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Tissue organization and patterning are critical during development when

genetically identical cells take on different fates. Lateral signalling plays an

important role in this process by helping to generate self-organized spatial

patterns in an otherwise uniform collection of cells. Recent data suggest

that lateral signalling can be mediated both by junctional contacts between

neighbouring cells and via cellular protrusions that allow non-neighbouring

cells to interact with one another at a distance. However, it remains unclear

precisely how signalling mediated by these distinct types of cell–cell contact

can physically contribute to the generation of complex patterns without the

assistance of diffusible morphogens or pre-patterns. To explore this question,

in this work we develop a model of lateral signalling based on a single recep-

tor/ligand pair as exemplified by Notch and Delta. We show that allowing

the signalling kinetics to differ at junctional versus protrusion-mediated con-

tacts, an assumption inspired by recent data which show that the cleavage of

Notch in several systems requires both Delta binding and the application of

mechanical force, permits individual cells to act to promote both lateral acti-

vation and lateral inhibition. Strikingly, under this model, in which Delta

can sequester Notch, a variety of patterns resembling those typical of reac-

tion–diffusion systems is observed, together with more unusual patterns

that arise when we consider changes in signalling kinetics, and in the

length and distribution of protrusions. Importantly, these patterns are self-

organizing—so that local interactions drive tissue-scale patterning. Together,

these data show that protrusions can, in principle, generate different types of

patterns in addition to contributing to long-range signalling and to pattern

refinement.
1. Introduction
Patterning is key to the development of complex multicellular organisms.

Indeed, the organization of initially uniform cells into regular motifs such as

stripes or spots has been widely documented across species and scales. Some

examples include the salt-and-pepper patterns of bristle precursor cells in the

Drosophila fly [1], the pigmentation stripes of zebrafish [2] and branching

during organ development [3]. These beautifully organized patterns emerge

through the spatial differentiation of genetically identical cells that take up dis-

tinct developmental fates according to their position in the developing

organism [4]. How initial symmetry is broken to give rise to these patterns

remains an open question.

Several theories have been proposed to explain cellular pattern formation,

most notably Turing’s reaction–diffusion model [5]. Turing showed that a

slowly diffusing activator and a fast diffusing inhibitor can generate a range

of periodic patterns whose properties (e.g. density and regularity) will
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Figure 1. (a) Patterning of the Drosophila notum. Drosophila pupal hemi-notum expressing shotgun-GFP (shgGFP, labels all apical cell boundaries) and neuralized-GMCA
(GFP-tagged F-actin reporter expressed in SOPs). At the onset of patterning (12 h after pupariation (AP)), few cells are neuralized-GMCA positive. By 24 h AP, the tissue is
patterned with a sparse, ordered distribution of SOPs. Scale bar, 50 mm. Anterior is to the right in all images. (b) Visualization of basal protrusions in SOPs. Basal
z-projections (less than or equal to 10 mm) of SOPs expressing a GFP-tagged F-actin reporter under the neuralized-GAL4 driver. Scale bar, 10 mm. (c) Schematic of Delta
( purple) Notch (green) and Notch reporter (R) interactions. When Delta (D) binds to Notch (N) in trans, it activates the intracellular part of the Notch receptor (R) to
inhibit Delta production in the receiving cell. Notch – Delta interactions within the same cell (cis interactions) lead to inactivation of both the ligand and the receptor.
(d ) Notch – Delta interactions engaged in trans-inhibition instead of trans-activation of the Notch receptor. (e) Notch – Delta-mediated lateral inhibition gives rise to salt-
and-pepper spatial patterns. Protrusion signalling results in sparser patterns. (f ) Schematic of protrusions in our model. (g) Modelling protrusion polarization and inter-
actions. (i) A scenario where the protrusions of two cells are within range of one another, but do not overlap due to polarization. (ii) Successful protrusion-mediated
interactions between two cells. The area of potential contact is shaded. More details are provided in the Methods section.
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depend on the decay length of the activator and inhibitor

molecules themselves, the so-called ‘morphogens’. Although

classical reaction–diffusion systems can generate diverse pat-

terns, it is becoming increasingly evident that signalling

interactions mediated via direct cell–cell contact ( juxtacrine

signalling) can also lead to self-organized tissue patterning

[6–8]. Importantly, juxtacrine interactions are not restricted

to immediate neighbours: cells can exchange signals at a dis-

tance from one another through long cellular protrusions [9].

This has long been known for neurons, but mounting evi-

dence suggests that signalling through cellular protrusions

is a more general feature of animal cells [6].

Protrusion-mediated signalling is implicated in pattern-

ing in several developmental systems. For example, the

stripy pigment patterns in zebrafish are formed through

planar contact-mediated interactions between three different

types of motile cells. Here, short junctional contacts and

long-range protrusion-mediated contacts between different

cell types lead to the mutual attraction or repulsion among

cells that self-organize into stripes [2,10]. The regularly

spaced bristle precursor cells in the Drosophila notum also

rely on the combination of direct and protrusion-mediated

signals [1,11]. In this system, cells expressing high levels of

the Delta ligand inhibit the expression of Delta, via Notch

activation, in other cells within their reach. The result is a reg-

ularly spaced pattern of individual cells expressing high

levels of Delta in a sea of cells expressing low levels of

Delta (figure 1a,b) [1,11]. In this way, contact-mediated sig-

nalling can lead to the generation of periodic patterns in an

initially homogeneous tissue without the requirement for

cell motility or a pre-pattern.

Although spot patterns of varying density and regularity

can be obtained by modulating the protrusion dynamics and

length [1], it is not clear whether, in the absence of molecular

diffusion, more complex patterns can emerge. To test this

idea, here we develop a model of lateral inhibition with feed-

back based on Notch–Delta signalling to explore the capacity

of contact-mediated signalling to generate diverse patterns.

For this analysis, we assume that cellular interactions occur

both over a short range, where they are mediated by cell–
cell junctional contacts, and at long range, via protrusions.

In addition, building on a previous theoretical framework

of lateral inhibition [1,12], we allow the kinetics of signalling

at short range junctional contacts and signalling via protru-

sions contacts to differ. As our results show, this has

surprising consequences. This type of juxtacrine signalling

leads to a variety of self-organizing patterns, ranging from

sparsely or densely spaced stripes, labyrinths and radii, to

clusters and regular salt-and-pepper patterns of different

density. This we suggest represents a new mechanism of pat-

tern formation. Finally, we explore the role of the signalling

dynamics, protrusion length and directionality in the pattern-

ing process and consider its broader implications for our

understanding of developmental patterning.
2. Model outline
The patterning of cell fates across a tissue is a key aspect of

animal development [13]. One of the best understood

examples of patterned cell fate determination is lateral inhi-

bition mediated by the Notch–Delta signalling pathway

[1,2,12,14]. This occurs when Delta ligands on the surface of

one cell bind to Notch receptors expressed by its direct neigh-

bours. Under certain conditions, this can trigger Notch

cleavage, enabling the Notch intracellular domain to enter

the nucleus to trigger downstream changes in gene

expression. Importantly, this includes the inhibition of Delta

expression, a feature of the system that can drive symmetry

breaking (figure 1c). In this work, we explore the capacity

of contact-mediated lateral inhibition systems to generate

diverse patterns. Although we use Notch–Delta signalling

as a basis for this model, our conclusions will apply to

other systems that use a similar logic.

We model a tissue comprising M �M cells, packed in a

hexagonal lattice. Signalling interactions can occur only

between cells that are in physical contact, either directly at

junctional contacts or through cellular protrusions extended

away from a cell’s centre. We assume that the tissue is

initially homogeneous with all cells expressing low levels of
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Figure 2. Schematic of possible signalling interactions between cells in the
model. Here, Notch – Delta signalling at the junctional contacts does not
always lead to activation of the Notch receptor (R). Instead, the receptor
(N) can bind to Delta (D) in trans without becoming activated (wa . qa).
Interactions mediated through the protrusions are more likely to lead to
receptor activation (wb � qb).
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both the Delta ligand (D) and its receptor Notch (N ), which

we initiate using Gaussian noise (see Methods). The

expression levels of the intracellular Notch reporter (R) are

initially set to 0. We model the expression dynamics of

Delta and Notch by building on a previously published

mathematical framework [12,15]:

dNi

dt
¼ bN �

kDinlNi

kt
�DiNi

kc
� gNNi, ð2:1Þ

dDi

dt
¼ bD

1

1þ Rm
i
�DikNinl

kt
�DiNi

kc
� gDDi ð2:2Þ

and
dRi

dt
¼ bR

(kDoutlNi)
s

kRS þ (kDoutlNi)
s � gRRi: ð2:3Þ

Although several models of Notch–Delta signalling and lateral

inhibition have been developed [1,12,14,16], we choose this

particular formulation because it allows us to track the free

Notch receptors on the cell membrane as well as the amount

of active Notch signal within each cell. This ability to disentan-

gle Notch receptor binding from the induction of Notch

signalling is central to our model analysis and findings. The

parameters bN, bD, bR and gN, gD, gR are the production and

degradation rates of Notch, Delta and the intracellular Reporter

of Notch signalling, respectively. The constants kt and kc deter-

mine the strength of Delta–Notch binding in trans (between

cells) and in cis (within a single cell), respectively, and kRS is

the dissociation constant of the intracellular signal. The total

amount of incoming Delta and Notch is given by

kDinl ¼ wakDa
inlþ wbkDb

inl ð2:4Þ

and

kNinl ¼ wakNa
inlþ wbkNb

inl, ð2:5Þ

where wa and wb are used to implement differential weighting

for the incoming signal at junctional contacts and protrusion-

mediated contacts. kDa
inl is equal to the total incoming Delta

summed over all cells that make junctional contacts with the

cell of interest. Similarly, kDb
inl is the total incoming Delta

summed over all cells that contact the cell of interest via pro-

trusions. Note that there is a third type of contact, in which

the protrusion of one cell contacts the cell body of another.

In these cases, we assume that the signalling contact made is

equivalent to a protrusion-mediated contact, if Delta is present

on protrusions, and that this can sample the full set of Notch

receptors on the receiving cell. Otherwise, if Delta is present

on the cell body but not protrusions, the contact made is junc-

tional. The distinction in signal strength captured by

differences in wa and wb is used to represent both different con-

centrations of the signal at the cell membrane and protrusions

[1,17], and/or differences in the efficiency of Delta–Notch

binding at these different types of contact. As an additional

assumption, not all bound Delta–Notch molecules lead to an

intracellular signal under the model. Instead, Delta can bind

to Notch in another cell without leading to activation

(figure 1d). This amounts to inhibition in trans (figures 1c
and 2)—a process that has not to our knowledge been pre-

viously considered in this context—but which nicely

captures the requirement for mechanical force for Notch clea-

vage and signalling in many experimental systems [18,19].

We further discuss the potential role of mechanical force in

our model at the end of this article. Here, we do not directly

model mechanical force, but we simply allow the efficiency

of Notch signalling to vary by defining the proportion of
incoming Delta leading to activation of the Notch receptor in

the receiving cell (figures 1d and 2),

kDoutl ¼ qakDa
inlþ qbkDb

inl, ð2:6Þ

where kDa
inl and kDb

inl are as defined above and kDoutl is equal

to the total amount of bound Delta that leads to activation of

the intracellular part of the Notch receptor. It follows from

this formulation that the proportion of Delta molecules

bound in trans that leads to a Notch signal in the receiving

cell is equal to qa/wa for a junctional contact, qb/wb for

protrusion-based interactions. Thus, qa and qb are bounded

by wa and wb, respectively.

We model protrusions by defining the protrusion length

for each cell, l, and the directionality of the protrusions by

defining an angle of polarization coupled to an arc opening

(u, du) as shown in figure 1f. To model cells exerting pro-

trusions in all directions, we simply let u take any value

and set du ¼ p. Protrusion signalling is allowed for cells

whose protrusions are within reach of one another (see

Methods for details).

When we set wa ¼ qa ¼ 1, wb ¼ qb ¼ 0.3 and l ¼ 2.3 � (cell

diameter)—close to the measured parameters for Notch–

Delta-mediated lateral inhibition in the fly notum [1,17]—

we obtain a pattern resembling the wild-type in vivo bristle

spacing (figure 1a; [1]). Naturally, this pattern is sparser

than ones obtained without protrusions, because protrusions

increase the range of signalling (figure 1e; [1,16]).
3. Differential signalling efficiency at short-range
and protrusion-mediated contacts expands
pattern space

Although the spacing, density and regularity of the salt-and-

pepper patterns such as those seen in the Drosophila notum

can be modulated by changing protrusion length and/or

dynamics (figures 1e and 3a; [1]), it is not clear how more

diverse patterns (e.g. pigment stripes in zebrafish, Drosophila
wing veins) can be obtained through lateral signalling alone

without the inclusion of complex interactions between cells

of several different types [2,7]. Nevertheless, by increasing

the relative amount of Delta signalling at direct, compared

with protrusion-mediated contacts (wa . wb), while decreas-

ing the binding-to-activation efficiency for direct contacts



protrusions in all directions
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Figure 3. Possible patterns using our model and setting wa . qa and wb � qb, without a bias in the protrusions directionality (a – d ) and with polarized pro-
trusions (e – h). The star pattern in (g) is obtained by allowing cells to exert protrusions perpendicular to radii focused in the tissue centre. The labyrinthine pattern
in (h) is obtained by assuming that cells exert protrusions along a random but not necessarily fixed direction. The parameter values for each plot are given in
table 1. Baseline parameters common across simulations are detailed in the Methods section. Colour scheme: white, D , 0.005; orange, 0.005 , D , 0.05; light
brown, 0.05 , D , 0.5; dark brown, D . 0.5. The values of Delta (D) used for the colour scheme were normalized by dividing across by the maximum Delta
value for any given expression matrix.
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(wa � qa; figure 2), we were able to obtain patterns more

complex than regularly spaced dots (figure 3). These range

from regularly spaced clusters of cells to labyrinthine patterns

(figure 3a–d). This shows that it is possible to induce a

much broader set of patterns than expected using lateral

inhibition-type signalling.

As the model is based upon lateral inhibition, how do

clusters of cells high in Delta emerge under these con-

ditions? This behaviour arises from the assumption that, at

short-range contacts, a large complement of the set of

Notch receptors expressed by a cell neighbouring a Delta-

expressing cell are likely to be occupied by Delta without

Notch being cleaved. As a consequence of this low-

efficiency signalling (wa � qa; figure 2), which we call

trans inhibition, these ‘first cell neighbours’ are rendered

non-responsive to incoming Delta signals, enabling them

to express Delta ligand (figure 1d ). As, under the first set

of test assumptions used, Delta is assumed to have a high

binding-to-signalling efficiency when acting on protrusions

(wb � qa; figure 2), these cells with sequestered Notch are

then able to signal to more distant secondary and tertiary

neighbours that express the Notch receptor (figure 2;

equations (2.1)–(2.5)). This leads to a complex interplay

between signalling at junctional cell–cell contacts (which

can sequester Notch receptors without inducing Notch clea-

vage to generate regions of tissue that are crowded with

adjacent Delta-expressing cells) and protrusion-mediated

signalling (which may induce the binding and cleavage of

Notch receptors to inhibit Delta production over a longer

range), which we investigate in more detail in a latter sec-

tion. This behaviour is strikingly different from that

induced by the process of cis-inhibition, whereby Delta

and Notch within the same cell bind one another in an

inhibitory manner. In our model, as in published models

[12,14,15], cis-inhibition functions primarily to sharpen and
speed up the process of lateral inhibition-mediated tissue

patterning.

The way our model is formulated also allows protrusions to

be polarized in a given direction in space (figure 1f). As animal

cells frequently generate directional protrusions in response to

local cues, this would appear to be an assumption worthy of

testing [20]. This protrusion polarization further expands the

pattern space—leading to the formation of stripes of differen-

tiated cells perpendicular to the direction of protrusion

polarization (figure 3e,f). In addition, radii are generated

when protrusions are polarized perpendicular to the lattice

centre (figure 3g). When the polarity cue governing protrusion

directionality is made cell autonomous, so that the direction is

allowed to vary between cells (as is often seen to be the case for

structures in PCP (planar cell polarity) mutants [21]), we obtain

less organized patterns resembling labyrinths (figure 3h).

Taken together, these results show that a wide variety of pat-

terns from dots and clusters to stripes, labyrinths and radii

can all be generated simply by varying the efficiency of signal-

ling interactions at junctional and protrusion-mediated contacts

and protrusion directionality.

As protrusion signalling is key to patterning in our model,

we next tested the impact of changing protrusion length and

polarization in the system. When we varied the average pro-

trusion length, l, we noted that the pattern density changed

(figure 4a). Long protrusions can span larger distances and

so lead to sparser patterns, whereas shorter protrusions

result in more dense patterns (figure 4a). Hence, the pattern

wavelength depends on the protrusion range.

Protrusion directionality is also characterized by the arc

opening, du (figure 1f). A larger du means that protrusions

are less well polarized. So, for example, setting du ¼ p is

equivalent to setting up a system in which the distribution

of protrusions is randomized, whereas by setting du ¼ 0 pro-

trusions can be made to project along a fixed line that is
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Figure 4. Exploring the impact of (a) the protrusion length, l, and (b) the strength of the protrusion polarization bias, du, on the overall pattern. The value of l and
du is indicated on the top of each panel. Protrusions are polarized with u ¼ p in a(i) and b(i) are projected in all directions in a(ii) and are projected according to
a radial symmetry in b(ii). Further parameter values for each plot are given in table 1. Baseline parameters common across simulations are detailed in the Methods
section. Colour scheme: white, D , 0.005; orange, 0.005 , D , 0.05; light brown, 0.05 , D , 0.5; dark brown, D . 0.5. The values of Delta (D) used for the
colour scheme were normalized by dividing across by the maximum Delta value for any given expression matrix.
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Figure 5. Quantifying pattern stability across simulations used for figure 3a – d.
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intervals of 1 arb. units in the simulation. The change is calculated as the
Euclidian distance between the normalized N � N matrices holding the
Delta expression for all cells in the hexagonal lattice, from time T to time
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defined by u (figure 1f). Using our model to generate patterns

for different values of du, we found that the pattern density

and regularity change with this parameter (figure 4b). A smal-

ler du results in better-aligned and more pronounced stripes,

labyrinths and radii, whereas the regularity of the pattern is

reduced for larger du (figure 4b). Consequently, variations

in the pattern density and regularity can be achieved by

modulating the protrusion length and directionality.

During development, although patterns take time to

emerge, they ultimately reach a stable state as cells become

committed to a fixed fate. This led us to quantify pattern

stability by measuring the change in the overall expression

of Delta in individual cells over time. This is shown in

figure 5a for the patterns in figure 3a–d. The pattern in

figure 3a where wa ¼ qa and wb ¼ qb quickly stabilizes and the

expression in individual cells barely changes over time. This

is not true for the patterns depicted in figure 3b–d, where cell

states changes are still observed at late times (simulations

were run up to time T ¼ 55(arb. units)). Although, the system

may not reach stasis in these cases, the apparent instability

observed (figure 5a) is due to flickering in the expression

levels of Notch and Delta in a subset of cells (electronic sup-

plementary material, figure S1) as they flip-flop from one

cell fate into the other—a process that helps to ensure that

the overall pattern density and the qualitative pattern stabi-

lize at later times (beyond T ¼ 40). Thus, in these cases, the

overall expression (averaged over the entire tissue) reaches a

maximum and stable value (figure 5b).
T þ 1. In this way, panel (a) is a quantification of the change in Delta
expression in individual cells over time. (b) Mean Delta expression across
the tissue over time. This is computed by averaging the Delta expression
across cells in the hexagonal lattice (tissue) at each time step. In this
way, panel (b) provides a quantification of the overall pattern density over
time. Each line shown is averaged over 10 independent simulations.
4. The role of binding-to-activation rates
The relative efficiency of signalling at junctional contacts

and protrusion-mediated contacts is critical for patterning

in this model. On the one hand, the ability of Delta ligands

at a junctional contact (low-efficiency signalling) to sequester

inactive Notch receptors on the surface of its neighbours

(determined by wa/qa) regulates Delta expression; the larger

the ratio wa/qa, the faster the generation of large patches of

Delta-expressing cells. On the other hand, the size of these

patches will be limited by the action of high-efficiency protru-

sion-mediated Delta signalling. The amount of incoming

Delta signal received by a protrusion expressing Notch,

defined by wb, and the efficiency of protrusion signalling,

defined by wb/qb, therefore, determine the rate at which the
Notch signal inhibits Delta production. So far we assumed

wb � qb (figure 2). Hence, wb defines the strength of Notch

receptor activation and the inhibition of Delta production,

and the relative values of wa/qa and wa/wb determine

whether it is possible to establish a pattern at all. This is illus-

trated in figure 6a, where wa is set equal to 1 and qa and wb are

varied: the pattern becomes increasingly dense as wb and qa

decrease. When wa ¼ qa, i.e. when signalling at junctional

contacts always leads to receptor activation (figure 1c), we
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no longer see solid stripes. Instead, a dotted pattern emerges,

where the density of the dots is maximized in the direction

perpendicular to the protrusion polarization. This was

confirmed by averaging the results of more than 10

independent runs (figure 6b).

We have thus far assumed wa . qa and wb � qb, that is

Notch–Delta interactions at junctional contacts are more

likely to lead to receptor activation than protrusion-mediated

interactions (figure 2). We now ask whether reversing

this assumption has an impact on pattern formation. Letting

wa � qa and wb� qb we were able to generate patterns

that are qualitatively distinct to those seen so far (figure 7).

In particular, an underlying dotted pattern develops, similar

to that seen in the absence of protrusion-mediated signalling.

Overlaid on this are cells of intermediate Delta expression

that pattern into noisy labyrinths, clusters or stripes according

to the protrusion directionality (figure 7). How are these

patterns generated and why does reversing the relationship
of (wa, qa) and (wb, qb) lead to these changes? Setting wa ¼ qa

means that cells expressing high levels of Delta quickly

inhibit Delta production in their primary neighbours,

generating the baseline dotted pattern. In addition, protru-

sion-mediated signalling is inhibited by the sequestration of

inactive Notch receptors within their reach (since wb . qb). As

a consequence, cells within reach of the protrusions of several

Delta cells become refractory to lateral inhibition—leading to

areas of intermediate Delta expression. In this way, our

model produces patterns beyond those that are typical of

classical reaction–diffusion systems.
5. Discussion
How can initially uniform tissues self-organize into complex

spatial patterns without a chemical pre-pattern or the ability

of cells to migrate? In this work, we propose that a lateral

inhibition mechanism comprised a single ligand–receptor

pair based on Notch–Delta signalling can generate a wide

set of patterns. These vary from regularly spaced dots and

clusters to stripes, radii, labyrinths and more—extending

the set previous described for typical Notch–Delta models

of lateral inhibition. Furthermore, our model shows that com-

plex tissue-wide patterns can be generated by direct cell–cell

contacts alone. Importantly, although this work is based on

Notch–Delta signalling, our approach is general and is

therefore applicable to other systems that combine contact-

mediated signalling with feedback.

Key to our model is the assumption that the kinetics of

Notch–Delta signalling differ at junctional contacts at the

cell interface and protrusion-mediated contacts. In particular,

Delta can bind to Notch at junctional contacts without this

being translated into a high probability of receptor activation.

This assumption is central because it allows patches of neigh-

bouring cells to express high levels of Delta. This process,

which we term trans inhibition, has not to our knowledge

between described previously. At the same time, protru-

sion-mediated signalling in the model activates the Notch

receptor with a high probability to enforce lateral inhibition.

The balance between these two processes is equivalent to a

balance between local self-enhancement and long-range inhi-

bition, conditions shown to be necessary and sufficient for

periodic pattern formation [22,23]. Interestingly, more unu-

sual types of pattern are generated when these assumptions

are reversed, so that junctional contacts between cells activate

lateral inhibition signalling, whereas protrusion-mediated

contacts sequester the Notch receptor. Thus, complex pat-

terns could be generated in tissues via contact-mediated

signalling, if (i) the amount of Delta differs at junctional con-

tacts versus protrusions [1] and (ii) the efficacy of signalling

can be modified [24,25]. Importantly, this may help to explain

how it is that Notch–Delta signalling functions to establish

patterned lines as well as spots in some developing tissues,

e.g. the fly wing [26].

A question that naturally follows is how can a single cell

enforce signalling in a distinctive manner at different

locations. Endocytosis is likely to play a role, as it generates

a force necessary for Delta-dependent Notch receptor acti-

vation [19,27,28]. Without this, the Notch receptor may

bind to Delta without becoming activated [27]. Similarly,

endocytosis has been proposed to activate or inactivate

many other receptor-based signals [29]. Whether or not



(e) ( f )

(b)(a)

(d )

protrusions in all directions

(c)

polarized protrusions

Figure 7. Possible patterns assuming that wb . qb and wa � qa, without a bias in the protrusions directionality (a – c) and with polarized protrusions (d – f ).
The parameter values for each plot are given in table 1. Baseline parameters common across simulations are detailed in the Methods section. Colour scheme: white,
D , 0.005; orange, 0.005 , D , 0.05; light brown, 0.05 , D , 0.5; dark brown, D . 0.5. The values of Delta (D) used for the colour scheme were normalized
by dividing across by the maximum Delta value for any given expression matrix.
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endocytosis is also key for signalling at the protrusions is

debatable. Instead, other factors could be more important

here, such as the force generated when actin-based protru-

sions extend and retract. In this way, the efficacy of

signalling could be locally modified by polarization of the

contractile machinery, a common feature of most animal

cells. Further in vivo studies should elucidate whether such

mechanisms exist and, if so, whether they function to aid

biological patterning.

Although diverse patterns can be stable under Notch–

Delta signalling with strong cis-inhibition [14], the de novo
generation of patterns more complex than regularly spaced

dots through Notch–Delta signalling alone is, to our knowl-

edge, novel to this work. A recent study showed that the

ability of signalling cells to control the spatial distribution

of the ligand along their protrusions could give rise to

more complex patterns such as stripes and clusters of cells

[30]. This is an interesting possibility, although it can be con-

strained by the requirement for precise control of the ligand

distribution along individual protrusions. Our model

suggests that the effectiveness of protrusion signalling can

be variable as one moves away from the signalling cell due

to signalling dynamics at different types of cell–cell contact.

Other models of lateral inhibition, for example those based

on spatial and temporal noise inhibitory thresholds, can

also give rise to more diverse patterns [31]. Interestingly, in

these cases, the inhibitory thresholds function in a similar
way to the model described here, because they enable cells

to sum signals from different types of cell–cell contact. Simi-

larly, some of the more unusual pattern motifs identified here

(figure 7), resemble those seen in a recent study of probabil-

istic patterning through lateral inhibition [32]. In this way,

this model, which is inspired by the observation that cells

exhibit different types of Notch–Delta contacts, provides a

plausible mechanism by which the conditions identified in

more complex models of lateral inhibition/activation can be

met and used in living organisms.
6. Methods
6.1. Computational methods
6.1.1. Protein dynamics
We used a mathematical model to simulate lateral inhibition

by Delta–Notch signalling. The model is defined by a set of

coupled differential equations (equations (2.1)–(2.3)), which

describe the dynamics of Notch (Ni), Delta (Di) and a Repor-

ter of Notch signalling (Ri) for individual cells (i being the

index for each cell).

The parameters bN, bD, bR and gN, gD, gR are the pro-

duction and degradation rates of Notch, Delta and the

Reporter of Notch signalling, respectively. The constants kt

and kc determine the strength of Delta–Notch interactions



Table 1. Parameter values varied across simulations. Baseline parameters that were common in all simulations are provided in the Methods section.

figure wa qa wb qb l u du

figure 3a 1 1 1 1 7 — p

figure 3b 1 0.01 0.1 0.025 7 — p

figure 3c 1 0.01 0.01 0.01 7 — p

figure 3d 1 0.01 0.01 0.005 7 — p

figure 3e 1 0.01 0.1 0.05 7 p/6 p/20

figure 3f 1 0.01 0.2 0.2 7 p/2 p.20

figure 3g 1 0.01 0.1 0.05 12 — p/20

figure 3h 1 0.01 0.1 0.05 7 — p/20

figure 4a 1 0.01 0.1 0.05 — p p/20

1 0.01 0.1 0.1 — — p

figure 4b 1 0.01 0.1 0.05 10 p —

1 0.01 0.1 0.1 10 — —

figure 6 1 — — 1 7 p/6 p/20

figure 7a 0.5 0.25 0.5 0.025 9 p/6 p

figure 7b 1 0.3 0.25 0.025 7 p/6 p

figure 7c 1 0.25 0.25 0.025 7 p/6 p

figure 7d 0.5 0.5 0.5 0.05 11 p/6 p/40

figure 7e 0.5 0.5 1 0.1 7 p/6 p/20

figure 7f 1 1 2 0.2 11 p/6 p/100
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in trans and in cis, respectively, and kRS is the dissociation

constant for the intracellular signal. kDinl and kNinl indicate

the incoming Delta and Notch signal and are determined

by summing the signal from all cells in contact with a

given cell, scaled by a factor wa and wb for junctional and pro-

trusion contacts, respectively (equations (2.4)–(2.5)). kDoutl
indicates the amount of Delta signal from neighbouring

cells that contributes to Notch cleavage and thereby intra-

cellular signal, and is determined by scaling incoming

signal by a factor qa and qb for junctional and protrusion con-

tacts respectively (equations (2.6)). A Gaussian noise term

was applied to initiate protein consecrations (for D and N;

R initially set to 0) and to the concentrations at each time step.
6.1.2. Protrusion modelling
Basal protrusions were implemented as two-dimensional

circular areas, extending from the centre of each cell

(figure 1f ). Radii were drawn from a normal distribution

with mean ¼ l and s.e. ¼ 0.5. Protrusion polarization is

implemented by assigning a value u for the protrusion polar-

ization coupled with an arc opening du as shown in figure 1f.
This formulation does not explicitly consider individual pro-

trusions but instead defines an arc opening within which

protrusions are assumed to be projected. This is a valid

approximation if several protrusions are exerted by individ-

ual cells. For any two cells (cell 1 and cell 2), spaced a

distance apart d such that the sum of the length of their

protrusions is below d, a signal occurs if the contact point

is made within the arc determined by u and du for both

cells (figure 1f,g).
6.1.3. Simulation parameters
The same baseline parameters used for all simulations: bN ¼

100, bD ¼ 500, bR ¼ 300 000, gN ¼ gD ¼ gR ¼ 1, kt ¼ 2, kc ¼

0.5, kRS ¼ 107, m ¼ 2, s ¼ 2. Initial expression values were

sampled from a Normal distribution N(1023bN, 1024bN)

and N(1023bD, 1024bD) for Notch and Delta, respectively.

All R-values were initially set to 0. The cell radius l was set

equal to 2 arb. units. The model was applied to a uniform

hexagonally packed two-dimensional array of 60 � 60 cells.

Simulations were performed by numerically solving

equations ((2.1)–(2.3)) using the Euler method. Parameters

that were varied between figures shown in table 1.

6.1.4. Colour scheme in patterning figures
To use the same colour scheme across figures, we normali-

zed the Delta expression matrix for each individual

simulation so that no value exceeds 1. We did this by

dividing by the maximum Delta expression within the

expression matrix of each individual pattern. We then used

the following colour scheme: white, D , 0.005; orange,

0.005 , D , 0.05; light brown, 0.05 , D , 0.5; dark brown,

D . 0.5.

6.2. Experimental methods
6.2.1. Fly strains
Fly stocks were maintained at 188C. Shotgun-GFP,

neuralized-GMCA (GFP-actin binding domain of moesin);

neuralized-GAL4; UAS-GMCA. Flies obtained from Bloo-

mington Drosophila Stock Centre (Bloomington, IN, USA)

and the Baum Laboratory.
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6.2.2. Imaging
White pre-pupae (0 h AP) were picked and aged at 258C
(for 12 h) or 188C (for 24 h), then dissected for imaging

at 12 h AP, as previously published [33]. Live pupae

were imaged on a Leica SPE or SP8 confocal microscope.

Imaging datasets were analysed and processed using FIJI/

ImageJ (NIH).
 lish
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