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a b s t r a c t

Parameter identification involves the estimation of undisclosed parameters within a sys-
tem based on observed data and mathematical models. In this investigation, we employ
DAISY to meticulously examine the structural identifiability of parameters of a within-host
SARS-CoV-2 epidemic model, taking into account an array of observable datasets.
Furthermore, Monte Carlo simulations are performed to offer a comprehensive practical
analysis of model parameters. Lastly, sensitivity analysis is employed to ascertain that
decreasing the replication rate of the SARS-CoV-2 virus and curbing the infectious period
are the most efficacious measures in alleviating the dissemination of COVID-19 amongst
hosts.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The term Corona Virus Disease 2019 (COVID-19) pertains to a form of pneumonia resulting from the invasion of the novel
coronavirus in year 2019. It manifests as an exceptionally virulent and lethal ailment triggered by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). So far, approximately 7 million people worldwide have succumbed to this disease and
770 million cases being reported (World Health Organization). The sudden outbreak of COVID-19 has enormous pressure on
the global economy and public health security. Since it is unethical to do experiments directly in the human body for eval-
uating the severity of an infection, mathematical modeling has emerged as a widely utilized approach to study the trans-
mission dynamics of diseases aimed at mitigating the severe consequences of pandemic.

Indeed, there are numerous within-host and between-host models for studying the transmission behaviors of COVID-19
infection. The COVID-19 infection exhibits an incubation period of 5.2 days (95% confidence interval CI: 4.1 � 7.0), a discrete
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span brimming with potentiality and anticipation. (Li et al., 2020a). Numerous scholars have used the framework of SEIR
compartment to estimate the severity of the COVID-19 transmission (Tang et al., 2020; Teslya et al., 2020; Wu et al., 2020).
Since then, asymptotic infection and severe infection are incorporated into mathematical modelling for evaluating the
medical care requirement (Mizumoto et al., 2020; Moghadas et al., 2020; Odagaki, 2023). Furthermore, with the evolution of
the COVID-19 infection, lots of non-pharmacological and pharmacological prevention measures had been taken for the
mitigation of the disease spread (Bhavana et al., 2020; Marechal et al., 2020). For instance, non-pharmacological control
strategies including household quarantine (Outbreak of acute respiratory syndrome, 2020), wearing face masks (Anderson
et al., 2020; Guidelines for the use of, 2020) and clearing with an alcohol-based disinfectant (Kampf, 2018) had been used
to extensively reduce the risk of the infection during its seasons. Additionally, mandatory curtailment of social gatherings
(Sims et al., 2022; Wilder-Smith and Freedman, 2020) and the implementation of large-scale detection (Esbin et al., 2020)
have been administered for government to curb COVID-19 spread.

In (Li et al., 2020b), Li et al. introduced a within-host model to elucidate the intricate dynamics among the healthy cells,
infected cells, and SARS-CoV-2 within the human physique. Their seminal investigation revealed that prompt administration
of suitable therapeutics can significantly diminish the pool of infected cells and expeditiously hasten the demise of SARS-CoV-
2. Elbaz et al. added a latent stage into the model proposed by Li et al. (Li et al., 2020b), offering a new viewpoint on disease
dynamics and a more realistic representation of disease progression (Elbaz et al., 2023). Moreover, numerous clinical studies
have revealed the presence of the antibody-dependent enhancement phenomenon in the transmission of SARS-CoV-2
(Cloutier et al., 2020; Okuya et al., 2022; S�a et al., 2021). It is not hard to see that the existing results focus on the predic-
tion of COVID-19 infection or the theoretical dynamics of the within-host models. In particular, Li et al. used the following
ordinary differential equations (ODEs) to describe the kinetics of COVID-19 within host8>>>>>>>><>>>>>>>>:

dEpðtÞ
dt

¼ dE
�
Epð0Þ � EpðtÞ

�� bEpðtÞvðtÞ;

dE*pðtÞ
dt

¼ bEpðtÞvðtÞ � dE*E*pðtÞ;

dvðtÞ
dt

¼ pvE*pðtÞ � dvvðtÞ:

(1)

where Ep(t) denotes the number of uninfected epithelial cells, E*pðtÞ represents the quantity of infected epithelial cells and v(t)

is the amount of viruses. Ep(0) is the value of uninfected epithelial cells when symptom onset. dEEp(0) is the continuous
reproduction of uninfected epithelial cells. The parameter b is the infection rate, pv is the release rate of viral particles from
deadly infected epithelial cells. Parameters dE, dE* , dv are the death rates of uninfected epithelial cells, infected epithelial cells
and the viruses, respectively. In (Nath et al., 2021), Nath carried out the qualitative analysis of the within-host model (1). They
defined the basic reproduction number of the model (1) by

R0 ¼ pvbEpð0Þ
dE*dv

: (2)

The elucidation of the reproductive number, denoted as R0, encapsulates the quantity of infected cells engendered by a singly

infected cell within an entirely unblemished milieu throughout its lifespan. According to Lemmas 1e2, and Theorems 1e4 in
(Nath et al., 2021), we get the following lemma on the stability of each feasible equilibrium.

Lemma 1.1. Let R0 be defined in (2). Then the following issues hold:

(1) If R0 < 1, then the virus-free equilibrium X0 ¼ (Ep(0), 0, 0) is globally asymptotically stable;
(2) When R0 > 1, then the viral spread equilibrium Xþ ¼ ðEp; E*p; vÞ is globally asymptotically stable, where

Ep ¼ dE*dv
bpv

¼ Epð0Þ
R0

; E*p ¼ dEdv
bpv

ðR0 �1Þ; v ¼ dE
b
ðR0 �1Þ:
Parameter identification is the process of determining unknown parameters in a system through observed data and
mathematical models.It is an important task in the field of system identification and is used to reveal the intrinsic charac-
teristics and behavior of a system, while complex features and behaviors of a system often involve a large number of unknown
parameters and epidemiological state variables. These variability and uncertainty always cause lack of accuracy in the pre-
dictions made by those mathematical models. Parameter identification is an important prerequisite to identify such con-
cerned issues from theoretical and practical perspectives. In particular, the mathematical models with unidentifiable
parameters could be multiple outcomes of the prediction and they may lead to inaccuracy prediction and made unsuitable
control measures. Conversely, a model with identifiable parameters signifies a high degree of accuracy results from the
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observations. Numerous papers have centered on the theoretical and numerical approaches of parameter identifiability. In
(Miao et al., 2011), Miao et al. undertook a comprehensive examination of diverse methodologies pertaining to the assess-
ment of both the structural and practical identifiability of models expounded through ordinary differential equations (ODEs).
Miao et al. provide a concise overview of the various approaches to parameter identification. This paper extensively examines
the structure and practical implementation of parameter identification by employing two methods within a within-host
model. In (Tuncer et al., 2022), Tuncer et al. utilized a between-host COVID-19 model to examine parameter identifiability
with the observed data of COVID-19 daily cases and deaths in the US. In (Tuncer et al., 2018), Tuncer et al. developed
structurally identifiable analysis of Zika models, which showed that direct transmission rate was practically unidentifiable.
We have noted that the mentioned articles above primarily investigate the parameter identifiability of macroscopic models.
However, the scholars in Li (Li et al., 2020b) and Nath (Nath et al., 2021) solely undertook theoretical examination pertaining
to the model and prognostication of the ailment, inadvertently neglecting the crucial aspect of parameter identifiability
within the aforementioned proposed framework. To fill this gap, we employ the model proposed in (Li et al., 2020b) to
investigate the parameter identifiability, encompassing both its structural aspects (assuming noiseless data) and its practical
implications (using real data).

The main contributions of this paper consists of two aspects: To our knowledge, we first investigate structurally and
practically identifiable analysis for a microcosmic model of SARS-CoV-2 infection. We find that the parameters are globally
identifiable when all state variables are observed, but they are unidentifiable if the infected cells or the virus load are
measured. However, the findings of the sensitivity analysis indicate that focusing on curbing the propagation of SARS-CoV-2
within hosts can be most efficacious when targeting both the infection rate and the mortality rate of infected cells.

The reminder of this paper is organized as follows: In Section 2, we explore several types of structural identifiability of
model parameters, such as scenarios when alternative data for state variables are available. We further conduct practical
identifiability analysis by using the infected cells data from Li et al. (Li et al., 2020b) and the virus load fromZheng et al. (Zheng
et al., 2020) in Section 3. We conduct Monte Carlo simulations on a constrained minimization conundrum and quantify the
average relative estimation errors of parameters amidst Gaussian and Poisson noise levels, aiming to investigate its practical
identifiability. In Section 4, we delve into the intricacies of sensitivity analysis applied to the within-host model, assessing the
profound depths of influence that variations in paramount parameters wield upon the intensity of an infectious ailment. In
the last section, we summarize our findings and draw some interesting conclusions.

2. Structural identifiability analysis of the immunological SARS-CoV-2 model

Structural identifiability concerns the retrieval of model parameters based on the observed outputs. In this section, we
undertake an analysis of the structural identifiability to ascertain the uniqueness of values of the parameters for model (1)
using the available observations. In other words, the model parameters are said to be globally structural identification for the
given ideal conditions of noise-free observations and error-free model structure. For given large enough data sets, there are
infinite sets of parameter values that can produce the same observations, then the model parameters are said to be non-
identifiable. If there exist finite (greater than one) sets of parameters that result in identical observations, then the param-
eters of the model are deemed to possess local identifiability.

Without loss of generality, we write model (1) as below:

x
0 ðtÞ ¼ f ðxðtÞ; pÞ; xð0Þ ¼ x0;
yðtÞ ¼ gðxðtÞ; pÞ;
where x ¼ fEp; E*p; vg2R3 denote the states variables, x(0) are the initial values of state variables. y represent output vectors,
such as the infected pulmonary epithelial cells, and p denotes the parameters of system (1). We first introduce some related
definitions of structurally identifiable analysis given in (Miao et al., 2011).

Definition 2.1. A parameter set p are called globally (or uniquely) structurally identifiable if for every q in the parameter
space

gðxðtÞ; pÞ ¼ gðxðtÞ; qÞ⟺ p ¼ q:
Definition 2.1 suggests that a slight difference in parameter values will result in distinct model predictions or outputs
when one uses the noise-free data. In other words, if p s q, then g(x(t), p) s g(x(t), q) (i.e. If every observation of the
mathematical model can solely be ascertained through an exceptional combination of parameters, then it is referred to as
structurally globally or uniquely identifiable).

Definition 2.2. The parameter set p display local identifiability if there exists a neighborhoodNðpÞ surrounding p such that if
g(x(t), p) ¼ g(x(t), q) for q2NðpÞ then p ¼ q.
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As we know, the differential algebra approach (Bellu et al., 2007) is an useful tool to check the structural identifiability of
the parameters in model (1). One of the merits inherent in this particular approach lies in its capacity to acquire not only non-
identifiable parameters but also the conceivable permutations thereof, in the event that the result is deemed unidentifiable.
Subsequently, these parameters can be employed to reparameterize the initial model in a manner that engenders a structural
identifiability of all parameters. This approach unveils the input-output equation encompassing the entirety of structurally
identifiable information pertaining to the parameters. This equation is a valuable tool for analyzing and understanding the
identifiable properties of themodel. Now, we obtain the input-output equations of themodel (1) using the observation values
of chest radiograph score that reflecting the severity of infected pulmonary epithelial cells E*pðtÞ, that is y1ðtÞ ¼ E*pðtÞ along
with known initial conditions, Ep(0)¼ 25, E*pð0Þ ¼ 2:59, v(0)¼ 0.061. The data from articles (Li et al., 2020b) and (Zheng et al.,
2020).

Theorem 2.3. The epidemiological model (1) is not structural identifiability of the parameters b and pv from the known infected

cells E*pðtÞ. But the parameters dE;Epð0Þ;dE* ;dv, and the combinations of bpv can be identified.

Proof. Using DAISY (Bellu et al.), we eliminate the unknown state variables Ep(t) and v(t) to obtain the following input-
output equation:

0 ¼
 
d3y1
dt3

!2
dy1
dt

y1 þ dE*

 
d3y1
dt3

!2

y21 � a1

 
d3y1
dt3

!2

y1 �
d3y1
dt3

 
d2y1
dt2

!2

y1 �
d3y1
dt3

d2y1
dt2

�
dy1
dt

�2

þa2
d3y1
dt3

d2y1
dt2

dy1
dt

y1 þ a1
d3y1
dt3

d2y1
dt2

dy1
dt

þ 2a3
d3y1
dt3

d2y1
dt2

y21 þ a4
d3y1
dt3

d2y1
dt2

y1

�a5
d3y1
dt3

�
dy1
dt

�3

þ 4a6
d3y1
dt3

�
dy1
dt

�2

y21 þ a8
d3y1
dt3

�
dy1
dt

�2

y1 þ a1a5
d3y1
dt3

�
dy1
dt

�2

þ8a7
d3y1
dt3

dy1
dt

y31 þ a9
d3y1
dt3

dy1
dt

y21 þ a1a10
d3y1
dt3

dy1
dt

y1 þ 4dE*a7
d3y1
dt3

y41 þ a11
d3y1
dt3

y31

þa12
d3y1
dt3

y21 þ
 
d2y1
dt2

!3
dy1
dt

þ b1

 
d2y1
dt2

!3

y1 þ b2

 
d2y1
dt2

!2�
dy1
dt

�2

� 3a6

 
d2y1
dt2

!2
dy1
dt

y21

þb4

 
d2y1
dt2

!2
dy1
dt

y1 þ a1b3

 
d2y1
dt2

!2
dy1
dt

� 3a7

 
d2y1
dt2

!2

y31 þ b5

 
d2y1
dt2

!2

y21

þa1b6

 
d2y1
dt2

!2

y1 þ b7
d2y1
dt2

�
dy1
dt

�3

þ 2a6b8
d2y1
dt2

�
dy1
dt

�2

y21 þ b9
d2y1
dt2

�
dy1
dt

�2

y1

þa1b10
d2y1
dt2

�
dy1
dt

�2

þ 2a7b11

 
d2y1
dt2

!2
dy1
dt

y31 þ b12
d2y1
dt2

dy1
dt

y21 þ a1b13
d2y1
dt2

dy1
dt

y1

þ2a7dE*ðb2 þ 3dvÞ d
2y1
dt2

y41 þ dE*b14
d2y1
dt2

y31 þ a1b15
d2y1
dt2

y21 � a6

�
dy1
dt

�5

þ a6c1

�
dy1
dt

�4

y1

þc3

�
dy1
dt

�4

þ 4a26

�
dy1
dt

�3

y31 þ a6c2

�
dy1
dt

�3

y21 þ c4

�
dy1
dt

�3

y1 þ a1c5

�
dy1
dt

�3

þ12dE*a26

�
dy1
dt

�2

y41 þ a6c6

�
dy1
dt

�2

y31 þ c7

�
dy1
dt

�2

y21 þ a1c8

�
dy1
dt

�2

y1 þ 12a27
dy1
dt

y51

þa7c9
dy1
dt

y41 þ c10
dy1
dt

y31 þ c11
dy1
dt

y21 þ 4d1y
6
1 þ d2y

5
1 þ d3y

4
1 þ d4y

3
1;

(3)
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where

a1 ¼ dEEpð0Þ; a2 ¼ 2dE � dE* þ 2dv; a3 ¼ dE* ðdE þ dE* þ dvÞ;
a4 ¼ �dEEpð0Þð3dE þ 2dE* � 3dvÞ; a5 ¼ dE þ dE* þ dv; a6 ¼ bpv;

a7 ¼ bdE*pv; a8 ¼ d2E þ 2dEdv � 2d2E* þ d2v ;

a9 ¼ �8bdEEpð0Þpv þ 2d2EdE* þ dEd
2
E* þ 4dEdE*dv þ d2E*dv þ 2dE*d2v ;

a10 ¼ �d2E � 2dEdE* � 2dEdv � 2dE*dv � d2v ;

a11 ¼ dE*

�
� 8bdEEpð0Þpv þ d2EdE* þ 2dEdE*dv þ dE*d2v

�
;

a12 ¼ dEEpð0Þ
�
4bdEEpð0Þpv � d2EdE* � 2dEdE*dv � dE*d2v

�
;

b1 ¼ �2dE � dE* � dv; b2 ¼ dE þ 2dE* ; b3 ¼ dE þ dE* þ 2dv;

b4 ¼ �d2E � 3dEdE* þ dEdv � 2d2E* � dE*dv þ d2v ;

b5 ¼ 2bdEEpð0Þpv � d2EdE* þ 2dEd
2
E* þ dEdE*dv þ d3E* þ 2d2E*dv þ dE*d2v ;

b6 ¼ �2d2E � 3dEdE* � 5dEdv � d2E* � 3dE*dv � 2d2v ;

b7 ¼ dEdE* � 2dEdv þ 2d2E* � dE*dv � 2d2v ; b8 ¼ dE � dE* þ 3dv;

b9 ¼ 2bdEEpð0Þpv � d2EdE* þ 3d2Edv � 4dEd2E* þ 4dEd2v � 2d3E* � 3d2E*dv � dE*d2v þ d3v ;

b10 ¼ d2E þ 3dEdE* þ 4dEdv þ d2E* þ 5dE*dv þ 3d2v ;

b11 ¼ 2dE þ dE* þ 6dv;

b12 ¼ �8bd2EEpð0Þpv � 2bdEdE*Epð0Þpv � 12bdEEpð0Þdvpv þ 6d2EdE*dv þ dEd
3
E* þ 4dEd2E*dv

þ8dEdE*d2v þ d3E*dv þ 2d2E*d2v þ 2dE*d3v ;

b13 ¼ �2bdEEpð0Þpv � d3E � 4d2EdE* � 5d2Edv � 2dEd2E* � 8dEdE*dv

�5dEd
2
v � 2d2E*dv � 2dE*d2v � d3v ;

b14 ¼ �8bd2EEpð0Þpv � 8bdEdE*Epð0Þpv � 12bdEEpð0Þdvpv þ d2Ed
2
E* þ 3d2EdE*dv

þ2dEd
2
E*dv þ 4dEdE*d2v þ d2E*d2v þ dE*d3v ;

b15 ¼ 6bd2EEpð0Þpv þ 4bdEdE*Epð0Þpv þ 6bdEEpð0Þdvpv � d3EdE* � d2Ed
2
E*

�5d2EdE*dv � 2dEd2E*dv � 5dEdE*d2v � d2E*d2v � dE*d3v ;

c1 ¼ �3dE* � 4dv; c2 ¼ d2E þ 2dEdE* þ 6dEdv � 6d2E* � 6dE*dv þ d2v ;

c3 ¼ 2bdEEpð0Þpv � d2Edv þ dEd
2
E* � 2dEdE*dv � 2dEd2v þ d3E* � 2dE*d2v � d3v ;

c4 ¼ 6bdEdE*Epð0Þpv þ 8bdEEpð0Þdvpv þ d3Edv � d2Ed
2
E* þ 2d2Ed

2
v � dEd

3
E* � 3dEd

2
E*dv

�2dEdE*d2v þ dEd
3
v � d3E*dv � 3d2E*d2v � 2dE*d3v ;

c5 ¼ �bdEEpð0Þpv þ d2EdE* þ d2Edv þ dEd
2
E* þ 4dEdE*dv þ 2dEd

2
v þ 2d2E*dv þ 3dE*d2v þ d3v ;

c6 ¼ �12bdEEpð0Þpv þ 3d2EdE* þ 4dEd2E* þ 18dEdE*dv � 4d3E* þ 3dE*d2v ;

c7 ¼ �2bd3EEpð0Þpv � 8bd2EdE*Epð0Þpv � 12bd2EEpð0Þdvpv þ 6bdEd
2
E*Epð0Þpv

þ4bdEdE*Epð0Þdvpv � 2bdEEpð0Þd2vpv þ 3d3EdE*dv � d2Ed
3
E* þ 3d2Ed

2
E*dv

þ6d2EdE*d2v � dEd
3
E*dv þ 2dEd2E*d2v þ 3dEdE*d3v � d3E*d2v � d2E*d3v ;

c8 ¼ �3bdEdE*Epð0Þpv � 4bdEEpð0Þdvpv � d3EdE* � d3Edv � d2Ed
2
E* � 3d2EdE*dv

�2d2Ed
2
v � dEd

2
E*dv � dEdE*d2v � dEd

3
v þ d2E*d2v þ dE*d3v ;

c9 ¼ �24bdEEpð0Þpv þ 3d2EdE* þ 2dEd
2
E* þ 18dEdE*dv þ 2d2E*dv þ 3dE*d2v ;

c10 ¼ 12b2dEEpð0Þ2p2
v � 4bd2EdE*Epð0Þpv � 8bdEd2E*Epð0Þpv � 24bdEdE*Epð0Þdvpv

�4bd2E*Epð0Þdvpv � 4bdE*Epð0Þd2vpv þ 3d2Ed
2
E*dv þ 2dEd

3
E*dv

þ6dEd2E*d2v þ 2d3E*d2v þ 3d2E*d3v ;

c11 ¼ d2EEpð0Þ
�
bd2EEpð0Þpv þ 6bdEdE*Epð0Þpv þ 6bdEEpð0Þdvpv þ 2bdE*Epð0Þdvpv

þbEpð0Þd2vpv � d2Ed
2
E* � 2d2EdE*dv � 4dEd

2
E*dv � 4dEdE*d2v � 3d2E*d2v � 2dE*d3v

�
;
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d1 ¼ b2d3E*p2
v ; d2 ¼ bd2E*pv

�
� 12bdEEpð0Þpv þ d2EdE* þ 6dEdE*dv þ dE*d2v

�
;

d3 ¼ dEdE*

�
12b2dEEpð0Þ2p2

v � 2bd2EdE*Epð0Þpv � 12bdEdE*Epð0Þdvpv

�2bdE*Epð0Þd2vpv þ d2Ed
2
E*dv þ 2dEd2E*d2v þ d2E*d3v

�
;

d4 ¼ d2EEpð0Þ
�
� 4b2dEEpð0Þ2p2

v þ bd2EdE*Epð0Þpv þ 6bdEdE*Epð0Þdvpv

þbdE*Epð0Þd2vpv � d2Ed
2
E*dv � 2dEd

2
E*d2v � d2E*d3v

�
Equation (3) encompasses a composition of differential polynomials which undergo normalization. These polynomials
intricately involve the state variables under observation and their respective derivatives. It is noteworthy that the coefficients
within said polynomials exhibit rational functions contingent upon the parameters of the model. Now, we focus on acquiring
the Gr€obner basis (Boulier, 2007; Buchberger, 1998) from the coefficients of the input-output equation (3). First, we use DAISY
to assign a set of numerical random points p̂ in the parameter space, i.e, p̂ ¼ ½dE;b;dE* ;pv;dv;Epð0Þ� ¼ ½2;5;7;13;11;3�. Using
DAISY yields

dE* � 7 ¼ 0;
dEEpð0Þ � 6 ¼ 0;
2dE � dE* þ 2dv � 19 ¼ 0;
dE* ðdE þ dE* þ dvÞ � 140 ¼ 0;
dEEpð0Þð3dE þ 2dE* þ 3dvÞ � 318 ¼ 0;
dE þ dE* þ dv � 20 ¼ 0;
bpv � 65 ¼ 0;
dE þ 2dE* � 16 ¼ 0:

Hence, dE* is globally identifiable. Subsequently, after some algebraic manipulation, we derive the Gr€obner basis of model (1)
to be

dE ¼ 2; dE* ¼ 7; dv ¼ 11; Epð0Þ ¼ 3; bpv ¼ 65: (4)

Consequently, the parameters dE;dE* ;dv;Epð0Þ, and the combination of bpv in model (1) are structurally identifiable and the
model parameters are not structurally identifiable if the infected epithelial cells are given. ,

Theorem 2.3 posits that the global identification of the parameters pertaining to model (1) is unattainable through the
available observations of infected epithelial cells. To elevate the level of parameter identifiability, a conventional method
involves the fixation of specific parameters procured from alternative sources.

Remark 2.1. If the parameter b or pv is fixed, then all parameters of model (1) are globally identifiable from the observations
of infected epithelial cells.

Proof. This is a direct result from equation (4). ,

Remark 2.2. If the virus load or all state variables are observable from external sources, then all parameters of the model (1)
become globally identifiable.

Proof. Assuming that we insert an observation about the virus load level, denoted as y2¼ v(t) in Theorem 2.3, we use DAISY
again to derive the following input-output equation (5):

0 ¼ dy2
dt

� y1pv þ y2dv;

0 ¼
�
dy1
dt

�2

y2 �
dy1
dt

y1pv þ dy1
dt

y22bþ dy1
dt

y2ðdE þ dE* þ dvÞ � y21dE*pv

þy1y
2
2bdE* þ y1y2dE*ðdE þ dvÞ � y22bdEEpð0Þ:

(5)

If we set p̂ ¼ ½dE; b; dE* ;pv; dv; Epð0Þ� ¼ ½2;5;7;13;11;3� and use the known initial conditions of the model (1) as mentioned in
the paragraph above in Theorem 2.3, then we obtain the Gr€obner basis from (5) as below:

dE ¼ 2; b ¼ 5; dE* ¼ 7;pv ¼ 13; dv ¼ 11; Epð0Þ ¼ 3:

Therefore, all parameters of model (1) are globally identifiable.
If measured variables are all state variables, i.e. y1 ¼ E*pðtÞ; y2 ¼ vðtÞ; y3 ¼ EpðtÞ. Then DAISY gives the input-output

equations as follows
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Table 1
Structural identifiability of system (1) under different observations.

Measured variable Identifiable parameters

E*p fdE ;dE* ;dv;Epð0Þg
v fdE ;b;dE* ;dvg
E*p and v fdE ;b;dE* ;pv;dv;Epð0Þg
E*p , v and Ep fdE ;b;dE* ;pv;dv;Epð0Þg
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0 ¼ dy1
dt

þ y1dE* � y2y3b;

0 ¼ dy2
dt

� y1pv þ y2dv;

0 ¼ dy3
dt

þ y2y3bþ y3dE � dEEpð0Þ:

(6)

Similarly, all parameters are structurally globally identifiable. ,
Actually, the viral load data is acquired from Zheng et al. (Zheng et al., 2020). In this case, we have the following parameter

identifiable outcome.

Remark 2.3. If the virus load level is known, the parameters of the model (1) are unidentifiable, more specifically, pa-
rameters pv and Ep(0) are inherently unidentifiable.

Proof. For simplicity, we represent y1(t) ¼ v(t) and take v(0) ¼ 152.95. Now, we apply the DAISY to derive the following
input-output equation:

0 ¼ d3y1
dt3

y1 �
d2y1
dt2

dy1
dt

þ b
d2y1
dt2

y21 þ ðdE þ dE* þ dvÞd
2y1
dt2

y1 � ðdE* þ dvÞ
�
dy1
dt

�2

þbðdE* þ dvÞdy1dt
y21 þ dEðdE* þ dvÞdy1dt

y1 þ bdE*dvy31 þ dE
�� bEpð0Þpv þ dE*dv

�
y21:

(7)

Letting p̂ ¼ ½dE;b;dE* ;pv;dv;Epð0Þ� ¼ ½2;5;7;13;11;3�, we obtain the ultimate Gr€obner basis as below

dE ¼ 2; b ¼ 5; dE* ¼ 7; dv ¼ 11;pvEpð0Þ ¼ 39: (8)

This indicates that parameters pv and Ep(0) have an infinite possibility satisfying the last equation of (8). Hence, the pa-
rameters in model (1) are not structurally identifiable based on the viral load level. ,

From what has been discussed, we summarize the results of the identifiability analysis in Table 1.
3. Practical identifiability analysis of model (1)

The structural identifiability analysis presents identifiable parameters and parameter combinations from the observed
noise-free data. In reality, epidemiological data frequently exhibits inherent disturbances, being obtained at discrete mo-
ments in time. The concept of practical identifiability encompasses not only the quantity and quality of the collected data, but
also takes into account their diverse noise levels. Therefore, conducting the practical identifiability analysis holds paramount
importance in discerning themodel parameters. The outcomes of practical identifiability may diverge from the findings of the
previously structural identifiability.
Table 2
Fitted parameter values of system (1).

Parameters E*p v E*p and v

Value Range Value Range Value Range

dE 0.19 0e1 0.02 0e1 1.50 0e10
b 0.09 0e1 0.0012 0e20 2.95 0e100
dE* 0.46 0e1 0.11 0e100 0.19 0e1000
pv 0.48 0e1 4.08 0e25 26.57 0e1000
dv 1.02 1e10 0.3 0e100 0.69 0e100
Ep(0) 26.9 20e30 42.7 1e80 1.00 1e1000
E*pð0Þ 2.59 Li et al. (2020b) 4.0 2e50 2.59 Li et al. (2020b)
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Fig. 1. The chest radiograph score data and viral load data (blue bars) and the associated solution to model (1) (red curves) with the estimated values presented in
Table 2.

J. Yang, S. Wu, X. Li et al. Infectious Disease Modelling 9 (2024) 975e994
3.1. Parameters estimation

To assess practical identifiability, we initially estimate the parameters p ¼ ½dE; Epð0Þ; b; dE* ;pv; dv� of model (1) through the
resolution of the constrained optimization problem (9) which minimizing the following objective, i.e. residual sum of squares
(rss):

rss ¼
Xn
i¼1

ðyðtiÞ � YiÞ2 (9)

where {(t1, Y1), (t2, Y2), …, (tn, Yn)} denote the chest radiograph scores (Li et al., 2020b) or the virus load data (Zheng et al.,
2020) at each discrete time tj(j ¼ 1, 2, …, n), and {y(t1), y(t2), …, y(tn)} represents the solution of model (1). Obviously,the
residual sum of squares (rss) is a function about the parameters of model (1). To address such optimal control problem, we
employ fminsearchbnd in MATLABwith specified lower and upper bounds to estimate the parameter values through the least-
square approach. For the data set v, we logarithmically transform them to reduce their dimensionality. And meanwhile the
initial value E*pð0Þ of infected cells is considered as an estimated parameter for repeated optimization iteration. The optimal
values for the parameters are presented in Table 2. The columns showcase estimated parameters when known infected cells,
viral load and these two sets of data are simultaneously known. Fig. 1 and Fig. 2 depict the mimic results of the data set and
the associated solution to model (1).
3.2. Practical identifiability analysis

A parameter that possesses structural identifiability may be rendered practically unidentifiable owing to the absence of
data devoid of noise. To further scrutinize the parameter identifiability of model (1), we implement the Monte Carlo Sim-
ulations (MCS) to take the practically identifiable analysis of the model parameters. Monte Carlo Simulations evaluate a set of
scenarios involving varying known observations with different noise levels. We initiate Monte Carlo simulations by estab-
lishing the presumed parameters stipulated in Table 2 as the veritable values p̂. Subsequently, we fabricateM¼ 1000 arrays of
Table 3
Specific steps for MCS.

1. Solve the mathematical model (1) numerically with the genuine parameters p̂ and
obtain the output vector gðxðtiÞ; p̂Þ at discrete temporal instances ftigni¼1.
2. Add noise level to the output vector gðxðtiÞ; p̂Þ obtained from step 1 and generate
1000 groups of simulated data.
3. Fit the model (1) to each of the meticulously crafted simulated data by solving the
optimization problem (9) to assess a robust estimation of the parameter set pj for
j ¼ 1, 2, …, 1000.
4. Calculate the average relative estimation errors for each parameter in the
parameter set of p.
5. Repeat the aforementioned steps 1e4 with gradually amplifying noise levels of
s0 ¼ 0, 1, 5, 10, 20%, respectively.
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Fig. 2. The snapshots of the fitting results with E*p and v(t)
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fabricated data by introducing diverse degrees of perturbation to the recorded observations of infected cells E*p and the SARS-
CoV-2 virus load v. The Monte Carlo simulations are executed employing two distinct distribution frameworks: Gaussian
distribution and Poisson distribution. The intricatemechanics of theMonte Carlo simulation algorithm are delineated in Table
3.

Next, we will present some supplements. A thousand of simulated data come from the

yi ¼ gðxðtiÞ; p̂Þ þ gðxðtiÞ; p̂Þf ei; (10)

where gðxðtiÞ; p̂Þf ei represents the measurement errors with f � 0.
(i) Gaussian distribution: ei, which is assumed to be independent, identically distributed randomvariablewith a zeromean

and a finite variance of s20 at a given error. We draw samples from the Gaussian distribution with a mean equal to the result
vector acquired in the initial step, and a standard deviation of s0% of the mean value. In this scenario, we establish f ¼ 1 in
equation (10) and subsequently generate the artificial dataset by extracting samples from the Gaussian distribution as below

yi ¼ gðxðtiÞ; p̂Þ þ gðxðtiÞ; p̂Þei;

where VarðeiÞ ¼ s20. Hence, the variables yi have mean EðyiÞ ¼ gðxðtiÞ; p̂Þ and variances VarðyiÞ ¼ gðxðtiÞ; p̂Þ2s20. In Fig. 3, we
give a series of plots of the number of synthetic cells or SARS-CoV-2 viruses with different noise levels s0.

(ii) Poisson distribution: Assume the stochastic variables yi have EðyiÞ ¼ VarðyiÞ ¼ gðxðtiÞ; p̂Þ. Fig. 4 depicts the artificial
data produced by perturbing a poisson distribution. Comparing Figs. 1-2 and Fig. 3, we can see that the actual data contain an
approximately 20% Gaussian distribution error.

According to (Miao et al., 2011), the average relative estimation errors for each parameter is calculated by

AREðpðkÞÞ ¼ 100%
1
M

XM
j¼1

���bpðkÞ � pðkÞj

���
bpðkÞ ; (11)

where p(k) represents the kth parameter in the set p. Similarly, p̂ðkÞ is the kth parameter in the true parameter set p̂, while pðkÞj

represents the kth parameter in the estimated parameter set pj.
Applying (11), Tables 4e6 give the average relative estimation errors of the parameters with Gaussian distribution for each

output and noise level. Table 7 gives the average relative estimation errors of all parameters with a poisson distribution for
two data sets. The values of average relative estimation errors provide significant insights into the practical identifiability of
the parameters of the model (1). As expected, amplifying the auditory disturbance within a dataset leads to a concomitant
augmentation of the magnitudes of average relative estimation errors. We have noticed that the values of b and pv of average
relative estimation errors in Table 4 are much more sensitive to the variation of data noise consistence with the consequence
of structurally identifiable analysis. When s0 ¼ 20%, the parameters dE and dv also exhibit significant large absolute average
relative estimation errors, indicating that these two parameters are unidentifiable as well. The remaining parameters values
of average relative estimation errors exhibit small changes in magnitude compared with above parameters and fall in a
relatively reasonable range and so they are practically identifiable.

In order to gain a clear understanding of the identifiable outcomes, we plot the rss in each parameter of model (1) with a
local range and the values of the remaining parameters fixed in Table 2. As we know, a slightly flat graph of the plot signifies
the unidentifiability of the parameter. By examining the vertical axis of Fig. 5, we can once again observe that, apart from the
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Fig. 3. (a)e(e): The plot scenarios of the data E*p generated by Gaussian distributions for each error. (f)e(j): The plot scenarios of the data v generated by similar
processes as in (a)e(e). Figure (a) and (f) with a noise level of s0 ¼ 0%, (b) and (g) with a noise level of s0 ¼ 1%, (c) and (h) with a noise level of s0 ¼ 5%, (d) and (i)
with a noise level of s0 ¼ 10% and (e) and (j) with a noise level of s0 ¼ 20%.
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Fig. 4. Synthetic data sets of E*p and v generated by a poisson distribution
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substantial variation range of (c) and (f), the changes in rss for the remaining four parameters are minimal comparing (c) and
(f). This finding further validates the results presented in Table 4.

To reveal the identifiability of parameters b and pv, we plot a contour graphic and the rss in the b � pv parameter space by
fixing other parameters in Table 2 (see Fig. 6). As shown in Fig. 6(a), the contour plot of b and pv extends infinitely without an
intersection and it consistently aligns with the previous results.

To assess the parameters identifiability of the observable data v, we have conducted a similar procedure to the one used as
data E*p. We calculate the average relative estimation errors listed in Table 5, where true parameters are chosen from Table 2.
Firstly, in the context of structure identification (Remark 2.3), the statement suggests that the parameters pv and Ep(0) are
practically unidentifiable. The investigation of structure identification is conducted under the assumption of noise-free data.
Therefore, if certain parameters are deemed structurally unidentifiable, they are likely to be practically unidentifiable as well.
Table 5
Average relative errors of model parameters with known v (Gaussian Distribution).

Parameters s0 ¼ 0% s0 ¼ 1% s0 ¼ 5% s0 ¼ 10% s0 ¼ 20%

dE 0 72.7 146.3 198.2 351.4
b 0 24.0 3918.2 14704.3 59996.4
dE* 0 42.0 81.4 103.7 154.3
pv 0 39.8 85.2 143.8 226.9
dv 0 44.6 115.8 248.3 467.1
Ep(0) 0 29.0 49.4 58.0 63.0

Table 4
Average relative errors of model parameters with known E*p (Gaussian Distribution).

Parameters s0 ¼ 0% s0 ¼ 1% s0 ¼ 5% s0 ¼ 10% s0 ¼ 20%

dE 0 3.7 12.9 25.1 50.5
b 0 10.9 18.2 29.1 51.5
dE* 0 6.7 14.9 22.7 35.3
pv 0 12.5 22.3 30.1 41.3
dv 0 3.8 9.1 21.3 60.6
Ep(0) 0 6.3 10.7 11.7 11.8

Table 6
Average relative errors of model parameters with known two datasets (Gaussian Distribution).

Parameters s0 ¼ 0% s0 ¼ 1% s0 ¼ 5% s0 ¼ 10% s0 ¼ 20%

dE 0 1.8 10.1 20.2 36.1
b 0 81.2 145.8 202.7 214.1
dE* 0 2.0 10.7 23.0 48.2
pv 0 11.3 54.8 101.3 147.8
dv 0 11.9 58.6 106.4 154.4
Ep(0) 0 0.3 3.2 9.5 22.2
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Table 7
Average relative errors of model parameters with a poisson distribution.

Parameters dE b dE* pv dv Ep(0)

E*p 65.8 114.9 48.6 50.5 153.3 17.1
v 758.3 88544.6 818.1 336.2 541.5 63.2
E*p and v 55.6 260.1 189.6 264.2 273.7 168.2

J. Yang, S. Wu, X. Li et al. Infectious Disease Modelling 9 (2024) 975e994
There is a visualization in Fig. 7 that supports the conclusion of the unidentifiability of pv and Ep(0). We have noted that the
average relative estimation errors of b are relatively large and hence b is practically unidentifiable. As shown in Fig. 7 (b), the
scenario of rss in b looks flat and this further illustrates the unidentifiability of b. Additionally, the average relative estimation
Fig. 5. The scenarios of rss in each parameters with known values of E*p .
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Fig. 6. The scenarios of rss in b � pv parameter space. (a) The contour plot of rss. (b) The surf of rss.
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errors of dv and dE are roughly high when the noise level is taken as s0 ¼ 1%. Fig. 7 (e) and (a) display that the snapshots of rss
in dv and dE have a small magnitude in a certain range and hence they are also unidentifiable. It can be observed that all
parameters, except for b, can be considered as practically unidentifiable, because their rss values fluctuate only by a few tenths
from Fig. 6.

FromRemark 2.2, we have known that system (1) is structurally identifiable if E*pðtÞ and v(t) are observable. Now, we detect

whether it is practically identifiable with two available sets of E*p and v. Similar to the mentioned above, we calculate the AREs
in Table 6 and find that parameter b is practically unidentifiable. Moreover, it follows from Table 6 that the average relative
estimation errors of parameters pv and dv are much larger than those values of other parameters for each noise level. This
indicates that pv and dv are practically unidentifiable, while other parameters are relatively identifiable. Hence, in clinical
trials, it is crucial to prioritize and direct attention towards investigating the transmission rate, replication rate and mortality
rate of the virus. As previously conducted, we have additionally constructed visual representations of the residual sum of
squares (rss) corresponding to each parameter. From Fig. 8, it is evident that the identifiability of b remains elusive.
Furthermore, Fig. 8 (d) and (e) substantiate the profound unidentifiability of pv and dv.

To deeply insight into the parameter identifiability, we compute the AREs in Table 7 with a poisson error and a mean of
gðxðtiÞ; p̂Þ. The observation has shown that parameters b and dv exhibit notably higher values of ARE as the observable data
sets of infected cells. Nevertheless, when the viral load is known, it appears that the average relative errors of parameters b is
relatively high. Therefore, from Tables 4e7, it is evident that the parameters with higher average relative estimation errors
remain consistent irrespective of the data sets perturbing by a Gaussian or a poisson distribution.

4. Impact of parameters on epidemic quantities

Sensitive analysis (SA) of epidemiological parameters allows policy-makers to determine which parameter takes a sig-
nificant impact on the concerned quantity. According to Lemma 1.1, it is established that the basic reproduction number R0
plays a crucial role in determining the persistence of the SARS-CoV-2 infection. The severity of an infection within a host can
be assessed by evaluating the final size of both infected cells and the SARS-CoV-2 virus. Hence, we conduct the SA of the

epidemiological quantities, such as the reproduction number R0, infected cells E*p and virus load v with respect to the pa-
rameters of model (1).

4.1. Elasticity analysis

The elasticity of quantity Q with respect to parameter p can be elegantly formulated as follows

gQp ¼ vQ
vp

� p
Q
: (12)
The elasticity represents 1% changes in parameter p will cause gQ
p % in quantity Q. gQp >0 implies that Q increases with p

while gQ
p <0 means that Q decreases when p increases. The results of elasticities provide useful information on the sensitivity

of the quantity of interest to various parameters and it is helpful for policy-makers to devise corresponding control strategies
to mitigate the disease prevalence.

We first consider the elasticities gR0
p of the basic reproduction number of R0. From (12), we have that
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Fig. 7. The scenarios of rss in each parameters with known values of v.
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gR0
b

¼ gR0
pv

¼ gR0
Epð0Þ ¼ 1;

gR0
dE*

¼ gR0
dv

¼ �1:

The above results reveal that the parameters b;pv; Epð0Þ; dE* ; dv exert nearly identical levels of influence on R0. Additionally, R0
has demonstrated an upward trend concomitant with the escalation in the infection rate b, the release rate of the virus pv, and
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Fig. 8. The scenarios of rss in each parameters with known two datasets.
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the initial quantity of uninfected epithelial cells Ep(0). Conversely, it has exhibited a negative correlation with the simulta-
neous increase in the death rate dE* of infected epithelial cells and the decay rate dv of the SARS-CoV-2 virus.

Similarly, we evaluate the influence of parameters on the eventual epidemic outcome by examining the elasticities of the

endemic infected cells E*p and virus load v as quantities of interest, which are given in Section 1. The corresponding elasticities
are derived as follows:
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g
E*
p

dE
¼ 1;

g
E*
p

b
¼ dvdE*

bpvEpð0Þ � dvdE*

¼ 1
R0 � 1

;

g
E*
p

pv
¼ dvdE*

bpvEpð0Þ � dvdE*

¼ 1
R0 � 1

;

g
E*
p

dv
¼ � dvdE*

bpvEpð0Þ � dvdE*

¼ � 1
R0 � 1

;

g
E*
p

dE*
¼ � dEEpð0Þbpv

dEEpð0Þbpv � dEdvdE*

¼ � 1

1� 1
R0

;

g
E*
p

Epð0Þ ¼
Epð0Þbpv

Epð0Þbpv � dvdE*

¼ 1

1� 1
R0

:

gv
dE

¼ 1;

gv
b ¼ dvdE*

bpvEpð0Þ � dvdE*

¼ 1
R0 � 1

;

gvpv
¼ bpvdEEpð0Þ

bpvdEEpð0Þ � dEdvdE*

¼ 1

1� 1
R0

;

gv
Epð0Þ ¼

Epð0Þbpv

Epð0Þbpv � dvdE*

¼ 1

1� 1
R0

;

gvdE*
¼ � dEEpð0Þbpv

dEEpð0Þbpv � dEdvdE*

¼ � 1

1� 1
R0

;

gvdv
¼ � bpvdEEpð0Þ

bpvdEEpð0Þ � dEdvdE*

¼ � 1

1� 1
R0

:

Utilize the baseline parameter values respectively in Table 2, the elasticities of infected cells E*p and virus load v are given in
Table 8. The second row of Table 8 suggests that the mortality rates of infected epithelial cells and the initial number of
uninfected epithelial cells have the most significant impact on E*p. This observation implies that the direct administration of
medications eradicates both healthy and infected cells, potentially serving as a crucial factor in reducing the prevalence of
infected cells. Vaccination can activate the immune system, triggering the production of antibodies to combat SARS-Cov-2
viral infections. It also activates immune cells, further enhancing the immune response to SARS-Cov-2 virus. This immune
reaction not only protects the vaccinated individual from severe infection but also reduces the severity of the disease and the
risk of COVID-19 transmission.

The third row of Table 8 shows the replication rate of viruses pv and the initial number of uninfected cells Ep(0) have the
greatest influence on the ultimate magnitude of SARS-Cov-2 virus v. Meanwhile, the death rate dE* of infected epithelial cells
and the decay rate dv of the virus have a significantly negative effect on the size of the endemic equilibrium of v. Quercetin
Phytosome (QP), identified as a potential antiviral drug, has been found in clinical trials in the early stages of COVID-19 to be a
potent antioxidant that scour free radicals well. Moreover, QP accelerates the clearance of the virus, leading to a quicker
conversion of molecular test from positive to negative (Pierro et al., 2021). Simultaneously, it diminishes the severity of
symptoms. The RNA-dependent RNA polymerases (RdRp) inhibitors, such as Remdesivir (Eastman et al., 2020) and Azvudine
(Yu and Chang, 2022), effectively halt the replication of SARS-Cov-2 virus during reverse transcription. Hence, the implement
of Ambasvirumab and Romisevirumab serves to inhibit the binding of the SARS-Cov-2 virus to target cells, thereby preventing
the invasion of SARS-CoV-2 virus in an individual (Shan et al., 2022).
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Table 8
The elasticities gQp of R0, E*p and v with respect to parameter values of model (1).

Parameters dE b dE* pv dv Ep(0)

gR0
p 0 1 �1 1 �1 1

g
E
̄

p
*

p 1 0.7 �1.7 0.7 �0.7 1.7
gv

̄

p 1 0.2 �1.2 1.2 �1.2 1.2
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4.2. Dynamical sensitivity analysis

Latin hypercube sampling/partial rank correlation coefficient(LHS/PRCC) sensitivity analysis aims to identify crucial pa-
rameters that introduce uncertainty in predictions, and prioritize these parameters based on their significance in contributing
to this uncertainty. In the realm of sensitivity analysis within the framework of LHS/PRCC, paramount importance is assigned
to parameters showcasing substantial PRCC values, surpassing the threshold of 0.2 or descending below �0.2, along with the
concomitant manifestation of minuscule p-values, breaching the boundary of 0.05. These parameters, deemed as the epitome
of significance, occupy a pivotal role in the evaluation process. These parameters have a strong correlation with the output of
interest, indicating their high importance in influencing the prediction imprecision. By identifying and prioritizing these
parameters, analysts can focus on reducing the uncertainties associated with them to improve the overall accuracy and
reliability of the predictions.

Fig. 9 displays the temporal variation of PRCC values for each model parameter. The shaded gray region in Fig. 9 represents
parameters that have negligible influence on the dynamic process. This figure visualizes the sensitivity of these parameters to
both E*p and v at each moment, allowing us to observe how this sensitivity changes as the dynamics of system (1) evolves. As

shown in Fig. 9 (a), the parameters dE, b, pv and Ep(0) positively impact the evolution of infected cells E*pðtÞ, while dv and dE*

have a negative influence. Specifically, the propagation of infected cells during the initial ten days is predominantly influenced
by the transmission rate b. This can be effectively achieved by impeding the interaction between the S protein presented on
the viral surface and the ACE2 receptor located on host cells within the first ten days of the infectious period (Al-Darabsah
et al., 2023; Taylor et al., 2021). Moreover, the effect of dE on the size of infected cells E*p increases significantly during the

initial ten days and subsequently becomes the dominant factor influencing the size of infected cells E*p. Hence, reducing the

rate dE of decay in healthy cells is effective in reducing the size of infected cells E*p. The mortality rate dE* of infected cells and
dv of viral burden exert a substantial detrimental influence on the proliferation of afflicted cellular collectives. Indeed,
antiviral drugs like remdesivir and lopinavir/ritonavir have been used in the treatment of COVID-19 to reduce the duration of
infection and limit viral replication (Gordon et al., 2020; Liu and Wang, 2020; Sanders et al., 2020).

Conversely, the transmission rate b has the profound impact on the proliferation of the SARS-Cov-2 virus v(t) initially but
diminishes and levels off over time in Fig. 9 (b). Additionally, the death rate dv of viruses and the decay rate dE* of infected cells
have substantial influence on the multiplication of the v(t) at any given moment. This finding, combined with the results of
the sensitivity analysis depicted in Fig. 9 (a), suggests that accelerating the death of the SARS-CoV-2 virus and decreasing the
duration of infectiousness would be more effective in mitigating COVID-19 infections within a host. Absolutely, inhibiting
viral replication is a crucial strategy in controlling the spread of infection and potentially reducing the severity of symptoms.
Fig. 9. The dynamical PRCC values of sensitivity analysis. (a)The dynamical PRCC values of infected cells E*pðtÞ; (b)The dynamical PRCC values of SARS-cov-2 virus
v(t).
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Fig. 10. The significance of parameter identifiability.
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These control measures by targeting specific enzymes or proteins are essential for the replication of the virus. It appears that
the impact of the parameters on infected cells (Fig. 9 (a)) and viruses (Fig. 9 (b)) was approximately similar at last, leading to
comparable final results.
5. Discussion

The parameter identifiability of infectious disease models is a complex and important issue that needs to be considered
comprehensively, taking into account factors such as data quality, parameter uniqueness, and determinacy. Parameter
identifiability refers to the ability to uniquely estimatemodel parameters through observed data. In infectious diseasemodels,
the presence or absence of parameter identifiability directly affects our understanding of the behavior of infectious disease
systems and the accuracy of our predictions. In this paper, we adopted DAISY to find the Gr€obner basis and gave clear out-
comes for the parameter structural identifiability of system (1) with noise-free data. Through the Monte Carlo experiments,
we calculated the values of average relative estimation errors for detecting the parameter practical identifiability of system (1)
with data perturbing by different types of Gaussian and Poisson noises. We found that the parameters are unidentifiable if we
have either the number of infected pulmonary epithelial cells E*pðtÞ or the SARS-Cov-2 virus load v(t). More specifically, if we

measured the number of infected pulmonary epithelial cells E*pðtÞ, model parameters could be identifiable except the
infection rate b and the release rate pv of SARS-Cov-2 virus. We also demonstrated that all parameters are identifiable if both
the infected cells and the virus load data are known or the three state variables are observable. However, if one could ascertain
solely the viral load of the SARS-Cov-2 virus, the unidentifiable parameters encompass the discharge rate pv of the virus and
the initial value Ep(0) of uninfected cells, whereas the remaining parameters are identifiable. Those results are consistent with
the outcomes of parameter structural identifiability.

Through a dynamic sensitivity analysis in detail, we have found that the transmission rate of b and the death rate dE* of
infected cells play consequential roles in mitigating the SARS-Cov-2 infection.While the impact of dE is indeed significant, it is
not considered a feasible approach to kill healthy cells in clinical trials. Currently, some antiviral drugs such as remdesivir and
lopinavir/ritonavir have been used in the treatment of COVID-19. These drugs can interfere with the virus replication process
(reducing the value of b), thereby alleviating symptoms or shortening the course of the disease, i.e, increasing the value of dE* .
In addition, other antiviral drugs are also being tested in clinical trials. Moreover, immunomodulatory drugs such as glu-
cocorticoids are used to control inflammation and reduce the occurrence of related complications. Lemma 1.1 suggests that
the basic reproduction number R0 is a key value determining its long-term behaviors (Nath et al., 2021). According to fitting
results in Section 3.2, the basic reproduction number R0 was estimated either 2.5 or 6.4 from the observable data set of
infected cells or SARS-Cov-2 virus load, respectively. While the value of R0¼ 3.79 as estimated in (Li et al., 2020b), the primary
factor contributing to the difference was the variations in parameter values due to the practical unidentifiability (see Fig. 10).
This emphasizes the significance of investigating the identifiability of parameters. As depicted in Fig. 10, both sets of
parameter estimates yield a satisfactory fitting effect in the case of existing data. However, the prediction of infected cells in
the body differs significantly: one set indicates a gradual decrease, while the other suggests a sustained high level. Once we
determine the identifiability of parameters, it is crucial to focus on those that are non-identifiable. These parameters tend to
be highly sensitive to changes in the system's output and require special attention.
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There are some limitations in this paper. The first one is that the observed data came from some published paper. In
particular, the data of the SARS-Cov-2 virus load were captured in (Zheng et al., 2020) using the Grabit package of MATLAB. It
is undoubtable that there are some certain margin of errors as extracting data from the observable figures. The second one is
that model (1) is directly employed from that in (Li et al., 2020b) and (Nath et al., 2021), which ignores the interaction be-
tween the SARS-Cov-2 virus and immune system response and it represents a consequential mechanism for the mitigation of
SARS-Cov-2 infectionwithin a host. Ultimately, the intricate interplay between the SARS-Cov-2 virus and the immune system,
and the ensuing trade-offs, exert a pivotal influence on the dynamics of transmission at the population level, underscoring the
crucial role they play in devising efficacious control measures. We will continue these topics in the future.
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