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Abstract

Background: Chronic low back pain, a leading contributor to disease burdenworldwide, is

often caused by intervertebral disc (IVD) degeneration. Modic changes (MCs) areMRI sig-

nal intensity changes due to lesions in vertebral bone marrow adjacent to degenerated

IVDs. Only a few studies described the histopathological changes associated with MC to

date.MC type 1 is suggested to be associatedwith bonemarrow infiltration of fibrovascu-

lar tissue, type 2with fatty infiltration, and type 3with bone sclerosis in humans.

Methods: This study investigated whether the dog can be a valuable animal model to

research MCs, by examining the prevalence, imaging, and histological characteristics

of lumbar MCs in dogs (340 dogs, 2496 spinal segments).

Results: Logistic regression analysis indicated that the presence of lumbosacral MCs

was associated with age and disc herniation (annulus fibrosis protrusion and/or

nucleus pulposus extrusion). According to MRI analysis, MCs were mostly detected at

the lumbosacral junction in dogs. Most signal intensity changes represented MC type

3, while previous spinal surgery seemed to predispose for the development of MC type

1 and 2. Histological analysis (16 dogs, 39 spinal segments) indicated that IVDs with

MCs showed more histopathological abnormalities in the endplate and vertebral bone

marrow than IVDs without MCs. Mostly chondroid proliferation in the bone marrow

was encountered, while the histologic anomalies described in humans associated with

MCs, such as fibrovascular or fatty infiltration, were scarcely detected.

Conclusions: Dogs spontaneously develop MCs, but may exhibit other pathological

processes or more chronic bone marrow pathologies than humans with MCs. There-

fore, more research is needed to determine the translatability of the MCs encoun-

tered in dog low-back-pain patients.
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1 | INTRODUCTION

Chronic low back pain (LBP) is the leading cause of years lived with

disability in humans worldwide.1,2 Although a specific cause of LBP

can often not be accurately identified, intervertebral disc (IVD) degen-

eration (Figure 1) plays an important role in symptomatic individ-

uals.3,4 In a degenerated IVD, loading is converted to the annulus

fibrosis (AF) and end plate (EPs), which can result in herniation (in this

manuscript considered as protrusion of the AF and/or extrusion of

the nucleus pulposus [NP]), tearing of the AF, fracturing/thickening

of the EP, and subchondral vertebral bone marrow pathologies.5,6

Modic changes (MCs) are pathological magnetic resonance imag-

ing (MRI) signal intensity changes in the vertebral bone marrow, typi-

cally adjacent to degenerated IVDs.7,8 To date, the etiology of MCs

remains elusive. Suggested risk factors are mechanical stress, IVD

degeneration (IVDD), spondylodiscitis, an autoimmune response of

the bone marrow triggered by the inflamed and herniated NP, genet-

ics, altered metabolism and environmental factors/lifestyle

(e.g., obesity and smoking).9–15 Interestingly, many of these are also

known risk factors for IVDD development.16 MCs are some of the

most clinically relevant spinal phenotypes in humans, often associated

with LBP (primarily type 1 MCs).4,17–27

The general consensus in humans is that in type 1 MCs

(hypointense on T1-weighted [T1W], hyperintense on

T2-weighted [T2W] images7–9), fibrous and vascularized tissue

(granulation tissue) replaces normal bone marrow, and edema and

fissured EPs can be encountered (Figure 2). Type 2 MCs (hyperin-

tense on T1W and T2W) are believed to represent the conversion

of normal into fatty bone marrow (together with increased reactive

bone and granulation/fibrotic tissue infiltration). Activation of the

complement system, an indication for inflammation, has been dem-

onstrated in human MC2 specimens, which has been suggested to

be linked to resorption of the disrupted EP.28 Type 3 MCs (hypoin-

tense on T1W and T2W) are believed to represent subchondral

bone sclerosis. MC type 1 and 2 are interconvertible over time and

can progress into MC type 3,29–31 while about 20% of all MCs are

of mixed type.9 It must be noted, however, that abovementioned

consensus was based on only a few studies that examined the his-

tological features associated with the MC-related signal intensity

changes,7,9,32–35 as tissue specimens from human patients are

scarce and small (surgical samples). Therefore, animal models are

of high importance to study aspects of MCs that cannot be easily

examined in humans, such as histological examination of spinal

segments in which MCs were detected. In this manuscript, we

examine whether the dog can be a useful animal model to

study MCs.

Because of the similarities between humans and dogs in the etiol-

ogy, pathology, and clinical representation of spontaneous IVDD-

related LBP, dogs that are kept as companion animals are considered

a good animal model to study human IVDD.36 As such, studies on

F IGURE 1 Human intervertebral disc
(IVD) compartments in health and disease.

Left: Schematic representation of the
different compartments in a healthy
intervertebral disc. Figure created with
Biorender (www.biorender.com). Right:
macroscopic picture of a healthy (top) and
degenerated (bottom) intervertebral disc.5

AF, annulus fibrosus; Cart. EP,
cartilaginous endplate; NP, nucleus
pulposus.

F IGURE 2 Representative example of
Modic changes (MCs) type 1, 2, and
3 detected in dogs (1.5 T MRI) in analogy
to those detected in humans (3 T MRI)
categorized according to their signal
intensity in T1-weighted and T2-weighted
MR imaging sequences (T1WI and T2WI,
respectively).

2 of 15 BEUKERS ET AL.

http://www.biorender.com


MCs in dogs could also provide additional information for human

patients. In the dog, breeds can be divided into chondrodystrophic

(CD) and non-chondrodystrophic (NCD), based on their physical

appearance. CD dog breeds have short bow-shaped legs because of

disrupted endochondral ossification, which has strongly been linked

with IVDD.37 In CD dogs, IVD disease typically develops in the cervi-

cal or thoracolumbar spinal region at relatively young age and is con-

sidered to be polygenetic.38,39 Large NCD dog breeds can also

develop IVD disease in the caudal cervical or lumbosacral spine at a

later age, mostly due to repetitive microtrauma or “wear and

tear.”36,38

Despite their clinical significance in humans, little is known about

the prevalence, appearance, and risk factors for MCs in dogs.40–42

Similarly as in humans, in low-virulent or early stages of discospondyli-

tis (bacterial discitis and osteomyelitis43,44), MR signal intensity

changes in the vertebrae can be encountered that resemble type

1 MCs.45,46 Damage to the EPs is suggested to facilitate the develop-

ment of MCs, as it promotes the interaction between IVD tissue and

the vertebrae, thereby triggering an autoimmune response.15,28 Inter-

estingly, a significant association between vertebral EP changes

detected on MRI and IVD disease of the adjacent disc was established

in dogs,47 indicating that dogs with IVD disease might also be prone

to develop MCs. This is under scribed by that fact that companion

dogs are exposed to similar risk factors as humans, for example, in-

house smoking and obesity. There are also preliminary indications that

the pathophysiology of MCs is different in dogs with respect to the

autoimmune etiology.48

For the abovementioned reasons, the aim of the current retro-

spective study was multifaceted. First, we examined the prevalence

and imaging characteristics of lumbar MCs in dogs with LBP and/or

neurological deficits. Second, we investigated the level of association

between the presence of MCs and demographic and imaging pheno-

types (e.g., age, body weight, breed, the presence of IVDD, disc herni-

ation, and previous spinal surgery). Finally, histological analysis was

performed to determine the histological characteristics of spinal seg-

ments with and without MCs.

2 | MATERIALS AND METHODS

2.1 | Study design and animals

Patient owners approved the use of the anonymized imaging data

for research purposes. MR images of client-owned dogs with LBP

and/or neurological deficits that were referred for MRI of the lum-

bar spine to the Division of Diagnostic Imaging of the Department

of Clinical Sciences, Utrecht University, the Netherlands, between

December 2013 and November 2016, were retrospectively ana-

lyzed by a board-certified veterinary radiologist (MB). Inclusion cri-

teria were the availability of sagittal T1- and T2-weighted turbo

spin-echo sequences of the lumbar spine, which included the lum-

bosacral (LS) junction. Exclusion criteria were imaging findings of

(para)spinal neoplasia.

In total, 340 dogs met the MRI inclusion criteria for this study,

resulting in 2496 spinal segments for evaluation. Medical records

were reviewed to record sex, age (years), body weight (kg), and breed.

Also, the clinical history and location of previous spinal surgery was

recorded to assess whether surgery is a risk factor for the develop-

ment of MCs, as has been suggested in humans.12,49 Fifteen of the

340 dogs underwent previous spinal surgery to the lumbar spine. Two

of these dogs underwent surgical procedures at two locations, result-

ing in 17 spinal segments with surgical intervention.

The study included 154 female (n = 111 castrated) and 186 male

(n = 87 castrated) dogs. The median age of the dogs was 6 years

(range: 4 months–15.5 years). Arranging the dogs in age classes led to

9 young (<1 year old), 48 adolescent (1–2 years old), 195 adult

(3–7 years old), and 88 senior (>8 years) dogs. Their median body

weight was 25.1 kg (range: 2.5–88.0 kg). For statistical analysis, dogs

were grouped in four weight classes: 60 small (<10 kg), 105 medium

(10–25 kg), 156 large (25–50 kg), and 19 giant (≥50 kg) dogs. Breeds

included 290 purebred dogs and 50 mixed breed dogs. The most

represented breeds (more than 5 dogs/breed) were: Labrador

retriever (n = 24), French bulldog (n = 21), German Shepherd dog

(n = 20), Dachshund (n = 17), Golden retriever (n = 12), Border collie

(n = 9), Bernese Mountain dog (n = 7), Boxer (n = 7), Jack Russell ter-

rier (n = 7), Stabyhoun (n = 6), and Staffordshire bull terrier (n = 6).

The following breeds in the population were considered CD: Basset

Hound, Beagle, Cavalier King Charles Spaniel, (miniature) Dachshund,

French/English bulldog, Pekingese, Shi Tzu, Tibetan spaniel, Toy Poo-

dle, Pug, and Welsh Corgi.38,50 Sixty-five dogs (19%) were CD breeds

and 246 (72%) dogs were NCD breeds, while the breed of 29 dogs

was not recorded or unknown (9%).

A second dataset was constructed of surplus research dogs that

were euthanized in experimental studies (no reported history of back

pain and no IVDD induced; n = 10) and dogs from other terminal

experimental studies (in which IVDD was induced; n = 9) (project

numbers AVD108002015285 and AVD108002015282).40,51,52 These

dogs were used for MRI and histological analysis. For the latter, animal

procedures were approved and conducted in accordance with the

Animal Experiments Committee guidelines, as required by Dutch

regulation. In these studies, the effect of different intradiscal (cell-

and nonsteroidal anti-inflammatory drug-based) treatments was

determined using an in vivo model of IVDD employing Beagles, a

CD dog breed. Briefly, IVDD was further induced under fluoroscopic

guidance by a board-certified veterinary surgeon (BM) through par-

tial NP removal and 4 to 6 weeks later 40–50 μL volume of the

treatment (Mesenchymal stromal cell injection [50 μL; 1 � 106

MSCs], Notochordal cell-derived matrix injection [50 μL; 0.5 mg

NCM]). TAA: Triamcinolone injection (40 μL; 8.4 μg TAA) was intra-

discally injected in mildly (spontaneously) and moderately (induced)

degenerated dog IVDs. Three and six months after intradiscal treat-

ment, MRI analysis was performed. Spinal segments with MCs

(n = 16) were selected for histological analysis and compared to a

randomly selected set of segments without MCs (n = 23). For addi-

tional information regarding the intradiscal treatments, see previous

manuscripts40,51,52 and Supplementary File 1.
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2.2 | MRI protocol and analysis

The MRI images in patients and experimental dogs were obtained

using a high field 1.5 Tesla MRI (Philips Ingenia, Eindhoven, the

Netherlands) and analyzed with Picture Archiving and Communication

System software.

MRI was performed under general anesthesia. The dogs were

positioned in dorsal recumbency with the pelvic limbs extending

caudally. The clinical MRI protocol included sagittal T1-weighted

(T1W) Turbo Spin Echo (time of repetition [TR] = 400 ms, time

of echo [TE] = 8 ms), and T2-weighted (T2W) Turbo Spin

Echo (TR = 2500 ms, TE = 110 ms) sequences. Slice thickness and

field of view were optimized for patient size. Other sequences were

available as part of the standard set of clinical sequences, but only

used to diagnose discospondylitis. MCs were evaluated according to

the criteria that apply in humans to enable comparison, analogous

MRI of MCs in humans and dogs are provided in Figure 2. Further-

more, the following components were evaluated in the MRI analysis

(Table 1).

2.3 | Histological analysis

Research dogs that were used for histopathological analysis (n = 19)

underwent MRI and postmortem spinal examination on the same day.

Spinal segments with MCs (n = 16) were included in the current study

and compared to a set of randomly selected segments without MCs

(n = 23). These 39 segments originated from 19 research dogs (Sup-

plementary File 1). The spinal segments (½ vertebral body—EP—NP/

AF—EP—½ vertebral body) were harvested as described previously.5

Briefly, the segments were transected in the sagittal plane, fixed in 4%

buffered formaldehyde solution (Klinipath B.V., the Netherlands) for

14 days, decalcified in PBS with 0.5 M EDTA for 3 months and embed-

ded in paraffin. Five μm sections were mounted on positively charged

glass slides (KP-3056, B.V., the Netherlands) and stained with Hema-

toxylin and Eosin (H/E) and Picrosirius Red/Alcian Blue (PSR/AB).56,57

The IVD, EP, and vertebral bone marrow were blindly evaluated (mod-

ified Boos score6) by a board-certified veterinary pathologist

(GG) using an Olympus BX41 microscope (Olympus Nederland B.V.,

the Netherlands). The modified Boos score (0–29) is used to deter-

mine the degree of histological IVD degeneration and includes the fol-

lowing subcriteria: morphology of the AF, chondrocyte metaplasia in

the AF, tear and cleft formation in NP and AF, chondrocyte prolifera-

tion in the NP, presence of notochordal cells in the NP, PSR/AB

matrix staining of the NP, EP morphology, new bone formation, and

subchondral bone sclerosis.6 EP morphology was scored as: score

0 = regular thickness, homogenous structure, score 1 = slightly irreg-

ular thickness, score 2 = moderately irregular thickness, score

3 = severely irregular thickness with interruption of the EP. Bone

sclerosis was scored as score 0 = no sclerosis, score 1 = mild sclerosis

(2–4� thickness of the dorsal vertebral cortex), score 2 = moderate

sclerosis (>4� the thickness of the dorsal vertebral cortex), score

3 = severe subchondral bone irregularities. The adjacent vertebral

bone was furthermore assessed for infiltration of inflammatory cells,

neovascularization, fatty infiltration, and the presence of chondroid

cells, fibrous tissue, or Schmorl's nodes (NP tissue bulging into the

adjacent vertebrae through an EP defect58).

2.4 | Statistical analysis

Statistical analysis was conducted with IBM SPSS Statistics (version

23.0, IBM Corp., USA). Descriptive statistics reported the prevalence,

TABLE 1 MRI analysis criteria.

MRI analysis

Modic change type7

• MC type 1: hypointense on T1W images

and hyperintense on T2W images

• MC type 2: hyperintense on both T1W

and T2W images

• MC type 3: hypointense on both T1W and

T2W images

Location • Functional spinal unit (Th13-L1, L1-L2,

L2-L3, L3-L4, L4-L5, L5-L6, L6-L7,

and/or L7-S1)

• Cranial and/or caudal EP

• Dorsal (=posterior in human literature9),

central and/or ventral (=anterior in human

literature) part of the EP

Severitya35 • Mild: the largest cranial or caudal extent

of the abnormality involves equal to or

less than 25% of the vertebral body

height;

• Moderate: the largest cranial or caudal

extent of the abnormality involves

between 25% and 50% of the vertebral

body height;

• Severe: the largest cranial or caudal extent

is equal to or more than 50% of the

vertebral body height.

Disc degeneration53,54 • Per spinal segment, IVD degeneration was

graded according to the modified

Pfirrmann classification system for dogs

(I–V)

Disc herniation55 • None

• Disc protrusion with <25% narrowing of

the vertebral canal

• Disc protrusion with 25%–50% narrowing

of the vertebral canal

• Disc protrusion with >50% narrowing of

the vertebral canal or disc extrusion

Discospondylitis41,44 • Paravertebral Short Tau Inversion

Recovery (STIR) hyperintensity or contrast

enhancement

• Contrast enhancement of EPs or

intervertebral disc

• EP erosion

Abbreviations: EP, endplate; MC, Modic change; T1W, T1-weighted; T2W,

T2-weighted.
aVertebral body height was measured on a midsagittal image.
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severity, and location of MC types. Because the prevalence of MCs at the

LS junction (61%) was far higher than at all other spinal segments, it was

decided to perform the univariate analysis and multiple logistic regression

models only with the data from the LS junction. This means that the study

on associations of presence of MC with several factors/determinants was

based on independent data (n = 340 LS junctions).

The strength of association of presence of MC with the categori-

cal variables MCs, sex, age, weight, breed (CD/NCD), disc degenera-

tion (Pfirrmann grade I-V), disc herniation (no, <25%, 25%–50% and

>50% disc protrusion, and disc extrusion) and discospondylitis

(yes/no) was assessed in two stages. First, a contingency table was

constructed and univariable logistic regression of MC with each of

determinants was applied to assess odds ratio (OR) with 95% confi-

dence interval (CI). The chi-square test or Fisher's exact test (when

expected frequencies were below 5) was applied to test indepen-

dence of both factors. Second, a multivariable binary logistic regres-

sion for presence of MC was applied with the explanatory grouping

variables sex, age, weight, breed (CD/NCD), disc degeneration, and

disc herniation using stepwise backward and forward procedures with

standard SPSS criteria, to assess the adjusted OR of the best fitting

model. Both procedures assessed the same final model. No interactions

were added to the model. During the backward stepwise approach, the

change of the coefficients (beta) of each factor was studied for possible

confounding effects (>20%). No confounders were, however, identified.

The variable “other imaging characteristics of discospondylitis” was

excluded from the multivariable analysis, because in a clinical setting dis-

cospondylitis is generally considered a separate disease entity.41,46 For

the binary logistic regression analysis, groups with low frequency were

combined with the adjacent group, for example, dogs of <1 year old

(added to 1–2 years old), Pfirrmann grade 1 (added to Pfirrmann grade 2)

and Pfirrmann grade 5 (added to Pfirrmann grade 4). A low number of

cases was also observed in the group dogs >50 kg without MCs (n = 4),

but it was not combined with another group to avoid a very unequal

range of weights within weight classes. Possible associations between

each of the explanatory factors were studied and tested by chi-square

test or Fisher's exact test (Supplementary File 2).

To investigate whether different types of MCs have different risk

factors, univariable analyses were also performed between each of

the different MC types and the aforementioned variables at the LS

junction. To enable this, IVD segments presenting with multiple types

were assigned to the dominating type: Type 1 MCs had the highest

priority, followed by MC type 2 and last MC type 3. This prioritization

was based on the clinical relevance and stability of MCs reported in

the human literature.7,17,59–61

Finally, we used the dataset of all 2496 spinal segments to inves-

tigate whether previous spinal surgery was associated to MCs. Uni-

variable logistic regression was performed with “previous surgery” as

dependent variable and the determinants MC type 1, 2, and 3.

In all stages, ORs with 95% CI were presented as measures of

association. To calculate the OR for variables with an empty cell

(no subjects), 0.5 was added to each cell. All results were considered

to be statistically significant when p < 0.05. Where applicable data is

provided as mean ± SD.

3 | RESULTS

3.1 | CD and NCD dogs differ in age and weight

The univariable analysis model indicated that age and weight distribution

were significantly different between NCD and CD dogs (Supplementary

File 2). NCD dogs (mean 5.8 years ± 3.1) were older (p < 0.01) than the

CD dogs (mean 5.1 years ± 2.1). Body weight of the large breed NCD

dogs (mean 29.6 kg ± 14.8) was higher (p < 0.001) than that of the smal-

ler breed CD dogs (mean 12.6 kg ± 7.2).

3.2 | MCs are mainly detected at the lumbosacral
junction

MCs were observed in 66% (CI: 60.9–71.2) of the dogs (Figure 3B), of

which the majority had MCs in only one spinal segment (56%, CI: 51–62),

and a much lower prevalence had MCs in two segments (7%, CI: 5–10) or

three or more segments (3%, CI: 1–5). In total, 89.3% (CI: 88.0–90.5) of

the segments showed no MCs, 0.3% showed only type 1 MCs (CI: 0.1–

0.6), 0.6% only type 2 MCs (CI: 0.4–1.0), 7.7% only type 3 MCs (CI: 6.7–

8.9), and 2.1% showed mixed-type MCs (CI: 1.6–2.7) (Figure 3C). This

means that 3% of all detected MCs was type 1, 6% was type 2, 72% was

type 3, and 19% of the detected MCs was of a mixed type. Most MCs

were detected at the LS junction (209 of 340 LS spinal segments; 61%,

CI: 56–67; Figure 3D; p < 0.001 compared to the other vertebral seg-

ments). Within the affected LS junction, most MCs (71%, CI: 64–77) were

located in the cranial EP of the sacrum (Figure 3E). Almost half (49%) of

the MCs detected at the LS junction were present along the whole height

of the EP, while almost 1/3 (31%) were located at the ventral (anterior)

aspect of the EP (Figure 3F). The extension in a cranial or caudal direction

was <25% of the vertebral body height in 83%, 25%–50% of the verte-

bral body height in 14% and >50% of the vertebral body height in 3% of

the MCs in the LS junction.

Finally, 19 dogs showed other imaging signs consistent with discos-

pondylitis at a single segment, all at the segment affected with MCs.

Although discospondylitis is a different disease process, changes were

classified as MCs for descriptive and univariate statistical analysis. In

18 of these 19 dogs, discospondylitis was diagnosed (at MRI level) at the

LS junction.

3.3 | Predictors of LS MCs: age, weight, IVD
degeneration, and herniation

The univariable analysis revealed that MCs (irrespective of type) at the LS

junction (the segment with the highest prevalence of MCs) was more

prevalent in dogs that were older, heavier, with more degenerated IVDs

and/or a higher degree of disc herniation (Table 2). Presence of MCs at

the LS junction was not associated with sex and breed type (CD/NCD).

The different MC types were also individually compared to the

other variables. Type 1 MCs significantly correlated to disc degenera-

tion and herniation (both p < 0.001). When set as dependent variable,
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“other imaging characteristics of discospondylitis” at the LS junction

was associated with type 1 MCs (p < 0.001). Type 2 MCs significantly

correlated to disc degeneration and herniation (both p < 0.01).

Because type 3 changes were most prevalent and dominated the

overall results, they are similar to the overall results shown in Table 2

and are therefore not shown separately.

3.4 | Previous spinal surgery predisposes for the
development of MC type 1 and 2 at the operated level

A univariate analysis was performed to test for associations between

segments that underwent previous spinal surgery (17/2496 segments,

found in 15/340 dogs) and the presence of MCs, since vertebral signal

intensity changes are known to occur in both dogs and humans after

surgery.12,49,62,63 Hemilaminectomy and partial discectomy was per-

formed at eight segments, dorsal laminectomy with partial discectomy

at eight segments and dorsal laminectomy without discectomy at one

segment. MCs were identified in 11 out of 17 (65%) of the operated

segments. Prioritizing the MCs resulted in six segments with MCs

type 1, three with MC type 2, and two segments with MC type

3. MCs developed between the pre and postoperative scans in 5 of

the 12 segments of the client owned dogs that were scanned twice

due to clinical signs related to spine pathology. Unfortunately, no pre-

operative MRI images were available for the remaining five of the

17 segments. Nevertheless, significantly more IVD segments that

F IGURE 3 Modic changes (MCs) type 1, 2, and 3, and mixed types detected in dogs. (A) T1 weighted (T1W) and T2W MRI sequences of the
different MC types. (B) Number of dogs with no, one, or more MCs in their spinal segments. (C) The number of spinal segments in which the
different (single or mixed) MC types were detected. © Copyright 2022 by The Curators of the University of Missouri, a public corporation.
(D) The percentage of segments that showed MCs per intervertebral disc level. Most MCs were detected at the lumbosacral (L7-S1) junction.
(E) and (F) The location of the detected MCs at the L7-S1 junction. Most MCs were detected at the cranial sacral endplate, mostly along the
whole length of the endplate.
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underwent previous spinal surgery showed MCs (65%) than non-

operated segments (10.3%; p < 0.001). When “previous surgery” was

set as dependent variable, a significant association was found with

both MCs type 1 and 2 (MC type 1, OR = 49.8, p < 0.001; MC type

2, OR = 45.7, p < 0.001). Two dogs had suspicion of a post-operative

discospondylitis based on imaging findings.

3.5 | Age and IVD herniation are associated with
the development of MCs at the lumbosacral junction

A multiple logistic regression model demonstrated that age and disc

herniation were significantly associated with the presence of MCs at

the LS junction (Table 3). Dogs of 3–7 years of age were 2.1 times

more likely to have MCs than dogs that were ≤2 years old (p < 0.05).

Dogs older than 7 years old were 3.0 times more likely to have MCs

than dogs ≤2 years old (p < 0.01). The likelihood of developing LS

MCs increased when disc protrusion was more severe or when disc

extrusion was present. Especially disc protrusion that caused more

than 50% vertebral canal stenosis or disc extrusion strongly increased

the odds of the presence of LS (p < 0.001).

3.6 | Other associated variables

In addition to the comparison with the presence of MCs, the asso-

ciation between each of explanatory factors was studied. All vari-

ables showed pairwise significant association except for “disc
herniation” and “sex” or “breed (CD/NCD),” and between “age”
and “sex” (Supplementary File 2). Nevertheless, this did not distort

TABLE 2 Univariable logistic regression analysis for risk factor associations of lumbosacral Modic changes (MCs).

Variables Categories

MCs present (%)

[n = 209 (61%)]

No MCs (%)

[n = 131 (39%)] Odds ratio 95% CI p-Value*

Sex Male 118 (63.4) 68 (36.6) 1.0 Refa 0.435

Female 91 (59.1) 63 (40.9) 0.8 0.5–1.3

Age <1 year old 2 (22.2) 7 (77.8) 1.0 Refa 0.001

1–2 years old 21 (43.8) 27 (56.3) 2.7 0.5–14.5

3–7 years old 122 (62.6) 73 (37.4) 5.8 1.2–28.9

>7 years old 64 (72.7) 24 (27.3) 9.3 1.8–48.1

Weight <10 kg 24 (40.0) 36 (60.0) 1.0 Refa <0.001

10–25 kg 62 (59.0) 43 (41.0) 2.2 1.1–4.1

25–50 kg 108 (62.2) 48 (30.8) 3.4 1.8–6.3

≥50 kg 15 (78.9) 4 (21.1) 5.6 1.7–19.0

Chondrodystrophy CD 36 (55.4) 29 (44.6) 1.0 Refa 0.316

NCD 155 (63.0) 91 (37.0) 1.4 0.8–2.4

Breed type unknown 18 (62.1) 11 (37.9) 1.3 0.5–3.2

IVD degeneration grade

(Pfirrmann)

Grade 1 9 (50.0) 9 (50.0) 1.0 Refa <0.001

Grade 2 61 (50.0) 61 (50.0) 1.0 0.4–2.7

Grade 3 63 (58.9) 44 (41.1) 1.4 0.5–3.9

Grade 4 68 (80.0) 17 (20.0) 4.0 1.4–11.6

Grade 5 8 (100.0) 0 (0.0) 17.0b 0.9–338.3

Disc herniation No 44 (38.3) 71 (61.7) 1.0 Refa <0.001

Protrusion, <25% vertebral

canal stenosis

55 (62.5) 33 (37.5) 2.7 1.5–4.8

Protrusion, 25%–50%
vertebral canal stenosis

39 (66.1) 20 (33.9) 3.1 1.6–6.1

Protrusion, >50% vertebral

canal stenosis

48 (90.6) 5 (9.4) 15.4 5.7–41.9

Disc extrusion 23 (92.0) 2 (8.0) 18.6 4.2–82.6

Other imaging characteristics

of discospondylitis

No 191 (59.3) 131 (40.7) 1.0 Refa <0.001

Yes 18 (100.0) 0 (0.0) 25.4b 1.5–425.3

Abbreviation: CI, confidence interval.
a“Ref” Reference category.
bTo calculate the odds ratio for variables with an empty cell, 0.5 was added to each cell.

*Fisher's exact test.
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the backward procedure of the multivariable binary logistics

regression.

3.7 | Histology

For histological purposes, spinal segments from surplus research dogs

(no reported history of back pain, no degeneration induced) and

research dogs from other experimental studies where IVDD was

induced by partial nuclectomy were used (Supplementary File 1).

Lumbar spines of 16 dogs were available for histological analysis,

providing a total of 39 spinal segments. In six of these segments, type

1 MCs were encountered on MRI, nine segments showed type 3 MCs

on MRI, and one segment demonstrated both type 1, 2, and 3 MCs

on MRI (Figure 4A; Supplementary File 1).

3.7.1 | IVDs with MCs showed histopathological
changes in the vertebral bone

Most dog spinal segments without observed MCs on MRI also showed

no histopathological abnormalities in the vertebral body (Figure 4B).

Chondroid areas infiltrating the bone marrow were, however, observed in

the vertebrae of two dogs without MCs. Four of the six segments in

which type 1 MCs were observed showed chondroid areas in the verte-

bral bone, adjacent to the EP (Figure 4B,H,I). In one spinal segment with

MC type 1, fibrous tissue replaced normal bone marrow (Figure 4B,F,G).

Also, plasma cells were present in the vertebral bone marrow of this spi-

nal segment, suggesting the presence of inflammation. The last spinal seg-

ment with type 1 MCs showed a Schmorl's node and some fibrous tissue

within the vertebral bone marrow. Of the nine segments in which type

3 MCs were observed, abnormal findings were detected in the vertebral

bone marrow of four segments: one segment revealed chondroid areas,

two segments showed fibrous tissue infiltration, and one segment exhib-

ited mild signs of inflammation and chondroid islets within bone trabecula

(Figure 4B). The spinal segment of the only dog with mixed MCs (type

1, 2, and 3) revealed chondroid areas in de vertebral bone marrow and

mild inflammation, together with a Schmorl's node (Figure 4B). Altogether,

this indicates that spinal segments with MCs showed more

histopathological abnormalities in the vertebral bone marrow than seg-

ments without MCs and that chondroid areas were mainly detected in

type 1 MCs.

3.7.2 | Endplate pathologies and vertebral bone
sclerosis are detected in dog IVDs showing MCs

The total modified Boos score was not considerably different between

spinal segments with and without detected MCs (Figure 4C), indicating

that segments with MCs have a histological IVD degeneration grade com-

parable to segments without MCs. As damage to the EP is classified as a

risk factor for the development of MCs,9 we further focused on the sub

criteria addressing EP and vertebral bone morphology. All spinal segments

in which MCs were detected showed a varying degree of abnormal histo-

logic findings in the EP (score 1 for four segments, score 2 for eight seg-

ments, score 3 for four segments) (Figure 4D). However, 17 out of

23 segments without detected MCs (74%) also showed abnormal histo-

logic findings for the EP (score 1 for seven segments, score 2 for seven

segments, and score 3 for three segments). Finally, only one segment

(with MC type 3) was assigned as “severe subchondral bone sclerosis,”
while all other segments were histologically graded as “no subchondral

bone sclerosis” (Figure 4E). Altogether, this indicates that more histologi-

cal EP and bone marrow pathologies are detected in MC-containing dog

spinal segments than in dog segments without MCs.

4 | DISCUSSION

Although dogs suffer from IVD-related LBP like humans, little was

known about MCs in this species. Previous work indicated an associa-

tion between MRI-detected vertebral EP changes and disease of the

adjacent disc in dogs.47 That study, however, did not identify factors

associated with MC nor did it specify MC types, evaluated the whole

spinal column (with spinal segments containing relatively few MCs

compared with LS spinal segments) and had a lower power compared

with the current study. The current study expands the knowledge on

dog MCs as it identified the prevalence, possible associated risk fac-

tors, imaging, and histological characteristics of lumbar dog MCs.

TABLE 3 Multiple logistic regression
model with variables associated with
lumbosacral Modic changes.

Variables Categories Odds ratio 95% CI

Age 0–2 year old 1.0 Refa

3–7 years old 2.1 1.02–4.2

>7 years old 3.0 1.3–6.7

Disc herniation No 1.0 Refa

Protrusion, <25% vertebral canal stenosis 2.8 1.5–5.2

Protrusion, 25%–50% vertebral canal stenosis 3.0 1.5–6.2

Protrusion, >50% vertebral canal stenosis or extrusion 11.4 4.6–27.9

Note: The full model included the variables sex, age, weight, chondrodystrophy, disc degeneration, and

disc herniation.

Abbreviations: CI, confidence interval; OR, odds ratio.
aReference category.
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4.1 | Prevalence of MCs

The prevalence of MCs in the lumbar spine of the studied dog patient

population was 66%, which is higher than the 25% and 5.6% previ-

ously reported.41,42 This could potentially be explained by patient

selection in a second and third-line referral academic veterinary hospi-

tal. All scans in our study included the LS junction, the spinal segment

with by the largest prevalence of MCs in the current study, whereas

previous studies included cervical and thoracic scans,41 or did not

include the LS junction,42 likely lowering the prevalence of detected

MCs. The results of our study and previous studies indicate that the

dog is, to our knowledge, the first animal species in which spontane-

ously developed MCs are detected. Inherent to the retrospective

nature and study design based on availability of complete MRI

F IGURE 4 Histopathological
features observed in dog spinal
segments with and without Modic
changes (MCs). (A) Overview of all
spinal segments used in the current
histological study (n = 39).
(B) Histopathological abnormalities
detected in the vertebral bodies (VB);
abnormalities may co-exist in one

VB. (C) The total modified Boos score
for every included spinal segment
(with/without detected MCs at MRI).
(D) Overview of the endplate
(EP) score for all segments (score
0 = regular thickness, homogenous
structure, score 1 = slightly irregular
thickness, score 2 = moderately
irregular thickness, score 3 = severely
irregular thickness with interruption of
the EP). (E) Overview of the bone
sclerosis score for all segments (0 = no
sclerosis, 1 = mild sclerosis [2–4�
thickness of the dorsal vertebral
cortex], 2 = moderate sclerosis
[>4� the thickness of the dorsal
vertebral cortex], 3 = severe
subchondral bone irregularities).
(F) and (G) H&E stained sections
demonstrating infiltration of fibrous
tissue (*) in the vertebral bone marrow
of a dog with MC type 3. (H) and
(I) PSR/AB stained sections
demonstrating chondroid change (#) in
the vertebral bone marrow of a dog
with MC type 1. (J) H&E stained
section demonstrating normal IVD
tissue and bone marrow, @: NP tissue.
(K) H&E stained section showing
subchondral bone sclerosis (arrow),
and an area with less sclerosis
(arrow point) in the vertebral bone of a
dog with MC type 1, &: IVD tissue.
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records, however, most dogs in the current study were referred for

imaging with clinical indication (LBP or neurological deficits). The

prevalence of MCs in asymptomatic dogs remains to be determined

but is expected to be lower than observed in the current study.

The reported prevalence of human MCs is about 43% in patients

with nonspecific LBP and/or sciatica and about 6% in nonclinical

populations, but varies between studies.10,24,25,46 Presumably, LBP is

noticed later in the disease process in dogs, because of mild, nonspe-

cific initial clinical signs that are not recognized as such by the dog

owner or the first line veterinary practitioner. This probably leads to

relatively delayed diagnostic imaging for LBP (and MCs), possibly

explaining the higher MC prevalence in dogs. The MC prevalence in

humans varies between ethnicities, suggesting that genetic variation

may play a role.25 Also in dogs there might be an association with

breed.38 MRI settings can also influence the observed prevalence, as

classification of MCs depends on MRI field strength.64 In humans,

STIR images have been used, which may visualize a different spectrum

MC presence and types, possibly explaining differences between

human and dog. Concluding, the current study detected a high preva-

lence of MCs in dogs with LBP and/or neurological deficits compared

with humans, possibly because LBP is later noticed and treated

in dogs.

4.2 | MC type 3 is most commonly detected

MC type 3 was most often encountered in the current dog study

(72%). In contrast, in humans mostly MC type 2 is encountered

(16%–50%), followed by MC type 1 (4%–18.5%), and MC type

3 (1.3%–2.8%).7,21,25,30,65,66 We can only speculate what causes this

difference between species. Dogs have thicker subchondral cortices

and thinner cartilaginous EPs compared to humans,36 but whether this

leads to differences in MC development is unknown. Because MCs may

convert to other MC types and because mixed type MCs exist (20% in

humans9 and 19% in this dog study), it is suggested that MCs may

represent different consecutive phases of the degenerative/reactive

process.7,17 MCs type 1 have been associated with rapid and progres-

sive IVDD and might therefore be part of a distinct process different

from the process associated with MC type 2 and 3.67,68 MC type 2 is

thought to remain more stable in time compared to type 1.7,69

The fact that mainly type 3 MCs were detected in the current

study may again indicate that dogs with LBP are scanned at a more

chronic disease stage. This probably relates to the fact that people do

not timely recognize clinical signs that relate to lower back pain in

their dogs and the first line veterinarian also often has difficulties rec-

ognizing those. In addition, MRI is a relatively expensive modality and

as such this diagnostic tool is often reserved for the chronic condi-

tions not responding to conservative treatment. The overlap in histo-

logic findings between type 1 and type 3 MCs also supports the

theory that type 3 MCs can be preceded by type 1 changes27,67,69

and can be regarded as a metaplastic change in the reactive tissue and

thus, that MCs in dogs are also interconvertible over time. To validate

this hypothesis, more longitudinal studies in more dog patients, and

proper characterization of clinical phenotypes is needed. Finally, MCs

have been proposed as a cause of human LBP, but this proposition

remains controversial.46,70 Since the current study included MRIs of

client-owned dogs with LBP and/or neurological deficits, analyzed in

retrospective fashion and in the absence of longitudinal quantitative

and qualitative pain assessment, no conclusions on the association

between MCs and LBP in dogs can be made.

4.3 | MCs mostly detected at the lumbosacral
junction

The current study mainly detected dog MCs at the L7-S1 junction, in

accordance with previous research.41 More specifically, MCs were

mainly present along the whole height of the sacral EP, while in

humans they are mostly present at the anterior part of the vertebra.71

Additionally, only 18% of dog MCs were present in both cranial and

caudal EPs, while this is most commonly the case in humans (78%).30

Similarly as in dogs, human MCs are also mainly present at the L5-S1

junction.72 An explanation for this predilection site is the known asso-

ciation between MCs and IVDD,7,24,31,65,67 as the latter is known to

be most prevalent at the LS junction.38 Another explanation is a high

flexion and extension mobility and a small rotational stiffness in the

dog LS spinal segment, which can cause repetitive stress and eventu-

ally degeneration.73 Dog IVDs are often considered to be under differ-

ent loads than their human counterparts because of the horizontal

versus vertical spinal orientation. To keep the dog spine in a

horizontal position, however, considerable muscle and ligamental

forces are necessary.74,75 Thus, dog spine biomechanics are not much

different from the human situation. Affirmatively, in humans, the

L5-S1 spinal segment also has the highest flexion and extension

mobility,76,77 and a correlation between MC and biomechanics was

established.72 Finally, there is a breed disposition for LS disease in

German Shepherd dogs, indicating that genetics may also play a role

in dogs.78 Because the prevalence of MCs at other sites was too low

for reliable statistical analysis, this study focused on possible risk fac-

tors for MC presence at the LS junction. Whether these possible asso-

ciated factors also apply to other spinal locations remains to be

determined. Concluding, in both humans and dogs, most MCs are

detected at the LS junction, presumably because of their association

with IVDD and biomechanics.

4.4 | Etiology of MCs at the lumbosacral junction

4.4.1 | IVDD

The multivariate analysis of this study indicated that LS MCs in dogs

were associated with age and disc herniation. This is rather similar in

humans, as their MCs are also associated with IVDD.7,24,31,65,67 The

association between dog MCs and IVDD was significant in the uni-

variable, but not in the multivariable analysis, indicating that although

IVDD plays a role in MC development, age and herniation appear to
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be even more important. Nevertheless, a relationship between dog

MCs and IVDD seems plausible, as IVDD correlates to age79–81 and

predisposes for IVD herniation.73,82,83 Lumbosacral MCs were present

in both the cranial and caudal EPs in only 18% of dogs, with the

majority affecting the sacral EP. This seems to contradict with the idea

that the development of MCs is mainly disc driven (as inflammatory

mediators from an abnormal disc would affect both sides equally). To

this end, the present data suggests EP pathology to be involved in the

development of MCs in dogs. The importance of the EP is also sup-

ported by the relatively large number of dogs in this study with MC

type 3 (thought to represent late stage of disease) that had a low Pfirr-

mann grade. Nonetheless, the field of etiopathogenesis of MCs is

under heavy debate, and the study design does not allow for such

speculations and leaves the question unanswered (as MCs may

depend on the population studied, time point of assessment in life-

span, and the initiating factor may be relating to many different vari-

ables, including the disc, the endplate, the paraxial muscles, and the

facet joints).

Despite an abundance of imaging data from MC studies, few

reports detail the histology of MCs. In the current study, 39 spinal

segments of dogs with and without MCs were histologically analyzed.

To gain enough power for proper statistical analysis of the histological

results, we also included spinal segments in which IVD degeneration

was mechanically induced and/or that received intradiscal treatment.

Whether this resulted in different histological changes than in dogs

without these interventions is unknown, and more research is needed

on spontaneously developed MCs in dogs.

In the current study, most EP and vertebral bone marrow abnor-

malities were detected in segments with MCs compared to segments

without MCs, in line with previous reports where vertebral bone and

EP pathologies were associated with MCs.7,9 Affirmatively, EP pathol-

ogies were also associated with IVDD and have been implicated to

contribute to their development,47,84 which seems logical from a path-

ological perspective as the EP provides nutrition to the avascular

IVD.85

In the vertebral bone marrow, chondroid areas, fibrous tissue, and

inflammation were observed in dogs with MC type 1 and 3. Since no

MRI-confirmed MC type 2 samples were available for histological pur-

poses, no conclusions can be drawn for this MC type. A T2W

sequence with fat saturation can give additional information, but since

this sequence was not routinely used, subtle MC type 1 or 2 changes

might not have been detected.41 As two spinal segments without

MCs also revealed chondroid areas in the vertebral bone marrow, MRI

analysis is apparently not sensitive enough to detect all histological

abnormalities, especially using a magnet with a relatively low field

strength of 1.5 T (and therefore limited resolution).64 Only one previ-

ous microscopic study studied 6 spinal segments and indicated that

human MC type 3 represents subchondral bone sclerosis,33 but in our

study only one out of nine spinal segments with MC type 3 showed

sclerosis histologically. The question remains whether MRI is more

sensitive to find changes in the vertebral bone or are we overinter-

preting MRI data? Another explanation might be that by using MRI,

the whole IVD and adjacent vertebral tissue is analyzed, while for

histology only a single or limited numbers of 5 μm tissue slides are

examined at specific tissue level(s), and as a consequence pathology

can be missed when not sectioned. In future studies, micro-CT analy-

sis might help in determining bone volume fraction.

Interestingly, previous work indicated that specimens with idio-

pathic vertebral lesions showed dense collagenous tissue histologi-

cally, while signal intensity changes comparable with MC type 3 were

observed with MRI.86 Furthermore, loose fibrous tissue (with vessels

and edema) and cartilage metaplasia both exhibited imaging character-

istics comparable with MC type 1.86 Finally, bone sclerosis not consis-

tently showed hypointense on T1W and T2W,86 indicating that type

3 MCs can be missed with imaging. Altogether, this indicates that a

specific tissue type with variable density of its fiber arrangement and

especially a difference in composition of the extracellular matrix, may

represent different on MRI and hence lead to a different MC type

classification. Additionally, the current study shows that at least in

dogs, other pathologies than the ones known in humans can be

encountered in spinal segments with MCs, such as chondroid tissue

proliferation. This implies that dogs may exhibit different or more

chronic bone marrow pathologies than humans with MCs. Because

only limited histological studies on (human) spinal segments with MCs

are available, however, more research on the histology of MCs in dif-

ferent species is strongly recommended.

4.4.2 | Discospondylitis

The diagnosis of discospondylitis in our patient population was based

on imaging characteristics, as biopsies and bacteriological culture were

unavailable in most dogs due to the location of the presumed infec-

tion. MRI characteristics compatible with discospondylitis were found

in 5.5% (19/340) of dogs referred for MRI analysis of the lumbar

spine. Previous work found a comparable prevalence (3.4%) in dogs

referred for spinal imaging.87 A significant association was further-

more detected between discospondylitis (diagnosed with MRI based

on imaging characteristics such as end plate lysis) and MC type 1, indi-

cating that MC type 1 is associated with characteristics that are also

commonly encountered in discospondylitis. Affirmatively, MRI signal

intensity changes are common findings in dogs with discospondylitis

and resemble type 1 (acute phase) or type 3 MC.44,88 Although spon-

dylodiscitis, the human variant of discospondylitis in dogs, is not com-

mon (incidence of between 0.2 and 3.7/100000 per year89), a

bacteriological etiology has also been suggested as cause for human

MCs.9,45,46 Concluding, MCs can be caused by pathological

EP/vertebral bone changes due to IVDD, but also by infections, and

therefore it is recommended to look for (other) characteristics of

infections when MCs are encountered.

4.4.3 | Previous spinal surgery

By analyzing MRIs of 15 (out of 340) dogs with previous surgery, this

study demonstrated that previous spinal surgery increased the
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likelihood of developing MCs (>6 times), especially MC type 1 and

2, as is also known in humans.12 Noteworthy, dogs were only scanned

after a surgical procedure when clinically indicated (i.e., persistent or

recurrent pain and/or neurologic deficits), implying that the true prev-

alence of MCs after surgery is not exactly known, but is probably

lower. Besides, inherent to the retrospective nature of the study, it

was not known for all dogs whether the MCs were already present

before surgery, and if the MCs converted over time. Spinal surgery,

that may include partial discectomy, probably induced MCs by iatro-

genic damage or postoperative infections. The latter was suspected in

two dogs in this study. In our previous study, more severe IVDD was

mechanically induced by partial NP removal (different from the spon-

taneous process of mild IVDD36,38,40) in dogs. After 6 months, 6 out

of 20 of these spinal segments had developed MCs, whereas no MCs had

developed in the spinal segments in which no degeneration was

induced,40 indicating that the MCs were caused by iatrogenic trauma.

Previous work supported this, as dog EPs and subchondral bone showed

histological abnormalities such as microfractures and sclerosis after dis-

cectomy62,63 and in an induced IVDD model.90 Also in humans, EP inten-

sity changes can be observed after (non-specified) surgery for herniated

discs.49 Altogether, MCs were detected in dogs that underwent pervious

spinal surgery, but it remains to be determined whether these MCs were

caused by IVDD that was already present before surgery, by postopera-

tive infections, or by mechanical damage due to the surgical procedure or

a combination of these factors.

5 | CONCLUSIONS

This study shows that as in humans, MCs in dogs were most often

detected at the lumbosacral junction. MRI signal intensity changes

mostly represented MC type 3, while previous spinal surgery was

associated with the presence of MC type 1 and 2. As in humans, MCs

in dogs were associated with age and disc herniation. Finally, spinal

segments with MCs showed more histological abnormalities in the

endplate and vertebral bone marrow than those without MCs. Mostly

chondroid infiltration was encountered, while the histologic anomalies

described for humans were scarcely detected. This implies that dogs

may exhibit other or more chronic vertebral bone marrow pathologies

than humans with MCs. Comparative histological analysis of endplate

changes associated with MC may increase the understanding on end-

plate pathology related to LBP. Finally, more research is needed to

determine the translatability of MCs observed in dogs suffering from

LBP toward those observed in human LBP patients.
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