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ABSTRACT The vast majority of annotated transcripts in bacteria are mRNAs. Here we identify ~1,000 antisense transcripts in
the model bacterium Escherichia coli. We propose that these transcripts are generated by promiscuous transcription initiation
within genes and that many of them regulate expression of the overlapping gene.

IMPORTANCE The vast majority of known genes in bacteria are protein coding, and there are very few known antisense tran-
scripts within these genes, i.e., RNAs that are encoded opposite the gene. Here we demonstrate the existence of ~1,000 antisense
RNAs in the model bacterium Escherichia coli. Given the high potential for these RNAs to base pair with mRNA of the overlap-
ping gene and the likelihood of clashes between transcription complexes of antisense and sense transcripts, we propose that anti-
sense RNAs represent an important but overlooked class of regulatory molecule.
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Recent high-throughput sequencing analyses of RNA in eu-
karyotes have revealed a far more complex network of RNAs

than previously appreciated, including thousands of RNAs anti-
sense to protein-coding genes (aRNAs) (1). In contrast, relatively
few aRNAs have been identified in bacteria (2). Studies of individ-
ual plasmid-encoded and chromosomally encoded aRNAs in a
variety of bacterial species have demonstrated that aRNAs can
regulate expression of the overlapping gene at the level of transla-
tion, mRNA stability, or transcription (3–11). Several studies have
hinted at the existence of many more aRNAs, in multiple bacterial
species, than those currently described (5, 8, 10, 12–18), suggest-
ing that aRNAs have a widespread regulatory function in bacteria.

We sought to identify novel aRNAs in Escherichia coli. We gen-
erated a cDNA library by extracting RNA from rapidly growing
cells (wild-type strain MG1655 grown with aeration in LB to an
optical density at 600 nm [OD600] of 0.7), treating the RNA with
tobacco acid pyrophosphatase to convert 5=-triphosphate groups
to monophosphates, ligating an RNA oligonucleotide (5=-ACAC
UCUUUCCCUACACGACGCUCUUCCGAUCU-3=) to the
RNA 5= ends, reverse transcribing with a primer in which the nine
3=-end proximal bases are random (5=-GTTTCCCAGTCACGAT
CNNNNNNNNN-3=), and amplifying by PCR. Using Solexa se-
quencing, we identified unique RNA 5= ends. The mapped RNA
5=-end locations include many known transcription start sites:
24% of sequences of published transcription start sites are
matched exactly by a sequence from our library, and 41% of those
sequences are �2 bp away from a sequence from our library (19).
The exact matches include the majority of known aRNAs (GadY,
RyjB, RdlA, RdlD, RyeA, SokB, and SokC). The RNA 5=-end loca-
tions also include 1,005 locations that map antisense to protein-
coding genes (see Table S1 in the supplemental material), suggest-

ing the existence of many more aRNAs. These putative aRNA 5=
ends were each sequenced between 1 and 5,488 times. An addi-
tional 385 ends map antisense to known and predicted 5= and 3=
untranslated regions (UTR) (see Table S1 in the supplemental
material) (20).

The housekeeping � factor �70 binds a bipartite DNA sequence
at E. coli promoters during transcription initiation. The down-
stream recognition site, the �10 hexamer, has the consensus se-
quence TATAAT and is typically positioned 7 or 8 bp upstream of
the transcription start site (21). For the set of 471 published tran-
scription start sites (19), the �10 hexamers match the consensus,
on average, 3.28 times out of 6 (�10 match score) (base distribu-
tion shown in Fig. 1A). In contrast, 1,000 randomly selected se-
quences antisense to genes match the consensus only 2.00 times
out of 6 (control match score) (base distribution shown in
Fig. 1B). This difference is highly significant (Mann-Whitney
U test, P of 8.9e�70). Furthermore, 46% of the RNAs with pub-
lished start sites initiate with “A,” significantly more than expected
by chance (P � 1e�22) (Fig. 1A and B). The �10 hexamer se-
quences for the 1,005 putative aRNAs identified in this work have
a �10 match score of 3.27, significantly higher than the control
match score (Mann-Whitney U test, P of 8.8e�102) (base distribu-
tion shown in Fig. 1C). This holds true even for the 141 aRNA 5=
ends that were sequenced only once (score of 3.12; Mann-
Whitney U test, P of 2.8e�21). The �10 match score for the 1,005
aRNAs is not significantly different from that for the set of pub-
lished start sites (Mann-Whitney U test, P � 0.49). Moreover,
48% of the putative aRNAs initiate with “A,” significantly more
than expected by chance (P � 1e�50) (Fig. 1B and C) but not
significantly different from the set of published start sites (Fisher’s
exact test, P of 0.40) (Fig. 1A and C). Thus, the promoters and
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transcription start sites of the 1,005 putative aRNAs have DNA
sequence properties that are indistinguishable from those of char-
acterized transcripts.

To experimentally validate the putative aRNAs, we fused the
promoter regions (up to 200 bp upstream of the putative tran-
scription start site) of 10 aRNAs to a lacZ reporter gene and mea-
sured expression levels in a �-galactosidase assay. In 9 out of 10
cases tested, we detected lacZ expression that was significantly
reduced by mutation of the �10 hexamer (Fig. 2A). We conclude
that the large majority of putative aRNAs are genuine and that our
transcription start site assignments are highly accurate.

We selected two mRNAs, rplJ and yrdA, that each overlap a
putative aRNA. We translationally fused the mRNAs in frame to
lacZ, under control of the natural mRNA promoter, and com-
pared the expression levels of lacZ for a wild-type construct and a
construct containing a mutated �10 hexamer and �1 nucleotide
for the aRNA (�1 nucleotide not mutated for yrdA). Expression

of lacZ increased significantly upon mutation of the aRNA pro-
moter for rplJ but not for yrdA (Fig. 2B). This strongly suggests
that the aRNA overlapping rplJ represses expression of the mRNA.

Our data demonstrate that (i) antisense transcription is wide-
spread in E. coli and (ii) aRNAs can regulate expression of the
overlapping gene. Regulation by aRNAs is likely to be widespread,
since all previously characterized bacterial aRNAs regulate expres-
sion of the overlapping gene (3–11). The majority of aRNAs are
likely to be noncoding due to constraints imposed by the overlap-
ping protein-coding sequence. A small fraction of aRNAs may be
mRNAs for which the 5=-end UTR is antisense to another gene;
however, this is unlikely in most cases, since only 21% of aRNAs
initiate �500 bp upstream of a known translation start site on the
same strand. Since they are likely to be noncoding, aRNAs are also
likely to be substrates for Rho-dependent termination, which oc-
curs within the first few hundred nucleotides of transcription (14).
We conclude that the majority of aRNAs are short (�500-
nucleotide), noncoding transcripts.

We speculate that most of the novel aRNAs are generated by
promiscuous transcription initiation within genes, as has been
suggested for eukaryotic genomes (22). This hypothesis is consis-
tent with the presence of many transcription factor and � binding
sites within genes (15, 18, 23–26), the low information sequence
requirements required to promote transcription in bacteria (21),
and the absence of inhibitory chromatin structure within bacterial
genes (26). aRNAs are likely to have a major impact on bacterial
gene expression due to the high potential for base pairing with an
mRNA and the high likelihood of transcriptional interference re-
sulting from the overlap of aRNA and mRNA transcription units.
Given that aRNAs have been identified in a wide range of bacterial
species, we propose that aRNAs are important regulators of gene
expression in all bacteria.

NCBI short read archive accession number. Raw sequencing
data are available under Accession Number SRA012168.4.
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