
experimental control. First, a rough estimate of the
number of domains in a sequence is calculated by dividing
the sequence length by the average domain size of 100
residues, and rounding to the closest integer. The sequence
was then chopped as evenly as possible based on the
number of domains. It was impossible to fairly assess
other methods on our test sets. For example, DomSSEA
(20) uses a threading procedure that would identify the
original query and others apply domain-profile searches in
an initial attempt to find known domains.
Predictions were assessed using various error-window

sizes around the known domain boundary. A correct
boundary prediction is one that falls within the
error window. Two measures of performance for the
predictions were utilized. The first measure is sensitivity,
which is the percentage of boundaries, out of all
the boundaries collected from all proteins, that were
correctly predicted:

S ¼
TP

ðTPþ FNÞ
2

where TP is the number of true positive boundary
predictions and FN the number of false negatives.
The second measure of performance is positive predictive

value (PPV), which is the percentage of all boundary
predictions that are correct:

PPV ¼
TP

ðTPþ FPÞ
3

where FP is the number of false positive boundary
predictions. PPV is called accuracy for the purpose of
this study.

RESULTS

Comparison of different test sets

Three test sets were used in this study: CATH, SCOP and
CATH \ SCOP. The number of sequences in each test set
is shown in Table 1. Accuracies for all methods tested were
around 10% higher in the CATH test set compared to the
SCOP set (Figure 4 and Table 2). This could be attributed
to the higher proportion of linkers in the CATH set, which
makes it easier to predict boundaries by chance. The equal
cut method achieved its highest accuracy on this set.

CATH assigns more domains and linkers in a protein
than SCOP, and has an average 2.52 linkers per protein
(1376 linkers in 611 proteins) while SCOP has an average
1.50 linkers per protein (746 linkers in 496 proteins).
However, Scooby-Domain achieved similar prediction
accuracies in both CATH and CATH \ SCOP sets.
CATH \ SCOP has the smallest average number of linkers
per protein, 1.47 (255 linkers in 173 proteins), suggesting
that Scooby-Domain prediction accuracies are not artifi-
cially improved by a larger number of linkers in CATH.

CATH assigns domains purely on the basis of structure,
whereas SCOP domains are assigned on the basis of
inherited functional units. Therefore, SCOP domains can
often be made up of two or more CATH domains. The
Scooby-Domain algorithm tries to predict domains based
on sequence characteristics related to structural principles
and should therefore perform better on the CATH set
compared to the SCOP set, which it does. Interestingly,
Scooby-Domain had the best overall performance on the
consensus CATH \ SCOP set, suggesting that Scooby-
Domain can successfully identify domains that qualify as
being both structural and functional.

Enhanced sensitivity with linker predictions

Predictions made by utilizing domain-boundary predic-
tions produced from other sources are compared in
Figure 4 and Table 2. A window size of �20 residues
(41 residues) is used for the results presented below.
Alone, Scooby-Domain scored a sensitivity of 37.3%

Table 1. Number of proteins in each dataset

CATH SCOP CATH \ SCOP

All 611 496 173
Continuous 336 418 150
Discontinuous 275 78 23
Total number of unique sequences 789
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on the CATH\ SCOP test set. Domcut is the least sensitive
method amongst those tested, but addition of the Domcut
predictions into Scooby-Domain surprisingly increases
Scooby-Domain’s overall score. The sensitivity for
Domcut alone is 25.5%, less than the equal-cut
method (33.3%). The combination of Scooby-Domain
and Domcut achieved a sensitivity of 45.5% and an
accuracy of 27.9%. The combined Scooby-Domain and
Domcut method was determined to be the best of the three
in terms of sensitivity and accuracy.

Homology information enhances prediction

We further determined whether improvements in perfor-
mance could be obtained if combined Scooby-Domain and
Domcut methodology was used in combination with
homology information. Domcut benchmark results were

close to randomwhen Domcut was applied to all sequences
in the MSAs. Therefore, when combined with Scooby-
Domain, Domcut was applied to the query sequence only,
while Scooby-Domain was applied to all sequences in the
MSA. Sensitivity was improved from 45.5% to 50.2% and
accuracy was improved from 27.9% to 28.5%.
PDLI, which makes linker predictions based on MSA,

has the best sensitivity (52.2%) but the worst accuracy
(19.7%). Because PDLI overpredicts linkers, it finds more
linkers in the CATH set (Figure 4), but consistently has
the lowest accuracy compared to other methods assessed.
The combination of the PDLI method with Scooby-
Domain significantly reduces the sensitivity and accuracy.
Scooby-Domain (Scooby+Domcut+MSA) has the

highest sensitivity, 50.2%, in the CATH \ SCOP set in
comparison to the other two datasets, with an accuracy of
28.5%. For the CATH dataset, it achieved a sensitivity of

Table 2. Sensitivity and accuracy at performance window size� 20 residues

CATH SCOP CATH \ SCOP

Methods Sensitivity Accuracy Sensitivity Accuracy Sensitivity Accuracy

Scooby+Domcut+MSA 38.7 31.3 45.2 23.2 50.2 28.5
Scooby+Domcut 36.8 31.6 41.7 22.7 45.5 27.9
Scooby only 32.3 30.4 37.9 23.3 37.3 25.5
Domcut only 19.3 29.3 20.8 20.1 25.5 24.6
Equal cut 29.5 31.7 33.2 22.2 33.3 27.0
PDLI only 51.5 27.3 56.7 18.4 52.2 19.7
Scooby+PDLI+MSA 34.5 29.7 36.7 20.5 39.2 23.5
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Figure 4. Sensitivity and accuracy versus different performance window size around the domain boundary. Window size is the total number of
residues making up the window. Sensitivity (top) and accuracy (bottom) are shown for the CATH dataset (a), SCOP dataset (b), and the CATH \

SCOP dataset (c). Continuous line, Scooby+Domcut; Diamond with dashed line, PDLI only; triangle with dashed line, Scooby only; inverted
triangle with dashed line, Scoopy+PDLI+MSA; plus sign with dotted line, Domcut only; crossed square with continuous line,
Scooby+Domcut+MSA; Cross mark with dashed dotted line, Equal cut.
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38.7% and the highest accuracy, 31.3%, of the three
datasets. For the SCOP dataset, Scooby-Domain achieved
a sensitivity of 45.1%, but a lower accuracy of 23.1%.

Results for different domain numbers and types

The sensitivity and accuracy of prediction for multi-
domain proteins as a function of domain number is shown
in Figure 5. Proteins are divided into two groups:
continuous and discontinuous. In the latter group, at
least one domain is wound from non-contiguous portions
of the polypeptide chain.
The method is equally sensitive at delineating proteins

with either continuous or discontinuous domains.
Sensitivity is 50.4% and 47.1% for two-domain proteins
with continuous and discontinuous domains respectively
and 54.6% and 50.0% for three domains.
The method more accurately delineates proteins with

discontinuous domains. The accuracy for two-domain
proteins is 22.0% and 33.3%, for proteins with continuous
and discontinuous domains respectively; and for three
domain proteins, 30.7% and 46.7% (Figure 5b). The
majority of domain prediction methods have not been
developed to identify discontinuous domains and ignore
such proteins in their benchmarking tests.
Sensitivity and accuracy for proteins with four or more

domains is not statistically significant due to the lack of
proteins in the test data. However, it is interesting to note
that 100% sensitivity and accuracy is scored for a protein
which includes one discontinuous domain (PDB 1dq3A).
The results show that Scooby-Domain delineates proteins
with discontinuous domains with a sensitivity and
accuracy as good as for proteins with continuous
domains. This is important to the structural genomics
initiative because the presence of discontinuous domains
in the protein sequence would not confound prediction
results, thus the predictions are more reliable, and will aid
the discovery of previously unknown protein domains.

Examples of predictions for proteins with both
continuous and discontinuous domains are shown in
Figure 6 and 7. The corresponding protein structures are
shown and coloured by the predicted domain region. Each
is bounded by the predicted middle position of a probable
linker region. In Figure 6a, two distinctive hotspots
representing the two larger domains of 1LK5 chain A
(Figure 6b) are discernible. Scooby-Domain had difficulty
predicting the exact domain boundary (junction of red
and green region) at the end of a b-strand. Figure 7a
shows an example of a successful discontinuous domain
prediction by Scooby-Domain. The two segments of the
discontinuous domain are coloured in red and pink,
respectively. Similar to the previous example, Scooby-
Domain did not precisely match the inter-domain region,
however, the boundary is within the �20 residue window.
Figure 7b demonstrates how Scooby-Domain accurately
delineated the monoclonal antibody heavy chain for Mus
musculus (PDB 1IGT, chain B).

In summary, Scooby-Domain can successfully identify
discontinuous regions and can easily delineate distinct
domains separated by long linker regions. Precise domain
boundary placement is a very difficult problem, even when
a structure is known. For example, the CATH domain
database uses a consensus of computational methods,
combined with a manual assessment when automatic
methods do not agree (24). Scooby-Domain, therefore,
performs very well at identifying domains and their
boundaries using only sequence information.

DISCUSSION

Domain prediction based on hydrophobicity

The globular structure of a protein cannot be achieved
by any combination of amino acids, as certain principles of
structure must be obeyed. Previous studies have shown that
there is a required ratio of hydrophobic to hydrophilic
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residues. Molecules with too many hydrophobic residues
aggregate in solution, and largely hydrophilic proteins fail
to form a stable hydrophobic core (41,42).

Scooby-Domain is a domain prediction method based
on the observed properties of proteins with known 3D
structure. Smaller domains are found to have a higher
proportion of hydrophilic residues, while larger domains
that maintain a single hydrophobic core are constrained
by their length, with an average size of 100 residues
(Figure 1). Scooby-Domain takes advantage of the above

criteria to identify local deviations in hydrophobicity to
predict the protein domain architecture.
Given the simplicity of our method, Scooby-Domain is

surprisingly powerful. It is likely that its performance can
be further improved by incorporating other information,
for example, secondary structure prediction (20).
Furthermore, using information from methods that
predict transmembrane regions is likely to improve
Scooby-Domain’s ability to delineate solvent-exposed
domains in membrane proteins.

(a) (b)

Figure 7. The Scooby–Domain (Scooby+Domcut+MSA) predictions mapped to structures. (a) Transcription factor NusG from Aquifex aeolicus
(PDB 1M1G, chain C), coloured according to the linker prediction by Scooby–Domain. A discontinuous domain is predicted at residues 1–55 (red)
and 131–174 (pink), two continuous domains are predicted at residues 56–130 (green) and 175–249 (blue). The CATH domain annotation consists of
three domains; a discontinuous domain (1–49,131–190) and two continuous domains (50–131 and 191–249). (b) IgG2 monoclonal antibody heavy
chain from Mus musculus (PDB 1IGT, chain B), coloured according to the linker prediction by Scooby–Domain. Four continuous domains are
predicted at residues 1–117 (red), 118–228 (blue), 229–360 (green) and 361–474 (orange). The corresponding CATH domain annotation consists of
four continuous domains at residues 1–114, 115–236, 250–360 and 361–474.

(a)

(b)

Figure 6. The Scooby–Domain (Scooby+Domcut+MSA) prediction for the hyperthermostable D–ribose–5–phosphate isomerase from Pyrococcus
horikoshii (PDB 1LK5, chain A). (a) The structure of 1LK5, coloured according to the linker prediction by Scooby–Domain. A discontinuous
domain is predicted at residues 1–136 (green) and 207–229 (blue). A second domain is predicted at residues 137–206 (red). The CATH domain
annotation consists of two domains, a discontinuous domain made of two segments 1–128 and 208–229; and the continuous domain 129–207. (b) The
Scooby–Domain probability plot for 1LK5.
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Comparison with other methods

At a window size of �20 residues, Scooby-Domain has
a sensitivity of 50.2% and an accuracy of 28.5% (CATH
\ SCOP set). Performance is similar to CHOPnet (19),
which has a sensitivity of 46–51%. The accuracy of
CHOPnet was not computed.
Armadillo has a sensitivity of 27� 3% and an accuracy

of 35� 4% (13) and the PDLI method (17) has a
sensitivity of 71% and specificity of 34%. However,
Armadillo and PDLI assess a linker as a region consisting
of multiple residues, rather than as a single residue
position as applied here, which implicitly makes the
window size larger and the predictions easier. On our
dataset, PDLI has a sensitivity of 52.2% and accuracy of
19.7%. Domcut (14) is reported by Dong et al. (17) to
have low sensitivity (23%) and specificity (9%) in
comparison to other methods, which is consistent with
our observation.
DomainDiscovery (18), which also applies linker pre-

dictions from Domcut, has a sensitivity (termed recall in
their paper) and accuracy (termed precision in their paper)
of �31% and 9%, respectively at a window size of �15
residues. At this window size, Scooby-Domain with
Domcut and MSA has a sensitivity of 42.0% and accuracy
of 22.9%.
DomSSEA (20) used the CATH database for their test

set, therefore, its performance will be compared with
Scooby-Domain tested with our CATH test set. For multi-
domain proteins, DomSSEA has a sensitivity of 24.7%
and Scooby-Domain has a sensitivity of 38.7%. For
proteins with two continuous domains, DomSSEA has a
sensitivity of 49% compared with Scooby-Domain’s
50.4%. For proteins with two domains and at least one
discontinuous domain, Scooby-Domain has a higher
sensitivity (35.4%) than DomSSEA (33.1%), but a lower
accuracy (36.0%) than DomSSEA (49.7%). It can be
observed from these rough comparisons that the perfor-
mance of Scooby-Domain is comparable, and often better,
than other sequence-feature-based methods.
Domaination (5) is an example of a method that uses

homology searches to predict domains. We applied
Domaination to our test set and added the predictions
to Scooby-Domain. The combined method has a similar
sensitivity (50.6%) and accuracy (29.3%) to
Scooby+Domcut+MSA, and has a higher sensitivity
but lower accuracy than Domaination alone. However,
Domaination is significantly more computationally expen-
sive, therefore, its use is restricted to small datasets. In
addition, homology methods cannot identify seldom
encountered domains. Combining Domaination and
Scooby-Domain would likely improve Domaination’s
homology detection.
The ab initio methods SnapDRAGON (25) and

RosettaDOM (26) currently have the best sensitivities
and accuracies for boundary prediction. Both these
methods employ protein-fold prediction to identify
domain boundaries. For a window size of �10 residues,
RosettaDOM has lower sensitivity (28.6%) than
SnapDRAGON (42.3%). However, RosettaDOM is
more accurate (54.6%) than SnapDRAGON (39.8%).

Both of these methods are more sensitive and accurate
than Scooby-Domain for this window size, but much more
computationally expensive.

It is important to note that different protein test sets and
assessment criteria were used in the above comparisons.
Therefore, these comparisons only provide a ballpark
figure of how each of these methods perform in relation to
each other. For example, the test set used for this study
contains multi-domain sequences and sequences with one
or more discontinuous domains, whereas only sequences
with two continuous domains were used byDong et al. (17).

To further assess our methods against others we have
applied the Scooby-Domain algorithm to benchmark
2 from Holland et al. (43), which was used in their
assessment of methods that assign domains using 3D
structure. The dataset is built using a similar methodology
as applied in our consensus set, i.e. looking for a
consensus between CATH and SCOP definitions.
However, while we ensure that boundaries between
domains are at equivalent positions in CATH and
SCOP, the consensus in benchmark 2 is based on the
number of domains assigned and unlike our set, bench-
mark 2 contains single domain proteins.

Scooby-Domain, using Domcut and MSA, scored a
sensitivity of 41.6% and accuracy of 29.0% on the
benchmark 2 set, and correctly predicted single domain
proteins in 59.3% of cases. Predictions for all proteins can
be found in Supplementary Table 1. Scooby-Domain
predicted the exact domain number for nearly half of the
proteins (71/156), but often overpredicted domain number
(65/156). Interestingly, many structure based methods also
tend to overpredict domain number on this set (43).

The multidomain proteins in benchmark 2 are particu-
larly hard to predict, as nearly half are made up of
discontinuous domains, but Scooby-Domain performs
well on the discontinuous subset with a sensitivity of
39.4% and accuracy of 34.8%.

We also tested Scooby-Domain on a set of proteins used
by Sikder and Zomaya (18) in their analysis of seven other
state-of-the-art methods. This set is based on 50 randomly
selected proteins from the benchmark 2 dataset. It is
unclear whether these other methods were fairly tested as
most use AI algorithms that learn from proteins with
known 3D structure, and performances could be artifi-
cially enhanced by making predictions on the proteins
used to train them. Furthermore, the webservers for some
of these methods will perform an initial homology search
to first identify any known structures with domain
definitions, again leading to an unfair assessment.
Nevertheless, predictions by Scooby-Domain with
Domcut and MSA (Supplementary Table 2) are compar-
able to the other seven methods and scores the highest
domain placement accuracy, 4.04.

Application of A*-search in structure prediction

Reinert et al. (44) previously used A*-search to efficiently
perform near optimal MSA, but to our knowledge,
Scooby-Domain is the first method that uses an A*-
search in protein structure prediction. A*-search is a very
flexible method, and it may be easily adapted and
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improved to include more sophistication in its predictions.
For example, a more biologically accurate heuristic
function could be developed by incorporating more
feature-based parameters, such as the flexibility of the
peptide backbone and the presence of possible disulphide
bonds.

Another future area of research and development is to
adapt the A*-search algorithm to predict protein-folding
pathways. An obvious but interesting property of A*-
search is that it explores the hypothetical folding space in
a tree-like search pattern. Because Scooby-Domain
predictions rely on the hydrophobicity of the protein
sequence, it is possible, therefore, to simulate hydrophobic
collapse and protein-folding pathways by backtracking
through the search tree. Finally, the A*-search algorithm,
or similar heuristics, could in theory be incorporated into
a protein tertiary structure-prediction algorithm to simu-
late and predict folding pathways.

CONCLUSION

Percentage hydrophobicity and domain size are good
variables for domain prediction and have been success-
fully applied to predict domain boundaries in the Scooby-
Domain algorithm. Precise boundary positioning is still a
difficult problem. Domains that are connected by small
linkers may not be identifiable by Scooby-Domain,
because window averaging may lose any signal at the
linker. Scooby-Domain is therefore more useful when
identifying modules separated by clear linker regions in
large proteins. However, Scooby-Domain does produce
encouraging results. Predictions made from the Scooby-
Domcut combination are better than other previously
described sequence-feature-based methods. Unlike other
methods, it achieves similar prediction sensitivity and
accuracy regardless of whether the domain is discontin-
uous or continuous.

Scooby-Domain stands out from other prediction
methods because it is able to predict discontinuous
domains and successful predictions are not limited by
the length of the query sequence, which can be too
complex or time-consuming for other methods to
calculate.

The inclusion of difficult targets for benchmarking
domain prediction, such as discontinuous domains, is
essential to drive future developments in this area. Our test
sets are available as Supplementary Data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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