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Elizabeth Fisher and Victor Tybulewicz have worked 
collaboratively for many years on the Down syndrome mouse 
model project. Elizabeth Fisher's background is in molecular 
genetics and mouse models, with an interest in anueploidy. 
Victor Tybulewicz is an immunologist whose primary interest 
is in signal transduction from the antigen receptors of B and T 
cells. Victor was also one of the first people to manipulate mouse 

embryonic stem cells to create a knock out mouse. Together 
Fisher and Tybulewicz created the first mouse model to transmit 
an almost complete human chromosome through the germline 
(the Tc1 mouse) and they maintain their joint interest in the 
different facets of Down syndrome research afforded by the Tc1 
mouse model, as well as their individual interests in immunology 
(Tybulewicz) and neurodegeneration (Fisher). 
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INTRODUCTION
Down Syndrome (DS) is the consequence of 

trisomy of human chromosome 21 (Hsa21) and is the 
most common genetic form of intellectual disability, 
occurring in approximately 1 in 700 live births[1]. DS 
is characterised by invariant features that are common 
to all affected individuals, including mild-to-moderate 
learning disabilities, craniofacial abnormalities and 
hypotonia[2,3]. In addition, at least 80 other variable 
phenotypes that affect only a proportion of DS 
individuals have been described, such as an early-
onset of Alzheimer's disease, atrioventricular septal 
heart defects, acute megakaryoblastic leukemia and a 
decrease in the incidence of some solid tumours[4-7]. 
Significant advances in medical treatment and social 
care have increased the average life span of people 
with DS to greater than 60 years[8].

The additional copy of Hsa21 results in elevated 
expression of many of the genes encoded on this 
chromosome, with varying expression levels  in 
different tissues[9-11]. The increased dosage of Hsa21 
genes, and the dosage imbalance between Hsa21 and 
non-Hsa21 genes has been proposed to cause the 
plethora of phenotypic alterations that characterize 
DS. The gene-rich distal part of Hsa21, identified as 
the 'Down syndrome critical region' (DSCR), was 
initially proposed to be sufficient to cause most of 
these DS phenotypes[12-14]. However, accumulating 
evidence points against a single DSCR[14,15]. Current 
data suggest that a number of 'susceptibility regions' 
located on Hsa21, which are modified by other loci on 
Hsa21 and elsewhere in the genome, increase the risk 
of developing specific DS associated phenotypes[14,15].

Mouse models of DS are instrumental in identifying 
which genes contribute to DS phenotypes, and 
unraveling the mechanisms by which these phenotypes 

arise[16-24]. Hsa21 is syntenic to three regions of 
the mouse genome. Most of the genes on Hsa21 
have homologous genes on mouse chromosome 16 
(Mmu16), but two smaller gene rich regions have 
synteny on Mmu10 and Mmu17 (Fig. 1). The majority 
of mouse models used for DS research are either 
trisomic for large regions of Mmu16, 10, 17 or are 
transgenic animals used to investigate overexpression 
of a single gene[16-32]. The Tc1 mouse model, with 
which we mainly work, carries a freely segregating 
almost complete copy of Hsa21, in addition to a 
normal complement of the mouse chromosome[33].

In this review, we highlight recent developments 
in understanding how overexpression of Hsa21 genes 
leads to many of the features of DS.  We focus on key 
areas including brain, heart and cancer, as these are 
currently the most developed in our understanding of 
the molecular pathogenesis of DS. 

RECENT BREAKTHROUGHS IN OUR 
UNDERSTANDING OF PHENOTYPES 
ARISING FROM TRISOMY HSA21
Learning and Memory

People with DS have learning and memory 
problems and exhibit differences in brain structure 
compared to the euploid population[34-39]. Mouse 
models of DS recapitulate these neuroanatomical 
changes and behavioural deficits, and thus can be 
used to further our understanding of learning and 
memory in people with DS[25]. The Ts65Dn mouse 
model of DS is trisomic for approximately 136 
genes on Mmu16 that have homologues on Hsa21[25] 

(Fig. 1). These mice have learning and memory 
phenotypes and it has been proposed that excess 
inhibition of synaptic transmission may contribute to 
their deficits[25,40].  Recent papers have shown that the 

Abstract 
Chromosome copy number aberrations, anueploidies, are common in the human population but generally 

lethal.  However, trisomy of human chromosome 21 is compatible with life and people born with this form of 
aneuploidy manifest the features of Down syndrome, named after Langdon Down who was a 19th century British 
physician who first described a group of people with this disorder. Down syndrome includes learning and memory 
deficits in all cases, as well as many other features which vary in penetrance and expressivity in different people.  
While Down syndrome clearly has a genetic cause - the extra dose of genes on chromosome 21 - we do not know 
which genes are important for which aspects of the syndrome, which biochemical pathways are disrupted, or, 
generally how design therapies to ameliorate the effects of these disruptions.  Recently, with new insights gained 
from studying mouse models of Down syndrome, specific genes and pathways are being shown to be involved in 
the pathogenesis of the disorder.   This is opening the way for exciting new studies of potential therapeutics for 
aspects of Down syndrome, particularly the learning and memory deficits.
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Fig. 1 Mouse models of Hsa21 trisomy. Hsa21 (purple) is syntenic with regions of mouse chromosomes 16 (Mmu16, blue), 17 
(Mmu17, orange) and 10 (Mmu10, green). The positions of some Hsa21 genes implicated in the pathogenesis of DS and mentioned 
in this text are shown on the human chromosome. The transchromosomic Tc1 model carries a freely segregating copy of Hsa21 and 
is trisomic for the majority of genes on Hsa21[33]. Several mouse models are syntenic with a proportion of genes on Hsa21 and are 
segmentally trisomic for regions of Mmu16, such as the Dp1Yu[18], Ts65Dn[25], Ts2Cje[23], Ts1Cje[24], and Ts1Rhr[19] models. The 
Ts1Yah mouse model[22] is syntenic to Mmu17 and is trisomic for the sub-telomeric region of Hsa21. 

structure of receptors and their abundance at inhibitory 
synapses is altered in the hippocampus of Ts65Dn 
mice, which provides insight into the neurological 
changes that may underlie their DS-associated 
memory problems[41,42]. In addition, impaired synaptic 
plasticity was recently demonstrated in Ts65Dn 
striatal cholinergic interneurons[43], highlighting 
a potentially novel and important role for the 
interstriatal cholinergic system in the pathophysiology 
of DS-associated motor and cognitive defects. The 
Tc1 mouse model of DS, which is trisomic for 
approximately 80% Hsa21 genes, has short-term but 
not long-term deficits in hippocampal-dependent 
learning and abnormalities in long-term potentiation 
(LTP), which is proposed to be a physiological 
correlate of learning[33,44]. Interestingly, although Tc1 
mice display major deficits in cerebellum-dependent 
learning tasks, no abnormalities in synaptic function 
or in cerebellar long-term depression can be detected 
in this model[45].

In the Ts1Rhr mouse model (Fig. 1), trisomy of 
33 Mmu16 genes that are syntenic to the DSCR and 
include dual-specificity tyrosine-(Y)-phosphorylation-
regulated kinase 1A (Dyrk1A), potassium inwardly-
rectifying channel, subfamily J, member 6 Gene 
(Girk2) and single-minded homologue 2 (Sim2), cause 
alterations in dendritic spine morphology and deficits 

in some behavioural tests[46] (Table 1). Trisomy of these 
genes is necessary but not sufficient to elicit Morris 
water maze learning deficits in mouse DS models[13]. 
These data indicate that interactions of Hsa21 trisomic 
genes may contribute to DS-associated learning and 
memory problems. Trisomy of 12 genes (Abcg1-
U2af1) found on the Hsa21 sub-telomeric region in 
Ts1Yah mice (Fig. 1), produced cognitive defects 
in working and short-term recognition memory, but 
an enhancement of hippocampal-dependent spatial 
learning[22]. This study is pivotal in showing that 
variation in copy number is not always deleterious.  

The over-expression of a number of Hsa21 genes 
has been implicated in learning and memory deficits 
in single gene transgenic mouse models, suggesting 
that trisomy of these genes may contribute to learning 
disability in DS individuals. These genes include 
DYRK1A, synaptojanin 1(SYNJ1) and SIM2 [26,28-32,47,48]. 
Recent evidence has emerged for a possible role in brain 
function of dopey family member 2 (DOPEY2)[49] and 
Down syndrome cell adhesion molecule (DSCAM)[50], 
two Hsa21 genes known to be involved in learning 
and memory.  

Neurodevelopment
Neurodevelopment is known to be altered in people 

with DS. Already by mid-gestation the brains of 
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fetuses with DS are smaller than those which do not 
have the condition. Cerebellar granule cells in Ts65Dn 
mice have reduced proliferation rates and elongation 
of the cell cycle length which could potentially result 
in a decrease in brain mass[51]; the number of these 
cells is also reduced in the Tc1 mouse model[33]. 
Neural progenitor cells (NPCs) from the Ts1Cje 
mouse model also exhibit similar defects as well as 
an increase in cell death[52]. The Ts1Cje and Ts2Cje 
mouse models have smaller brains, hypoplasia of 
the cerebellum, enlarged ventricles and decreased 
neurogenesis compared to euploid littermates[53]. 
The common region that is trisomic between these 
two mouse models contains approximately 86 genes 
(Fig.1), suggesting that this trisomic segment contains 
the causal dosage-sensitive genes for these detrimental 
developmental phenotypes[53,54]. The decreased 
proliferation of cerebellar granule cells observed in the 
Ts65Dn mice has been attributed to a deficient mitotic 
response to the Sonic hedgehog (Shh) growth factor[55]. 
An altered response to Shh has also been demonstrated 
in Ts65Dn neural crest progenitor cells, and this may 
contribute to the craniofacial dysmorphology that is 
associated with DS[56,57].   

Elevated rates of neuronal apoptosis related to 
oxidative stress have been reported in DS[58]. Recent 
work suggests that Hsa21-encoded proteins PREP1, 
a transcription factor involved in the regulation of 
organism size[59], and tetratricopeptide repeat domain 
3 (TTC3), an E3 ubiquitin ligase that targets AKT, 
a serine/threonine-protein kinase, may contribute to 
this phenotype[60]. Moreover, recent research provides 
evidence that oxidative stress is elevated in the Ts1Cje 
mouse, suggesting that one or more genes trisomic 
in this model, likely contribute to DS-associated 
oxidative stress[61]. Interestingly, aneuploidy of 
chromosomes other than Hsa21 also results in elevated 
apoptosis and reduced cellular proliferation[62,63]. 

Recently, it was proposed that DYRK1A contributes 
to DS neural phenotypes, such as impaired dendritic 
growth, by disturbing neuron-restrictive silencer 
factor (REST/NRSF) levels[27,64]. MicroRNAs encoded 
by Hsa21 may also influence development of the 
brain; specifically trisomy of miR-155 and miR-802 
has been suggested to regulate the expression of the 
methyl-CpG-binding-protein gene (MECP2), which is 
known to be important in neurodevelopment[65].

Table 1  Chromosome 21 genes implicated in the pathogenesis of DS phenotypes

Learning and Memory

Neurodevelopment

Rachidi et al., 2009[49]

Yu et al., 2009[50]

Altafaj et al., 2001[30]

Meng et al., 2006[48]

Voronov et al., 2008[29]

Micali et al., 2010[59]

Suizu et al., 2009[60]

Rovelet-Lecrux et al., 2006[88]; 
Sleegars et al., 2006[89]; 
Cabrejo et al., 2006[90]; 
Salehi et al., 2006[92]; 
Cataldo et al., 2003[97]; 
Jiang et al., 2009[100]

Ryoo et al., 2007[102]; 
Ryoo et al., 2008[103]; 
Liu et al., 2008[105];
Chang & Min, 2009[101]

Chang & Min, 2009[101]

Voronov et al., 2008[29]; 
Chang & Min, 2009[101]

Ng et al., 2009[133]

Sussan et al., 2008[141]

Baek et al., 2009[142]

Edwards et al., 2009[136]

Korbel et al., 2009[14]

DS Phenotype Implicated Hsa21 Genes References
DOPEY2
DSCAM 
DYRK1A
SIM2
SYNJ1
PREP1
TTC3
APP

Cancer and Leukemia

Heart Defects

Alzheimer's Disease

DYRK1A

ITSN1
RCAN1
SYNJ1

ERG
ETS2
RCAN1
RUNX1
Region between
DSCAM-ZNF295
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Pharmacological interventions to tackle 
brain and cognition in DS

This is a relatively new area of research in DS 
that is rapidly gaining momentum, and which arises 
from experiments carried out in mouse models in 
which behavioural, neurophysiological and cellular 
biology changes can be quantitatively assessed during 
development and ageing, and then modified through 
pharmacological intervention.  

Seve ra l  pharmaco log ica l  in te rvent ions  to 
enhance cognition in people with DS have been 
suggested, based upon efficacy in the Ts65Dn 
mouse (Table 2). Chronic treatment with gamma-
aminobutyric acid (GABA) A receptor antagonists, 
p ic ro tox in  or  pen ty lene te t razole ,  improved 
hippocampal-based learning and LTP deficits in 
Ts65Dn animals[40,66,67]. The GABA-ergic system 
regulates neuronal excitability throughout the nervous 

system and plays a significant role in cognition. 
Memantine, a non-competitive N-methyl-D-aspartic 
acid receptor (NMDAR) antagonist, has also been 
documented to improve learning in Ts65Dn mice[68], 
and is currently undergoing a clinical trial in a large 
group of DS patients[69]. Some clinical trials of 
Donepezil, an acetylcholinesterase inhibitor that is 
proposed to improve cholinergic neurotransmission, 
have reported small improvements  in a subset 
of measures of cognition in people with DS[70-72]; 
however, not all Donepezil trials have demonstrated a 
statistically significant effect[73-76].  

Recently, other pathways that modulate learning 
and memory have been examined with interest. 
Norepinephrine signaling in the hippocampus has 
been suggested to be impaired in the Ts65Dn mice 
because of degeneration of the locus coeruleus[77,78].  
In this model, learning deficits were reversed by 
treatment with a norepinephrine prodrug, L-DOPS, or 

Table 2  Pharmacological interventions to tackle cognitive deficits in DS
Pharmacological Compound Cognitive Effect References

Acetylcholinesterase inhibitor
Limited success in DS patients

Natural polyphenol
Attenuates cognitive deficits 
arising from DYRK1A overexpression
Anti-depressant
Prenatal treatment rescues impairments in neurogenesis
Norepinephrine prodrug

1 Adrenergic receptor partial antagonist
Improves hippocampal-based
contextual learning deficits in Ts65Dn
Mood stabilizer
Prenatal treatment rescues
impairments in neurogenesis
Non-competitive NMDAR antagonist
Improves learning in Ts65Dn
Currently undergoing clinical trial in DS patients
Neuroprotective peptides
Prenatal treatment reverses
developmental and glial deficits
GABA(A) receptor antagonists
Improves hippocampal-based learning and LTP deficits 
in Ts65Dn mouse model

Antioxidant
Partially rescues cognitive and
morphological abnormalities in Ts65Dn
Reduces oxidation state of S100β

Spiridigliozzi et al.,  2007[70]; 
Johnson et al., 2003[73]; Lott et al., 
2002[74]; Prasher et al., 2002[75]

Guedj et al., 2009[79]

Clark et al., 2006[83]

Salehi et al., 2009[77]

Bianchi et al., 2009[82]

Costa et al., 2008[68]

Mohan et al., 2009[69]

Toso et al., 2008[84]

Kleschevnikov et al., 2004[92];Fernandez 
et al., 2007[66];Reuda et al., 2008[67]

Lockrow et al., 2009[80]

Bialowas-McGoey et al., 2008[81]

Donepezil

ECGC

Memantine

NAPVSIPQ & SALLRSIPA

Fluoxetine

L-DOPS or Xamoterol

Lithium

Picrotoxin or
Pentlenetetrazole

Vitamin E
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xamoterol, a β1-adrenergic receptor partial antagonist. 
Interestingly, epigallocatechin gallate (ECGC), a 
natural polyphenol found in green tea leaves and is 
a specific inhibitor of DYRK1A, has been shown to 
attenuate cognitive defects arising from DYRK1A 
over-expression in transgenic mice[79]. Therapeutic 
interventions aimed at targeting oxidative imbalance 
report promising effects. Long-term supplementation 
with the antioxidant Vitamin E has been reported 
to partially rescue cognitive and morphological 
abnormalities in Ts65Dn mice[80], and reduce the 
oxidation state of S100 calcium binding protein beta 
(S100β), an Hsa21-encoded protein that is neurotoxic 
when in a reduced state[81]. 

Neurogenesis impairments in the Ts65Dn mice 
have been rescued by prenatal treatment with the 
mood-stabiliser, lithium, and by use of the anti-
depressant, fluoxetine[82,83]. Developmental delays 
and glial deficits in the Ts65Dn mouse model have 
been demonstrated to be partially reversed through 
prenatal treatment with neuroprotective peptides 
NAPVSIPQ+SALLRSIPA[84]. These results indicate 
that therapies during pregnancy could potentially 
improve developmental and glial deficits in DS.

The current findings are based on a thorough 
understanding of neuronal and cognitive deficits 
in mouse models of DS and are exciting in the 
therapeutic opportunities they offer. However, as with 
all pharmacological interventions, caution must be 
taken in translating findings from mice to humans. 

Alzheimer Disease in DS
A high incidence of early-onset Alzheimer Disease 

(AD) occurs in people with DS, with 30-70% of 
DS individuals developing dementia by the age of 
60[4,85-87]. AD pathology is characterized by brain 
atrophy, extracellular β-amyloid (Aβ) deposits and 
the accumulation of neurofibrillary tangles (NFTs) 
that are composed of hyperphosphorylated Tau. The 
amyloid precursor protein, amyloid precursor protein 
(APP), from which Aβ is produced, is encoded on 
Hsa21. In DS, the triplication of APP is proposed to 
be the underlying mechanism through which trisomy 
21 individuals demonstrate an increased frequency of 
dementia[88-90].

Neurodegenerative phenotypes have also been 
observed in animal models of DS[77,91-94]. In particular, 
loss of basal forebrain cholinergic neurons (BFCNs) 
occurs early in AD and is also observed in the 
Ts65Dn mouse[92,93,95]. Degeneration of these cells is 
related to a failure in the retrograde transport of nerve 
growth factor (NGF), and may arise from trisomy of 
APP[92]. Increased APP expression is also linked to 

enlargement of early endosomes[92,95-99]. Recently, it 
was reported that lowering the expression of APP or 
beta-site APP-cleaving enzyme 1 (BACE-1), reversed 
endocytic abnormalities in fibroblasts derived from 
people with DS, and the over-expression of APP alone 
resulted in early endosome enlargements[100]. These 
data suggest that triplication of APP is sufficient to 
cause endosomal deficits, in contrast to previous 
reports[97]. Hsa21 genes other than APP may also 
contribute to endosomal phenotypes, in particular, 
overexpression of Hsa21 gene homologues in 
Drosophila, dap160/ITSN1 (intersectin1), synj/SYNJ1 
and nla/RCAN1 (runt-related tremscripthon factor 1), 
results in abnormal synaptic morphology and impaired 
vesicle recycling[92,101].

Other Hsa21 trisomic genes may also contribute 
to AD through different mechanisms. DYRK1A, 
an Hsa21 encoded kinase, phosphorylates Tau at 
a key priming site which may mediate its AD-
related hyperphosphorylation in people with DS[102]. 
DYRK1A can also phosphorylate APP[103]. Indeed, 
increased phosphorylation of Tau has been reported in 
the Ts1Cje mouse model of DS that is not trisomic for 
APP[104] (Fig. 1). Mis-regulated splicing of Tau may 
contribute to NFT formation in AD[105,106]. PCBP3, 
an Hsa21 protein, modifies splicing of Tau and may 
contribute to the expression of AD associated Tau 
isoforms in people with DS[107]. Recently, degeneration 
of Purkinje cells in the cerebellum of aged Ts65Dn 
mice, proximal to deposits of Aβ and Tau, has been 
observed[94,108]. 

Other neurological disorders
Six percent of children and adolescents with DS 

have epileptic seizures[109]. Children with DS are 
also susceptible to infantile spasms, however little is 
known about the molecular mechanisms underlying 
this. Treating Ts65Dn mice with GABA(B) receptor 
agonists induced a phenotype reminiscent of infantile 
spasms, providing a model to further understand 
the pathogenesis of this phenotype[110]. Moyamoya 
syndrome, a cerebrovascular condition that is 
characterized by reduced blood flow predisposing 
to stroke[111], has been reported to occur with a 
higher frequency in people with DS than in the 
general population[112]. Recently, the expression of 
β-catenin was found to be increased in brain capillary 
endothelial cells in the Ts65Dn mouse model, 
however whether this finding is linked to Moyamoya 
syndrome is as yet unclear[113,114].

People with DS have been reported to experience 
disturbed sleeping patterns. Studies of circadian 
activity in the Ts65Dn mouse model have reported 
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conflicting results of both intact[25,115,116] and disturbed 
rhythms[117]. Future studies of this phenotype in 
alternative mouse models of DS will thus be of value.

Cancer and leukemia
Children with DS have a greatly elevated risk 

of developing the otherwise very rare transient 
myeloproliferative disorder (TMD), as well as 
acute megakaryocytic leukemia (AMKL) and acute 
lymphoblastic leukemia (ALL)[6,118,119]. Trisomy of 
Hsa21 leads to an expansion of the megakaryocyte-
erythroid progenitor population[120,121], which precedes 
the development of TMD. The development of 
TMD and AMKL is almost always associated with 
stereotypical mutations in exon 2 of the GATA binding 
protein 1 (GATA1) gene resulting in the synthesis of 
a truncated GATA1 protein termed GATA1s[6,122,123]. 
Mutations in Janus kinase 3 (JAK3) have also been 
reported by several groups to be associated with 
AMKL[119,124-128]. Additionally, one fifth of DS-ALL 
cases have been associated with janus kinase 2 (JAK2) 
point mutations[129,130]. DS-ALL is also associated with 
aberrant expression of cyto kine receptor-like factor 
2 (CRLF2) linked to genomic rearrangements[130-132]. 
T r i s o m y  o f  a n  H s a 2 1 -e n c od e d  g e ne ,  v -e t s 
erythroblastosis virus E26 oncogene homolog (ERG), 
is required for development of the myeloproliferation 
defect in the Ts65Dn model[133]. The Hsa21 gene 
runt-related transcription factor 1 (RUNX1) has 
also been proposed to regulate hematopoiesis via the 
phosphoinositide 3 (PI3)-kinase/AKT pathway[134-136]. 

Despite perturbations of hematopoietic development 
in the Ts1Cje, Ts65Dn and Tc1 models of DS, 
these mice do not develop leukaemia, even when 
the trisomic models also express disease-associated 
GATA1 mutations[137-139]. It is possible that trisomy of 
Hsa21 genes other than those encoded in these models, 
in concert with mutations in non-Hsa21 encoded genes 
such as GATA1, JAK3 or CRLF2, may be required 
for the development of leukemia.  

Although DS is associated with a predisposition 
to leukemia, people with DS have a reduced risk of 
developing most solid tumours[7,140]. Crossing a mouse 
model of colon cancer, Apcmin, with mouse models 
of DS resulted in reduced formation of tumors, 
dependent on the trisomy of the Hsa21-encoded ETS2 
gene[141]. Recently overexpression of the Hsa21 gene, 
regulator of calcineurin (RCAN1), was shown to be 
sufficient to suppress tumour growth by attenuating 
angiogenesis via the regulation of vascular endothelial 
growth factor (VEGF) signaling[142]. However, in a 
Ts65Dn trisomic background removal of one copy 
of Rcan1 did not completely abrogate the effect of 

trisomy on tumour formation, suggesting that other 
Hsa21 genes also contribute to this phenotype[142].  

Heart defects 
Congenital heart defects (CHD) are prevalent 

in 40% of children with DS and over 50% of all 
atrioventricular septal heart defects (AVSDs) in 
infancy are attributed to trisomy Hsa21[5,143]. Mutations 
in cysteine-rich with EGF-like domains 1(CRELD1), 
a non-Hsa21 gene, contribute to the occurrence of 
AVSD in DS[144]. Several DS mouse models exhibit 
heart defects reminiscent of those in DS[18,33,63,145], 
suggesting that trisomic genes common to these 
models influence the development of the heart.  
Analysis of the occurrence of CHD in people who 
have partial trisomies of Hsa21 has suggested that 
trisomy of genes within a 1.77 Mb region [DSCAM- 
ZNF295 (zinc finger protein 295)] of Hsa21 may be 
sufficient for the development of CHD[14].

CONCLUSION
DS is complex disorder and dissecting the genetic 

and molecular processes underlying the syndrome 
requires many different complementary approaches, 
including the study of human data and mouse and 
other model organisms. However, several recent 
breakthroughs have increased our understanding of the 
effects of Hsa21 trisomy. Combining information from 
studies of people with DS with the power of mouse 
models of trisomy has enabled genetic associations to 
be tested and continues to lead to the identification of 
genes that cause DS-associated pathology.  Significant 
advances in basic research have been instrumental in 
determining the molecular mechanisms underlying 
these phenotypes leading to useful therapeutic 
interventions. However, many aspects of DS crucial to 
the health and well-being of people with the condition 
remain to be investigated and require study at all 
levels. 
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