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ABSTRACT
We recently reported that a DNA plasmid coding p62-SQSTM1 acts as an effective 

anti tumor vaccine against both transplantable mouse tumors and canine spontaneous 
mammary neoplasms. Here we report the unexpected finding that intramuscular 
delivery of p62 DNA exerts a powerful anti-osteoporotic activity in a mouse model 
of inflammatory bone loss (i.e, ovariectomy) by combining bone-sparing and osteo-
synthetic effects. Notably, the suppression of osteoporosis by p62DNA was associated 
with a sharp down-regulation of master inflammatory cytokines, and up-regulation 
of endogenous p62 protein by bone-marrow stromal cells. The present data provide 
a solid rational to apply p62 DNA vaccine as a safe, new therapeutic for treatment of 
inflammatory related bone loss diseases.

INTRODUCTION

The adapter protein p62 (also known as seq
uestosome1/SQSTM1) is a multifunctional molecule 
involved in a myriad of cellular processes that modulate 
proliferation, cell death, inflammation and immune res
ponse [1]. Further studies demonstrated that p62 plays 
an important role in pathophysiology of human diseases 
including neurodegenerative diseases, lung disease, 
obesity, insulin resistance, cancer, and Paget’s disease of 
bone [2]. Since p62 holds a key role in innate immunity 
by regulating inflammatory signaling cascades, the 
hypothesis that deregulated p62 is linked to the chronic 
allostasis that foster dreadful inflammatory disorders 
is gaining ground [3, 4]. Accordingly, p62 has been 
envisaged as a potential target in cancer, infectious and 
inflammatory diseases [5].

We first reported that p62 could be a target for 
cancer immunotherapy. Indeed, we provide evidence that 
DNA plasmidencoded human p62 triggered effective anti
tumor/antimetastatic activities in four models of allogenic 
mouse tumors (i.e. melanoma, lung carcinoma, sarcoma, 

and breast cancer) [6]. We also demonstrated that p62 
DNA plasmid when administered in neoadjuvant (pre
operative) setting decreased and/or stabilized growth of 
advanced lesions in canine mammary tumors [7].

Although there are no in vivo data regarding the 
role of exogenous p62 in inflammation, there are some 
in vitro evidence suggesting that p62 may act as an 
important regulator of cytokine expression [8–11]. In 
example, in activated macrophages p62 overexpression 
and underexpression clearly lead to opposite effects 
pointing to the inhibitory role of p62 in cytokine 
expression, thus providing a mechanism by which 
p62 controls excessive inflammatory responses [11]. 
Of much interest, is a recent report that highlights the 
antiinflammatory tumor suppressor potential of p62, 
as its downregulation in the tumor stroma fosters an 
inflammatory response that enhances tumorigenesis both 
in vitro and in vivo [12].

The existence of a causal link between inflammation 
and p62 is further supported by the observation that 
the lack of a p62 (or macroautophagy) contributes to 
inflammation in aging [4]. The term “inflammaging” was 
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coined at the beginning of this century by Franceschi et al. 
[13] to refer to a lowgrade proinflammatory phenotypes 
which accompany aging in mammals and that predispose 
the organism to develop several agerelated diseases.

Osteoporosis is, by far, the leading agerelated 
disease affecting mostly women after onset of menopause. 
Because estrogens contribute to bonesparing activity by 
inhibition of bone remodeling (coupled with a balancing 
effect on bone formation and resorption), decreased 
levels of circulating estrogen at menopause results in 
a rapid bone loss [14]. Further observations indicate 
that the estroprivic bone loss reflects increased number 
of T cells, that in concert with macrophages and bone 
marrowderived stromal cells promote the release of pro 
inflammatory cytokines (e.g TNFα and IL1β beta, IL6, 
and RANKL) that propel osteoclastogenesis, and thereby 
bone erosion [15] (See Supplementary Figure 1). Finally, 
the strong link between inflammation and osteoporosis is 
further evidenced by clinical studies showing that chronic 
inflammatory diseases of almost any cause, are associated 
with bone loss (osteopenia) [16].

Based on the putative antiinflammatory role of 
p62, together with the fact that p62 physiologically con
trols osteoclastogenesis and bone remodeling [17], we 
hypo thesized that p62 DNA vaccine could compensate 
for osteoporosis. To test the hypothesis we carried out 
experiments by injecting p62 DNA in ovariectomized 
(OVX) mice. Since ovariectomy induces chronic 
inflam mation in mice and in humans [18], this animal 
model is widely utilized to study premature aging [19], 
and to test experimental antiosteoporotic drugs and 
biologicals [20].

The results shown below are representative of 
those obtained by in independent trials carried out both in 
preventive and therapeutic settings.

RESULTS AND DISCUSSION

p62 DNA administration prevents osteoporosis in 
OVX mice

To evaluate whether p62 vaccine was able to 
prevent osteoporosis, groups of mice were first injected 
either with experimental (p62DNA) or reference 
plasmids (pcDNA 3.1) and then ovariectomized (OVX). 
For each trial a control group of sham operated (SO) 
mice was included (see M&M for details). Two months 
after surgery mice were sacrificed, and the collected long 
bones subjected to histological examination. As expected, 
the metaphyseal regions of the distal femurs from 
pcDNA3.1OVX mice displayed classical osteoporotic 
features characterized by significant bone loss and 
thinned disconnected trabecular structure (Figure 1B, 
1E). On the other hand, p62OVX bones (Figure 1C, 1F) 
showed a microarchitecture essentially indistinguishable 
to that seen in SO mice (Figure 1A, 1D). Moreover, 

examination of cross sections femur diaphysis from 
p62DNAOVX mice revealed (at variance of those 
obtained from reference plasmids treated mice) an 
enhanced anabolic  osteoblastic activity as evidenced 
by new cortical bone apposition suggesting an anabolic 
action of p62 treatment. (Figure 1G−1L).

Fully consistent with the morphological findings are 
the biochemical results obtained by utilizing bone marrow 
stromal cells (BMCs) retrieved from plasmids pretreated 
mice. In these experiments BMCs were flushed from 
the bone cavities, and cultured for 3 days. Afterwards, 
both supernatants and cells were collected and analyzed 
respectively either for the release of inflammatory 
cytokines, or for expression of osteogenic markers. As 
illustrated in Figure 2, we observed that the marked up
regulation and release of proinflammatory cytokines 
by BMCs from OVX compare to SO operated mice was 
drastically suppressed by p62DNA pretreatment. The 
inhibitory effect of p62 DNA extended to an array of 
cytokines such as TNFα, IL6, IL1b IL17, all known 
to be essential inducers of inflammatory diseases and 
bone loss [21]. As far as the capability of p62DNA to 
induce new bone formation is concerned, western blotting 
analysis of p62OVX BMCs extracts indicated a strong 
and selective increase of osteogenic markers, such as 
Runx2 and Osterix transcription factors [22]. An increase 
of Runx2 and Osterix, although weaker, was also found in 
p62 SO mice (Figure 3).

p62 DNA as an anti-osteoporosis therapeutic

After establishing that p62 DNA vaccine 
demonstrates robust effects not only in preventing 
osteoporosis but also in inducing new bone formation, 
we assessed the therapeutic potential of p62 DNA in 
case of established osteoporosis. In these trials, mice 
were ovariectomized and, after two months, injected 
either with p62DNA or reference plasmids (see M&M 
for details). Two months after last plasmids injections, 
bones were collected and histologically evaluated. In 
this set of experiments we reproducibly found that 
OVXp62 treated mice group (at variance of control 
groups) showed a restored trabecular microarchitecture at 
metaphyseal regions of the distal femurs and a decreased 
porosity in cortical bone (Figure 4A−4H). In addition, 
p62DNA treatment proved to increase both bone mineral 
density (BMD) and content (BMC) as judged by DEXA 
analysis (Figure 5A−5B). Finally, coupled with marked 
upregulation of osteoblastogenic Runx2 and Osterix 
(Figure 6A), a strong inhibition of two majors bone 
resorptive factors such as TNFα and RANKL was also 
observed in BMCs from OVXp62 mice. It is worth 
noting that RANKL is a key mediator of inflammation 
that, by binding to its receptor RANK on osteoclast 
precursors, fosters osteoclastogenesis via intracellular 
NFkB signaling [23]. In our experimental setting, a 
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downregulation of NFkB in OVXp62 BMCs was also 
observed (Figure 6B).

A unexpected ring: exo-p62 up-regulates 
endo-p62 expression

As anticipated, although there are reports in the 
literature suggesting that in vitro overexpression of p62 
may dull the production of inflammatory cytokines [11], 
there are no in vivo data about a putative role of exogenous 
p62 DNA in inflammation. While not wishing to be held 
by theory, we evaluated the expression levels of p62 in 

BMCs retrieved from plasmids injected in mice before 
ovariectomy. With much of our surprise, we found that 
while p62 expression in BMCs was downregulated by 
ovariectomy, BMCs from p62 DNA preinjected mice 
demonstrated a sturdy and selective upregulation of 
p62 (Figure 7A). Consistently, an increased p62immune 
labeling was observed at the epiphyseal region of femurs 
of p62OVX mice (Figure 7B).

Next we asked whether this enhanced p62 
immunereactivity refers to exogenous human p62DNA 
or to endogenous mouse p62. In order to distinguish 
between these two possibilities we utilized two types 

Figure 1: p62 DNA prevents osteoporosis. Representative reconstructions of metaphyseal regions of the distal femurs from sham 
operated (A, D), pcDNA3.1OVX (B, E) and p62 DNAOVX mice (C, F). Arrows indicated the thinner and reduced trabecular network in 
pcDNA3.1OVX mice (E) compared with that observed in p62 DNAOVX mice (F) Representative section of femur mid diaphysis from 
sham operated (G, J), pcDNA3.1OVX (H, K) and p62 DNAOVX mice (I, L). Arrows indicated cortical bone porosity in pcDNA3.1
OVX mice (K) and the new bone apposition in p62 DNAOVX mice (L) Magnifications: 10x (D, E, F, J, K, L), 5x (G, H. I).
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of antip62 antibodies for western blotting analysis of 
BMCs extracts: a polyclonal rabbit Ab that recognized 
both human and mouse p62, and a monoclonal Ab 
that recognize only human p62 [24]. A human p62 
recombinant protein was loaded as positive control. 
As depicted in (Figure 7C), we found that p62DNA 
administration clearly upregulates endogenous p62 
protein in bone marrow resident cells.

A growing understanding of the bone remodeling 
processes suggest that factor involved in inflammation 
are linked with those critical for bone physiology and 
remodeling, supporting the theory that inflammation 
significantly contributes to the aetiopathogenesis of 
osteoporosis. Indeed, our results provide for the first time 
evidences that in this model (OVX) of inflammation 
mediated osteopenia, p62DNA, by exerting powerful 

antiinflammatory effects, counteracts bone loss, and 
as consequence, promotes new bone formation [25]. 
Importantly, the dramatic effects of p62 DNA on bone 
homeostasis were not associated with any side effects 
as demonstrated by previous longterm toxicological 
studies [26]. In this context it has to be underlined 
that the major pharmacological interventions for 
osteoporosis, so far proposed, evidenced a long list of 
worrisome side effects [27, 28].

Taken together, our data can be viewed as proof of 
concept for preclinical and clinical development of an 
unprecedented strategy based on p62DNA to counteract 
osteoporosis [29]. More broadly, we hypothesize that 
the administration of p62 DNA may quench chronic 
inflammatory reactions underpinning a variety of age
related diseases.

Figure 2: p62 DNA pretreatment decreases pro-inflammatory cytokines and chemokines release in OVX mice. Cytokines 
and chemokines release was analyzed in medium from bone marrow cultures obtained by sham operated, p62 or pcDNA 3.1 pretreated 
OVX mice. (*p < 0.05).

Figure 3: p62 DNA increases osteogenic markers. Total bone marrow cell populations were obtained from long bones of sham 
operated, pcDNA3.1OVX and p62 DNAOVX mice and were examined by Western blotting for Runx2 and osterix expression. (*p < 0.05).
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Figure 4: p62 DNA rescues osteoporosis. Representative reconstructions of metaphyseal regions of distal femurs from OVX
pcDNA3.1 (A, C) and OVXp62DNA mice (B, D). Arrows indicated the trabecular bone loss (C) and the restored trabecular microarchitecture 
(D) Representative sections of femur mid diaphysis from OVXpcDNA3.1 (E, G) and OVXp62 DNA mice (F, H). Note the expansion of 
the medullary cavity and the resorption cavities within the cortex (Arrow, G). Arrows indicated the reconstitute cortical bone structure (H) 
Magnifications: 10x (C, D, G, H), 5x (E, F).
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Figure 5: BMD and BMC evaluation after p62 treatment. Bone mineral density (A) and bone mineral content (B) were increased 
in OVX mice treated with p62encoding plasmid. (*p < 0.05).

Figure 6: p62 vaccine decreases pro-inflammatory markers. Total bone marrow cell population was obtained from long bones of 
OVX, OVXpcDNA3.1 and OVXp62 DNA. Note the statistically significant increase of Runx2 and osterix (A) as well as the decrease of 
RANKL, TNFα and NFkB (B) protein levels only after p62 treatment. (*p < 0.05).
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MATERIALS & METHODS

DNA Plasmids

Human p62 (SQSTM, isoform 1) was cloned in 
pcDNA3.1 (InVitrogene) vector as previously described 
[6]. Large scale preparations of the endotoxinfree 
plasmids were routinely performed by alkaline lysis 
using either Endo Free Plasmid Kit (Qiagen) or 
Gen Elute HPSelect Plasmid Giga Prep columns 
(SIGMA # NA0800). For intramuscular injections 
(femoral quadriceps), mice were anesthetized and 
injected with 100 μg DNA (1 mg/ml) in saline 
solutions. All groups were subjected to three injections 
at one week intervals.

Animals and treatments

Theemonth old female FVB and Balb/c mice 
(Harlan Italy SrL, Correzzana Milano, Italy) were used. 
Mice were kept in laminarflow cage in a standardized 
environmental condition. In prevention trials mice were 
randomly distributed in three groups (G1–G3) and injected 
intramuscularly at week 0, 1, 2 with only saline (G1, 
n = 12), with pcDNA3.1 (G2, n = 12), or with hp62 DNA 
(G3 n = 12). At day fortyfive after the last injection, mice 
from each group were randomly divided in two subgroups 
and were sham operated (SO; n = 6) or ovariectomized 
(OVX n = 6). After two months mice were sacrificed by 
CO2 narcosis according to the recommendation of the 
Italian Ethical Committee. For therapeutic trials mice were 

Figure 7: p62 encoding plasmid up-regulates the endogenous p62 protein synthesis. p62 protein levels were detected in total 
bone marrow population (A) and in the epiphyseal areas of femur sections (B) by Western blotting and immunofluorescence, respectively. 
Note the increase of p62 synthesis in samples from p62OVX mice. Evaluation of p62 levels in BMCs by a specific mouse/human antibody 
or by a specific human antibody. Note the lack of human p62 detection, and the increase of mouse p62 protein in BMCs from p62OVX 
mice (C) (*p < 0.05).
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ovariectomized (OVX) and left untreated for 2 months. 
Afterwards, mice were randomized in 3 groups, and 
injected with plasmids as described above. After 2 months 
mice were sacrificed for analysis.

Histological bone analysis and immuflourescence

Femurs, dissected of adhering tissue, were fixed in 
4% paraformaldehyde (PFA) for 24 h, decalcified in 14% 
EDTA solution for 3 days and soaked in 30% sucrose 
overnight. Samples, embedded with TissueTek OCT 
compound, were sectioned (8 μm thick sections) by a 
rotatory −30°C microtome cryostat (Ames Cryostat Miles) 
and stained with toluidine blue.

Other sections, after permeabilization with 0.3% 
Triton X100 were incubated with rabbit antip62 diluted 
1: 800 (Enzo Life Sciences; VinciBiochem s.r.l., Firenze, 
Italy) diluted 1:400. After rinsing, sections were incubated 
with chicken antirabbit IgG Alexa Fluor 488 conjugated 
(Molecular Probes; Invitrogen, Milano Italy) diluted 
1:100. Control experiments were performed by omitting 
the appropriate primary antibody or by neutralizing the 
primary antibodies with the relative blocking peptide. 
Slides were imaged using a Leica DM 2500 fluorescent 
microscopy. Fluorescence analysis was performed by a 
fluorimeter Tecan Infinite [30].

Ex vivo dual-energy X-ray absorptiometry 
(DEXA) analyses

Femurs were dissected and fixed as above described. 
Bone mineral density (BMD) and bone mineral content 
(BMC) were measured using a PIXImus DEXA [31].

Bone marrow cell (BMCs) preparation

Long bones (femurs, tibiae and humeri) from the 
above mouse groups were dissected free of adhering tissue. 
The ends were removed and the marrow cavity was flushed 
and cultured in DMEM as previously described [32].

Cytokines and chemokines assay

The cytokine/chemokine profiles of BMCs super
natants were assessed by ELISAbased cytokine array 
by using Mouse Cytokine Array Panel A kit (R&D 
Systems, Milano, Italy) accordingly to the manufacturer’s 
instructions. Immunoreactive dots were visualized using 
LiteAblot Turbo luminol reagents (Euroclone, Milano, 
Italy) and HyperfilmECL film (Euroclone, Milano, Italy) 
and quantitated densitometrically.

Western blotting

Proteins from total bone marrow cells population 
were extracted in Cell Lysis Buffer (Cell Signaling 
Euroclone, Milano, Italy) immediately after flushing 

the bone marrow cavity, and the concentration was 
determined by the BCA protein assay reagent (Pierce, 
Euroclone Milano, Italy). Western blotting was performed 
as previously described [33]. Human recombinant p62 
was purchased from Enzo Life Sciences; VinciBiochem 
s.r.l., Firenze, Italy. Membranes were immunoblotted 
in blocking buffer with specific antibodies: rabbit anti
mouse p62 (1: 800 dilution, Enzo Life Sciences; Vinci
Biochem s.r.l., Firenze, Italy); mouse antihuman p62 
(1:800 dilution, BD Transduction Laboratories, Milano, 
Italy); mouse antiReceptor activator of NFκB ligand 
(RANKL) antibody (1:250 dilution, Abcam, Prodotti 
Gianni, Milano, Italy); rabbit antiRunx2 antibody 
(1:800 dilution, Cell Signaling, Euroclone, Milano, 
Italy); rabbit antiOsterix antibody (1:600 dilution, Santa 
Cruz Biotechnology, Italy); rabbit antiNFkB (1:500 
dilution, BioLegend, Microtech Srl, Napoli, Italy). 
After washing blots were incubated with horseradish 
peroxidase (HRP)conjugated donkey antirabbit IgG 
or with HRPconjugated rabbit antimouse IgG (Cell 
Signaling, Euroclone Milano, Italy). Immunoreactive 
bands were visualized using luminol reagents/ECL film 
as described above. To normalize the bands, filters were 
stripped and re probed with a monoclonal antiαtubulin 
(SigmaAldrich, Milano, Italy). Bands density was 
quantified densitometrically.

Statistical analysis

All in vitro and in vivo experiments were repeated at 
least three times. tstudent was used to test for significant 
differences between two groups, and differences were 
considered significant at (*p < 0.05).
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