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A B S T R A C T   

Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a 
variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often 
binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive 
physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or 
genomic events that are often dependent upon PAS domain interactions. In this perspective, we briefly discuss 
the diversity of PAS domain containing proteins, with particular emphasis on the prototype member, the aryl 
hydrocarbon receptor (AHR). This ligand-activated transcription factor acts as a sensor of the chemical envi
ronment in humans and many chordates. We conclude with the idea that since mammalian PAS proteins often act 
through PAS-PAS dimers, undocumented interactions of this type may link biological processes that we currently 
think of as independent. To support this idea, we present a framework to guide future experiments aimed at fully 
elucidating the spectrum of PAS-PAS interactions with an eye towards understanding how they might influence 
environmental sensing in human and wildlife populations.   

1. Introduction 

The Ah receptor (AHR) is a prototype PER-ARNT-SIM (PAS) domain 
containing protein that is well known for its role in the adaptive meta
bolism and physiological consequences of a variety of structurally 
related trace extended aromatic compounds (TEACOPS) and haloge
nated-dibenzo-p-dioxins (“dioxins”). In this perspective, we provide an 
overview of AHR signal transduction, presenting this protein as a pro
totype small molecule sensor with roles in both environmental adapta
tion and normal physiology. We begin with a brief discussion of the 
larger family of PAS domain proteins to emphasize the concept that 
these proteins display similar functions in a variety of microorganisms, 
animals, and plants. We then move to a description of AHR signaling as a 
representation of the idea that PAS domains display multiple charac
teristics; as a site for homotypic dimerization between two PAS proteins, 
as a site for heterotypic interactions with distinct output proteins and 
cellular chaperones, and as a site for small molecule binding. We then 
provide evidence for the idea that the AHR senses both environmental 
and endogenous signals and then close this perspective with the possi
bility that additional PAS dimers and higher order PAS-PAS interactions 
are still undiscovered and that these interactions may explain the 

pleiotropy of many environmental sensing pathways. 

2. The PAS domain 

2.1. PAS diversity 

Organisms require mechanisms to adapt to environmental change. 
The PAS, steroid/nuclear receptor, LacI, Gal, and MarR protein families 
are examples of ligand-responsive sensors that play essential roles in 
metabolic adaptation [1–7]. In these systems, sensor proteins often 
recognize an environmental or metabolic stimulus and initiate signal 
transduction events to induce physiological change, often through al
terations in gene expression. In many organisms, this is occurs through 
an environmental signal that induces a conformational change and/or 
post-translational modification of the sensor protein. In turn, this acti
vated sensor influences gene expression through a variety of mecha
nisms, including increased concentration of the sensor protein at 
genomic regulatory sites or through phosphorelays that influence the 
levels of downstream transcription factors at genomic elements. 
Through such pathways, sensing systems can orchestrate the expression 
of multiple genomic targets involved in environmental adaptation. 
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The PAS domain was first defined based upon sequence alignments 
of the fruit fly Per and Sim, as well as the human ARNT gene products, 
with its name arising from the acronym of the first letter of each 
founding member (PER-ARNT-SIM) [8–10]. This initial definition of the 
PAS domain encompassed approximately 250–300 amino acids and 
harbored two degenerate internal repeats, known as PAS-A and PAS-B 
(Fig. 1). In more recent publications, these internal PAS-A, PAS-B re
peats of approximately one hundred amino acids in length each are now 
also commonly referred to as “PAS domains.” By either definition, the 
PAS domain is found in Archaea, Bacteria and Eukarya, commonly in 
tandem repeats, and often encoded within a protein that plays a role in 
the adaptive responses to environmental change [5]. In plants, the PAS 
domain is often referred to as “Light, Oxygen, Voltage” (LOV) domain. In 
part, this LOV nomenclature has arisen form the observation that in 
some plants, the PAS/LOV domain has been shown to bind flavin and act 
as a photosensor to mediate blue light-induced phototropism [5,11]. 

2.2. PAS domain functions 

The PAS domain is encoded in sensor proteins found in all kingdoms 
of life. This domain functions through multiple mechanisms, as a site for 
small molecule binding and as a site for homotypic (i.e., PAS-PAS) or 
heterotypic (PAS-other) protein-protein interactions. One highly 
conserved role of a PAS domain is as a site for small molecule binding 
and sensory function (Fig. 2) [5,12]. In microbial systems, the PAS 
domain is found in sensor proteins such as the photoactive yellow pro
tein (PYP) and FixL [13–16]. In the PYP protein, the PAS domain 
covalently binds 4-hydroxycinnamic acid as a chromophore, while in 
FixL the PAS domain holds heme as part of an oxygen-binding site. In 
these two examples, the PAS domain directly functions as a sensor for 
either light or oxygen to regulate phototropism or nitrogen fixation, 
respectively. Importantly, modelling of the PAS-B domain of the AHR 
suggests this domain binds its prototype ligand, 2,3,7,8-tertrachlorodi
benzo-p-dioxin within this same PAS repeat fold (Fig. 2) [17–19]. 

In addition to binding chromophores, PAS domains can also serve as 
a protein-protein interaction surface. One example of a homotypic 
interaction (where two PAS domains interact) is the PAS transcription 
factor Aureochrome 1a from Phaeodactylum tricornatum (PtAu1a), where 
the PAS domains of two PtAu1a proteins homodimerize in the presence 
of light [20]. This dimerization induces a conformational change that 
enhances affinity of a linked DNA-binding domain for genomic elements 
regulating targeted gene expression. The result is a light induced 

transcriptional response system that uses PAS to both bind the chro
mophore and support dimerization between protein partners. 

Another example of interactions of PAS domains from different 
proteins, comes from the fungal White Collar-1 (WC-1) and White 
Collar-2 (WC-2) proteins that form the “White Collar Complex” (WCC) 
[21]. The WC-1 protein binds a flavin within its PAS domain. Absorption 
of blue light by this chromophore triggers a conformational change in 
the structure of the WCC and induces novel DNA binding characteristics 
[21,22]. Another PAS protein, “Vivid” (VVD), also participates in this 
light sensing/circadian adaptation pathway [23]. In the dark VVD exists 
as a homodimer with each monomer binding a flavin. When VVD ab
sorbs light, a conformational change exposes the PAS domain of VVD at 
the same time as the PAS domain of WC-1 is opened up [24]. This 
transient unpairing of dimers allows a new dimerization in which VVD 
replaces WC-2 as a partner of WC-1, creating a transcriptionally inert 
complex [25]. Through this feedback mechanism the amount of active 
WCC and VVD modulates the light response allowing the organism to 
respond to incremental levels of light rather than only light versus dark 
[26]. 

Interactions of PAS with different domains (i.e., PAS-nonPAS) also 
serve to influence signal transduction in response to environmental 
stimuli. Examples of such heterotypic interactions include; 1) The 
interaction of the PASB domain of the human NCOA1 transcriptional 
coactivator with the LXXLL motif within the STAT6 transcription factor 
and 2) The interaction of the PASB domain of the mammalian CLOCK 
protein with its CRY regulator [27,28]. There are several important 
examples of heterotypic interactions of PAS domains occur intramo
lecularly in sensor biology. One example of such an interaction is the 
PAS domain of the light activated transcription factor El222 and its 
covalently linked DNA binding motif [29]. 

3. The ARYL hydrocarbon receptor as a model mammalian PAS 
sensor 

3.1. History 

The adaptive metabolism of polycyclic aromatic hydrocarbons 
(PAHs) has long been an area of scientific investigation due to the car
cinogenicity of many congeners and their widespread dispersion in the 
environment [30]. Sources of PAHs from human activity include com
bustion of wood and fossil fuels for energy and heat, tobacco smoking, 
use of coal tar sealants and asphalt, coal liquefying plants, coke and 
aluminum production, barbecuing, and smoking or charring of food over 
fire. Natural emissions of PAHs are also significant and include, wild
fires, petroleum seepage, coal deposits, and volcanic activities [31,32]. 
Similarly, structurally related halogenated-dioxins, -dibenzofurans and 
biphenyls are also environmental contaminants that commonly arise 
from human activity and sometimes natural sources [33,34]. Thus, or
ganisms have been in contact with environmentally ubiquitous TEA
COPS for millions of years, with the use of fire and human industrial 
activity only serving to increase exposure of certain populations in 
recent millennia. 

Given their widespread occurrence, toxicity and carcinogenicity, 
PAHs like benzo[a]pyrene (BAP) served as early prototypes in studies of 
xenobiotic metabolism, bioactivation and detoxification. This research 
revealed that a collection of cytochromes-P450 dependent mono
oxygenases (P450 s) named “aryl hydrocarbon hydroxylase” (AHH), had 
a major influence on the biological half-lives of PAHs in many species 
[35,36]. Approximately fifty years ago, it was observed that this PAH 
metabolic system, was inducible by its substrates [37]. Due to parallels 
with the LacI system, this “appearance” of an AHH enzymatic activity in 
the presence of its substrate PAHs, was commonly referred to as “in
duction” [38,39]. Reports of inducibility were followed by the propo
sition that a “binding species” or a “receptor” for PAHs mediates the 
upregulation of AHH activity and led to the introduction of the idea that 
this system may have arisen as a protection against the toxicity of PAHs, 

Fig. 1. Two definitions of the PAS Domain: A: Representation of the 
founding PER-ARNT-SIM proteins and the boundary of the larger ~250-300 
amino acid domain as originally described [64,65,182]. Schematic maps of the 
PER-ARNT-SIM proteins with the bHLH domains in black. B: Representation of 
a generic PAS protein with the PAS domain represented as repeats, PAS-A and 
PAS-B of approximately 100 amino acids each. 
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as well as structurally related phytoalexins, and TEACOPS in the envi
ronment [33,40–43]. 

The study of a genetic polymorphism in mice that influenced a 
strain’s inducibility upon response to PAHs led to the identification of 
the Ah locus and the designation that strains were either “responsive” 
(prototype strain C57BL/6 or B6) or “nonresponsive” (prototype strain 
DBA/2 or D2) [44,45]. Genetic studies identified a single autosomal 
locus as primarily responsible for this differential responsiveness, giving 
rise to the nomenclature: Ahb (b from B6) to define the responsive allele 
and Ahd (d from D2) to define the nonresponsive allele. More recent 
genomic nomenclature alters this locus designation to Ahr instead of Ah 
and it is this terminology we will use through the remainder of this re
view (i.e., Ahrb vs Ahb). 

Our understanding of metabolic adaptation to PAHs was aided by the 
development of radioligands of the AHR [42,46]. These reagents, 
derived from the radiolabelling of PAHs or the more potent dioxin 
structure, led to the discovery of a binding protein or “receptor” within 
target cells and tissues [47]. These studies also revealed that “nonre
sponsive” Ahrd mice are more appropriately described as “hypores
ponsive” as they mount an inductive response, although much less 
robustly, than the Ahrb strains. Biochemical characterization of this 
binding species revealed that it was a soluble protein associated with 
chaperones such as the 90 kDa heat shock protein (HSP90), with later 
studies adding the smaller co-chaperones such as ARA9 (aka XAP2 or 
AIP), p23, and possibly ARA3 (aka NS1BP) to this complex (Figs. 3 and 
4, see below) [48–55]. 

Radioligands also led to the development of competitive binding 

assays that allowed structure-activity studies to explain agonist potency. 
These studies provided evidence that dioxin ligands that bind with 
higher affinity to the receptor site are more potent inducers of the target 
P450 s [56]. The subsequent observation that this binding affinity 
segregated with the Ahrd and Ahrb polymorphism in mice provided the 
final formal evidence for the existence of an AHR [57]. 

The cloning of the P450 encoding genes that comprised AHH activ
ity, i.e., CYP1A1, CYP1A2, and possibly CYP1B1, as well as the identi
fication of the genomic cis-elements that controlled their expression in 
response to PAH exposure, led to the discovery of the regulatory en
hancers linked to the induction phenomenon [36,58–60]. Specifically, 
early experiments demonstrated that the consensus sequence, GCGTG 
(sometimes also defined as TNGCGTG), was bound by a heterodimeric 
complex and controls the upregulation genes like CYP1A1 in response to 
PAH and dioxin ligands [59,61–63]. This genomic enhancer element 
goes by many names: xenobiotic response element (XRE, which we will 
use here), dioxin response element (DRE), and Ah response element 
(AHRE). 

3.2. Discovery of mammalian PAS proteins 

A watershed moment in our understanding of adaptive metabolism, 
and PAS proteins writ large, arose from a somatic-cell genetics approach 
aimed at identification of gene products essential for the ligand-induced, 
AHR-dependent, induction of CYP1A1 in cell culture. This work resulted 

Fig. 2. Structure of selected PAS repeat domains. Left, predicted structure of the AHR with its ligand 2,3,7,8-tetrachlordibenzo-p-dioxin [17]. Center, photoactive 
yellow protein (PYP) with its covalently bound chromophore, 4-hydroxycinnamic acid [186]. Right, the FixL with liganded Heme [187]. Models are presented using 
PyMOL software version 2.3.4 (Schrodinger, Inc, New York). 

Fig. 3. Signal Transduction by the AHR: See text for details.  

Fig. 4. Domain map of the AHR and AHRR: Functional domain maps of the 
ARNT, AHR and AHRR proteins. Not all mapped functional domains are 
depicted. Domain regions are approximate and are derived from a number of 
representative biochemical studies. See text for details [74,77,78,80, 
108,188–190]. 
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in the molecular cloning of a molecule called ARNT (“aryl hydrocarbon 
receptor nuclear targeter”) that was essential for the AHR to gain a high 
affinity for the nuclear compartment and chromatin upon ligand binding 
[8]. Sequence analysis of ARNT provided two important observations. 
First, as noted above, the ARNT protein displays homology with the Sim 
and Per gene products of the fruit fly (D. melanogaster) allowing the 
initial definition of the PAS homology domains (Fig. 1) [64,65]. Second, 
homology searches revealed ARNT (as well as SIM, but not PER) harbor 
a bHLH domain immediately N-terminal to PAS. Such bHLH domains 
had been previously observed in partners of dimeric transcription fac
tors such as MyoD and Myc [66]. This concept led to the proof that 
ARNT was a part of a protein complex with that directly bound enhancer 
elements within the genome [62,67,68]. 

The use of the photoaffinity ligand, 2-azido-3-iodo-7,8-dibromodi
benzo-p-dioxin allowed the purification of the AHR from B6 cytosol, 
as well as its primary amino acid sequence and antibodies. In turn, this 
led to the ultimate cloning of the corresponding cDNA and structural 
gene [46,67,69–72]. Of central importance was that the cDNA encoded 
the second mammalian member of the PAS family and harbored an 
adjacent bHLH domain (Fig. 4). Taken in sum, these observations sug
gested a dimeric partnership between the AHR and ARNT lead to the 
signal transduction model described in Fig. 3 and discussed more below. 
If we add the AHR as an additional founding member in chordates, then 
of the original four PAS proteins described, all harbor two PAS repeats 
(denoted PAS-A and PAS-B), three out of four (SIM, ARNT and AHR) 
harbor a bHLH domain immediately N-terminal to the PAS repeats, yet, 
the C-terminal halves display much lower sequence homology (Fig. 4) 
[65,73]. 

4. Molecular biology of the aryl hydrocarbon receptor 

4.1. Protein-protein interactions 

The observation that two bHLH-PAS proteins, the AHR and ARNT, 
are essential for CYP1A1 induction led to the demonstration that 
signaling is dependent upon an AHR-ARNT heterodimer with specificity 
for the XRE sequence [62,68,74]. With this concept in hand, functional 
domain maps of the AHR and ARNT were rapidly developed (Fig. 4) 
[74–80]. Based upon the recognition that bHLH-domains commonly act 
in dimeric pairs of transcription factors to position basic-alpha helices 
within the major groove of enhancer DNA, it was quickly demonstrated 
that the basic region helix found in the bHLH of both the AHR and ARNT 
would be required for binding to the XRE [67,74,77,80–82] (Figs. 3 and 
4). 

The PAS-A domain in both the AHR and ARNT, was found to play an 
essential role in signaling. Molecular and crystallographic studies sup
port the idea that cooperation between the HLH and PAS-A domains is 
the primary support for dimerization between these two proteins. In 
turn, these interactions position the basic alpha helix within the major 
groove of DNA for sequence specific contacts at XREs. Thus, a clear role 
for this domain is as a PAS-PAS dimerization surface, contributing to 
AHR-ARNT interaction and formation of a competent transcriptional 
complex [74,77,83–85]. 

While some data exists to support the idea that the PAS-B domain is 
important in AHR-ARNT dimerization, a greater body of evidence doc
uments its role in heterotypic interactions by the AHR. In support of a 
role for such protein-protein interactions is the early observation that 
this region of the AHR represses AHR-activity [74,86,87], and the par
allel mapping studies demonstrating Hsp90 binds to this same repressing 
region of PAS-B [77,79,88]. A common interpretation of this data is that 
a chaperone complex (possibly a dimer of Hsp90, and the cochaperones 
ARA9, p23 and perhaps ARA3) is holding the PAS-B domain in a 
conformation that can accept ligand and prevent dimerization with 
ARNT or inappropriate contacts with other proteins in the cytosol that 
might lead to its aggregation and inactivation [51,53,89–91]. Once 
ligand binds, conformational changes are induced which weakens or 

reorganizes the chaperone complex, simultaneously revealing, nuclear 
localization and possibly ARNT-dimerization motifs within the AHR. 

4.2. Ligand binding 

Despite extensive information available regarding the pharmacology 
of AHR ligands, there remains a gap in our understanding of the struc
ture of the AHR ligand-binding domain (LBD) due to the lack of crystal 
structure for its PAS-B. The LBD of the AHR was initially mapped by 
covalently binding an [[125I]-labeled photoaffinity ligand followed by 
CNBr cleavage and micro-sequencing which revealed the labeled pep
tide fragment was coincident with PAS-B [67]. This overlap of the LBD 
with the PAS B domain was supported by a number of subsequent mo
lecular studies [74,77,92]. More recent mutagenesis, and homology 
model-derived structures, also indicate PAS-B as being important for 
ligand binding and provide a preliminary view of this 
PAS-B-ligand-bound structure and provide evidence that a V375A 
polymorphism within this region explains much of the variability in 
ligand responsiveness observed across the mouse Ahrb and Ahrd mouse 
strains (Fig. 2) [17–19,93–96]. 

While the N-terminal halves of the AHR and ARNT appear to play 
central roles in chaperone interactions, dimerization, DNA binding and 
ligand induced transformation, the C-terminal halves of these factors 
appear to harbor regions that influence expression of genomic targets 
once the complex is bound to chromatin [77,78,86,88,97]. In this re
gard, multiple subdomains in the C-terminus of the AHR are often re
ported, with the idea that each confers weak transactivation potency 
alone, but act synergistically. One possible consequence of this multi
plicity is that it may enable the AHR to interact with a variety of tran
scription factors and activate transcription from a variety of promoters 
[61,86]. 

4.3. Variation and polymorphism 

Molecular examination of the AHR open reading frame from the 
human, mouse and rat AHR explains the receptor molecular weight 
variation observed both within and across species. In large part, this size 
difference, as documented by western blot analysis and photoaffinity 
labelling of receptors, is due to altered termination codon usage in the 
final exon (exon 11) of the structural gene [43,71]. While still a debated 
concept, the marked difference in molecular weight of the AHR observed 
across species was initially thought of as evidence that AHR structure 
may be more evolutionarily responsive to the environmental niche of a 
given species, as compared to genes encoding receptors for endoge
nously generated hormones [43,98]. While such a model is difficult to 
prove, it is an intriguing proposition, with early evolutionary analyses 
providing some support and arguments against this idea [40,99]. 

The observation that Ahr polymorphisms in rodent models (e.g., the 
V375A polymorphism in mice, described above, or the splice junction 
polymorphism observed in rats, described in detail elsewhere [100]) can 
lead to alterations in ligand response, spurred considerable interest in 
whether polymorphisms leading to hyper- or hypomorphic Ahr alleles 
might be common in human populations [101,102]. While in
vestigations of SNPs (single nucleotide polymorphisms) can harbor 
significant biases reflecting the geography or population of focus, 
interrogation of the public database, dbSNP [103], indicates that com
mon SNPs (defined here as greater than 1% in a population) appear in 
humans at frequencies similar to loci encoding most other nuclear re
ceptors [101]. 

Of the recorded SNPs resulting in nonsynonymous (missense) alter
ations within the Ahr gene, only a few, e.g., P517S, R554 K and V570I, 
are commonly reported in various human populations, while non
synonymous and intronic SNPS are much more common [104–106]. In 
one study of a Japanese population, a number of novel rare genetic 
variants were detected (K17 T, K401R, N487D, and I514T) in addition to 
the more common R554 K allele [107]. Although this study did not 
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include a functional analysis, it provides one example of the diversity of 
rare, potentially important, missense variants in unique populations. In 
a second study, haplotypes of the three more common SNPs noted above 
were examined for their functional impact on AHR signaling in vitro 
[104]. Interestingly, the initial studies indicated that haplotypes corre
sponding to I570 and K554 yield a hypomorphic receptor, perhaps due 
to an attenuated transactivation domain or decreased stability in vivo. In 
contrast to the missense SNPs, known synonymous SNPs and SNPs 
within introns and other noncoding regions, number over a hundred in 
human poulations. While less obvious, nonsynonymous and intronic 
SNPs have the potential to influence AHR signaling through impacts on 
splicing, mRNA stability or even codon usage. While the importance of 
intronic SNPS leading to hypomorphic Ahr alleles in the rat is well 
documented, a parallel in humans has not yet been reported [100]. A 
summary of functionally important polymorphisms in the AHR open 
reading frames across species in presented in Fig. 5. 

5. Aryl hydrocarbon receptor pathways 

5.1. The AHR adaptive pathway 

It is now possible to describe the classical pathway for the adaptive 
metabolism of PAHs in humans and most mammals (Fig. 3). Upon entry 
of PAHs into cells, these ligands bind to the AHR in the cytosol inducing 
a conformational change in the AHR that loosens associations with its 
chaperone complex and exposes a nuclear localization sequence (NLS). 
The ligand-activated receptor complex then translocates into the nu
cleus, where the AHR sheds or rearranges its cellular chaperones and 
binds to the constitutively nuclear ARNT proteins through PASA, PASB 
and HLH domains. The dimerization of the AHR-ARNT heterodimer 
positions the basic alpha helices to recognize the XREs within the major 
groove of DNA and this is associated with the recruitment of coactivators 
and chromatin rearrangements, leading to the transcriptional activation 
of target genes, such as CYP1A1, CYP1A2, and CYP1B1. 

The classic adaptive pathway depicted in Fig. 3 is dependent upon a 
variety of homotypic and heterotypic protein interactions (e.g., PAS-PAS 
and PAS-chaperone, respectively). Yet, a considerable body of evidence 
suggests that the role of protein interactions in AHR biology is more 
complex, and outputs extend beyond genes encoding xenobiotic 
metabolizing enzymes as the mechanism depicts in Fig. 3 [108]. While 
we commonly associate the adaptive pathway with the upregulation of 
target genes through the dimeric AHR-ARNT binding to XREs, a large 
body of evidence indicates that the AHR is also involved in the up- and 
down-regulation of a variety of additional genomic targets, most of 
which are not typically associated with xenobiotic metabolism 

[109–111]. Importantly, the mechanisms underlying these “nonclas
sical’ signaling pathways appears to occur by mechanisms that are 
distinct from that depicted in Fig. 3. While not entirely elucidated, such 
mechanisms commonly employ heterotypic protein interactions that 
link the AHR to other cellular signaling molecules, some examples 
include the estrogen receptor, E2F and RelA [112–115]. 

The adaptive pathway described above, appears to be suppressed 
through a number of mechanisms [116,117]. While there are numerous 
reported mechanisms, the one most relevant to this perspective on PAS 
proteins is mediated by the “AHR-Repressor” or AHRR [118]. This 
protein, which has been shown to dimerizes with ARNT, is a close 
structural homolog of the AHR but is missing a region corresponding to 
part of its PAS-B repeat (Fig. 5). One idea is that the AHRR competes for 
dimerization with ARNT and thereby competes with AHR-ARNT for XRE 
occupancy [118]. Although not completely understood, the AHRR ap
pears to provide feedback inhibition through three potential mecha
nisms: competition for ARNT, competition for the XRE, and 
transcriptional repression of target genes upon XRE binding through 
direct repression on their promoters [116–119]. 

5.2. The AHR cognate pathway 

While the AHR does influence metabolic adaptation in response to 
environmental chemicals, this may not be the sole evolutionary driver 
for its conservation in animal species. In support of an additional 
“cognate pathway,” observations from animal models null for AHR 
expression describe a variety phenotypes [120–125]. While early reports 
of AHR-null phenotypes were subtle and often differed across labora
tories and species, a limited list includes alterations in peripheral 
lymphocyte populations, alterations in gastrointestinal immunity, a 
patent ductus venosus (DV), reduced litter sizes, and age-dependent 
cardiac hypertrophy [124,126–129]. Given that the immunological as
pects of AHR physiology have garnered considerable recent attention, 
the reader is referred to some excellent reviews for more insight [130, 
131]. 

A variety of studies in recombinant mouse models support the idea 
that the cognate signaling pathways of the AHR have similarities to the 
adaptive pathway described above. A few experimental observations in 
support of this idea include the observation that mutant alleles of two 
proteins important in the adaptive pathway, the ARNT and ARA9, are 
also required for normal DV closure [132,133]. Moreover, knock-in 
mutations at the Ahr locus that ablate the XRE binding by the 
AHR-ARNT dimer disrupt many aspects of the cognate pathway such as 
DV closure and lymphocyte development [134,135]. Importantly, the 
target genes of the cognate pathway are still unclear and may or may not 
be distinct form the adaptive pathways. In this regard, conditional null 
alleles indicate that AHR signaling to regulate DV closure or barrier 
immunity are occurring in cellular compartments not traditionally 
associated with the adaptive response [131,136,137]. 

6. Ligands 

6.1. Endogenous and cognate ligands of the AHR 

While initial attention to the AHR arose from an interest in under
standing the response to xenobiotics, there has long been a search for 
endogenous or cognate ligands. Evidence that AHR-null animal models 
display such a wide variety of phenotypes gives import to such efforts 
but does not rule out the possibility that the AHR acts in a ligand- 
independent manner [128]. Along this line of thought, it is possible 
that the binding of xenobiotic ligands is an independent role for the 
AHR, selected for independently throughout evolution. For this and 
future discussion of this topic, we propose two criteria to define a 
“cognate ligand.” The first is that the ligand can be found in animal 
tissues naturally and in an evolutionarily consistent manner. The second 
is that the ligand must be shown to be functionally linked with the 

Fig. 5. Important Polymorphisms in the AHR open reading frame: Top: 
Generalized domain identifiers for the AHR as mapped by multiple laboratories 
(see text). Middle: Structure of a generic AHR open reading frame from human. 
Bottom: Known results of common nonsynonymous SNPs of potential func
tional importance that found in human mouse and rat. Dark blue stars denote 
nonsynonymous SNPS. Open star represents a more rare nonsynonymous SNP 
that has been studied in vitro. Red star represents a stop codon (nonsense) that 
results in alterations in receptor molecular weight in commonly used mouse 
strains. Red arrow represents the position of a splice site variant in the rat 
intron between exons 10 and 11, resulting in multiple splice variants and three 
distinct molecular sizes of AHR in rat models. 
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receptor for some essential biological process. To date, we have many 
interesting ligands that appear to meet the first criteria. Where we have 
less data is in the proof of a link to a biological function. While, to date, 
we have no physiologically proven cognate ligand, a variety have been 
reported and summarized in a number of excellent reviews on the topic 
[127,131,138–141]. 

6.2. Proligands 

In accordance with numerous structure-activity studies performed 
over the last decades, an early heuristic to define AHR ligands is that 
they must fit a planar binding pocket with dimensions of a flat hydro
phobic rectangle with dimensions of approximately 14 Å × 12 Å × 5 Å 
[142–147]. Recent structural predictions based on homology models 
provide additional insights, although to be confident, we must ulti
mately await structural elucidation of this binding through approaches 
such as nuclear magnetic resonance or crystallography [17,19,148,149]. 

The repeated observation that the AHR displays binding affinity for 
larger planar aromatic structures lead some to speculate that smaller 
one- or two-ring aromatic compounds are probably not ligands, even 
though they might lead to receptor activation in vivo [127]. An 
important early example of this phenomenon was the natural product 
indole-3-carbinol (I3C), a plant auxin derived from tryptophan in edible 
Brassica family plants [150]. Early on, this compound was highly touted 
as a dietary anticarcinogen and determined to be a powerful dietary 
activator of AHR-regulated xenobiotic metabolizing enzymes such as the 
CYP1 monooxygenases. Indole-3-carbinol is now emerging as a para
digm of the proligand concept in AHR biology, which posits that many 
small aromatic compounds are metabolically, chemically, or spontane
ously converted to extended aromatic structures by natural processes 
[127,151,152]. In the case of I3C, the conversion occurs in the low pH 
environment of the stomach, where the acid-catalyzed condensation of 
I3C generates the potent AHR agonist, indolo[3,2,b]carbazole (ICZ) 151, 
153]. 

Perhaps more important than the identity of I3C as a proligand is the 
idea that this process may be a common route of ligand production in 
normal physiology. In this regard, tryptophan (TRP) is metabolized to 
the alpha-keto acid indole-3-pyruvic acid (I3P) by at least two enzymes 
(D-amino acid oxidase and aspartate aminotransferase), and I3P spon
taneously condenses into TEACOPS with high AHR binding affinity in 
vivo [154–156]. The aromatic amino acid TRP is a particularly inter
esting source of endogenous ligands. This substrate can be metabolically 
and chemically converted into a variety of polyaromatic structures. For 
example, the TRP condensation product, 6-formylindolo[3,2-b]carba
zole (FICZ), is often considered a top candidate as a cognate ligand of the 
AHR. This compound is generated by UV irradiation of TRP in the skin 
and displays an AHR binding affinity in the 10− 11 molar range (KD) 
[152,157]. Other TRP metabolites that show potential as physiological 
endogenous ligands include the TEACOP products produced spontane
ously from the TRP metabolite kynurenine (Kyn) [158,159]. These KYN 
derived TEACOPs have been shown to display potent agonist activity 
and may be responsible for aspects of reported immunological activity of 
Kyn on T-cells [160,161]. Interestingly, other TRP metabolites and 
condensation products are also candidates as ligands; these include 
simple indoles, the indigoids and cinnabarinic acid [140,162,163]. 

6.3. Evidence the AHR requires endogenous activation 

Multiple experimental lines provide evidence that the cognate 
pathway requires endogenous ligand activation. First, more than one lab 
has reported physiological conditions where XRE-driven reporters are 
activated under conditions consistent with the presence of an endoge
nous ligand [111,164]. Second, mouse models hypomorphic for AHR 
expression can be rescued with pre/perinatal exposure to a remarkably 
potent agonists such as 2,3,7,8-tetrachlordibenzo-p-dioxin or SU5416 (i. 
e., DV closure) [132,165]. Third, overexpression of the CYP1A1 gene in 

the mouse leads to phenotypes similar to AHR-null animals. This last 
observation being consistent with a model where adaptive metabolic 
clearance of an endogenous ligand is required for normal barrier im
munity in the gut [128]. 

7. The PAS protein family in mammals 

Following the cloning and characterization of ARNT and the AHR 
from mice, rats and humans, a number of additional important PAS 
proteins were identified in mammals [73,166]. Among these are the 
HIF-alphas which dimerize with ARNT (also known as HIF-beta) to 
regulate the hypoxia response and the CLOCK, ARNTL and PER proteins 
which play central roles in the maintenance of circadian rhythms [73, 
167–171]. In each of these cases, like the AHR-ARNT, a dimeric pairing 
of two distinct PAS proteins drives a central transcriptional response 
through a cognate enhancer element. Also, like the AHR-ARNT system, 
each of these systems regulates environmental adaptation and each is 
also important for essential physiological developmental processes. 
Importantly, the CLOCK and HIF stories are recorded in detail as the 
result of the recent Nobel Prizes associated with their discovery [170, 
172]. 

In early attempts at discovery of novel mammalian PAS factors, a 
variety of nomenclature schemes have been used. For example, in our 
laboratory, when each newly discovered factor was identified through 
searches of expressed sequence tags, the unique clones were designated 
Member of PAS-1, 2, 3…… (MOP1 etc.) [173]. In parallel, the another 
laboratory employed a similar strategy and their nomenclature denoted 
the site of expression and number of discovery (e.g., NPAS1, for 
neuronal PAS 1 etc.) [174]. Additionally, novel bHLH-PAS members 
have been named based on similarity to existing genes or predicted 
function [118,175–179]. A recent survey of the human genome reveals 
this family is quite large, with 33 PAS-domain encoding genes found by 
homology search or functional cloning (Fig. 6) [73]. Twenty-two of 
these proteins are documented or presumed to play roles in transcrip
tional regulation. Nineteen of these twenty-two transcriptional regula
tors harbor a (bHLH) domain immediately N–terminal to their PAS-A 
domain. Of the remaining eleven PAS proteins, eight are potassium 
channels, two are phosphodiesterases, and one is a serine-threonine 
kinase [73]. 

Based upon our knowledge of AHR-ARNT mediated signal trans
duction, sequence alignment homology, as well current understanding 
of the biological function of each PAS family member, our laboratory 
classifies mammalian PAS members as either alpha-class, beta-class, 
gamma-class, delta class, or kappa-class (Fig. 6). The alpha-class in
cludes the eleven PAS proteins that commonly display restricted cell 
type expression patterns, that are most commonly associated with the 
sensing environmental stimuli or cellular state, and that transduce those 
signals through an induced pairing with one of four promiscuous beta- 
class PAS protein partners [168,180–182]. We propose Beta-class to 
denote PAS proteins that are more widely expressed and often act as 
essential partners for a broad spectrum of family partners from the 
alpha-class. In this proposed PAS protein nomenclature, we add the 
designation of the three known human coactivators (NCOA1, NCOA2 
and NCOA3) as Gamma-class because of their unique roles in modu
lating transcription and because little is currently known about their 
PAS-PAS interactions. Additionally, we designate as Delta-class, those 
PAS proteins involved in transcriptional signaling pathways, but that are 
missing one of the hallmark domains of this family. For example, the 
AHRR is missing PAS-B and the three PERs are missing a canonical bHLH 
domain. These structures have led to a general suspicion that Delta-class 
can be thought of as repressors. Two final classes of mammalian PAS 
proteins are the Kappa class (for potassium channels) and the Epsilon 
class (enzymes). 

To date, the vast majority of known PAS protein interactions in 
mammalian systems are homotypic ones, that is, through PAS-PAS 
domain pairing and HLH domain pairing. This pairing then positions 
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the basic region of the bHLH domain to produce a competent DNA 
binding structure capable of recognizing cognate enhancers, with each 
member recognizing one half site of the element (Fig. 3). Of these dimers 
that directly influence gene expression through cognate enhancer ele
ments, the best understood are alpha-beta class pairings like the AHR- 
ARNT, HIF1-alpha-ARNT (aka HIF1-beta) or CLOCK-ARNTL (aka 
bMAL1 or MOP3). While homodimers such as ARNT-ARNT and PER- 
PER homodimers have been reported, the biological consequences of 
such interactions through recognition of genomic enhancers is unclear 
(e.g., ARNT and PER homodimers) [82,183]. Similarly, other 
non-alpha-beta class interactions have also been reported, but it is 
currently unclear if such interactions require either partner’s PAS 
domain for this binding (e.g., NCOA1 AND ARNT) [184]. 

Given that a complete description of the interactome of all 
mammalian PAS proteins has not yet been completed, it may still be of 
values to consider the possibility that more complex networks exist 
among PAS family members. In this regard, one early idea developed to 
explain toxicity of highly potent dioxin analogs was that the hyper
activated AHR may induce dimerization with additional bHLH-PAS 
partners other than ARNT and influence gene expression through 
unique enhancer elements, or through competition for limiting PAS- 
partners such as ARNT [72,171,185]. If, as presented above, PAS-PAS 
interaction surfaces exist in potassium channels, phosphodiesterases, 
regulators of development, circadian factors, then each of these areas of 
biology may be influencing each other in unappreciated ways. Put 
another way, the unknown partnering of PAS domains could represent 
paths of communication between physiological processes that have net 
been previously recognized. 

8. Summary 

The AHR has served as a paradigm for the PAS sensor superfamily 
and the roles of these proteins in environmental adaptation. When we 
look back at the research on this ancient domain found in all kingdoms 
of life, a few common themes emerge. For example, this domain is often 
associated with environmental sensing mechanisms that may have its 
origin in the adaptation to “Light, Oxygen and Voltage”, and in many 
chordates has evolved to mediate adaptive responses to certain xeno
biotics, play important roles in barrier immunity, orchestrate midline 
development, and regulate an organismal response to circadian time. 
We also see how the PAS domain harbors multiple properties: First as a 
pocket for the binding of ligands as distinct as heme, 4-hydroxycinnamic 

acid, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (Fig. 2). Second as a 
protein-protein interaction surface that dictates both homotypic and 
heterotypic interactions; With homotypic interactions often generating 
dimers capable of recognizing target genomic elements, and heterotypic 
interactions that control levels of signaling and provide a potential link 
to heterologous output pathways. 
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