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Abstract: Most sound imaging instruments are currently used as measurement tools which can
provide quantitative data, however, a uniform method to directly and comprehensively evaluate the
results of combining acoustic and optical images is not available. Therefore, in this study, we define a
localization error index for sound imaging instruments, and propose an acoustic phase cloud map
evaluation method based on an improved YOLOv4 algorithm to directly and objectively evaluate
the sound source localization results of a sound imaging instrument. The evaluation method begins
with the image augmentation of acoustic phase cloud maps obtained from the different tests of a
sound imaging instrument to produce the dataset required for training the convolutional network.
Subsequently, we combine DenseNet with existing clustering algorithms to improve the YOLOv4
algorithm to train the neural network for easier feature extraction. The trained neural network is
then used to localize the target sound source and its pseudo-color map in the acoustic phase cloud
map to obtain a pixel-level localization error. Finally, a standard chessboard grid is used to obtain the
proportional relationship between the size of the acoustic phase cloud map and the actual physical
space distance; then, the true lateral and longitudinal positioning error of sound imaging instrument
can be obtained. Experimental results show that the mean average precision of the improved YOLOv4
algorithm in acoustic phase cloud map detection is 96.3%, the F1-score is 95.2%, and detection speed
is up to 34.6 fps. The improved algorithm can rapidly and accurately determine the positioning error
of sound imaging instrument, which can be used to analyze and evaluate the positioning performance
of sound imaging instrument.

Keywords: YOLOv4 algorithm; sound source localization; sound imaging instrument; positioning
error; DenseNet; k-medians++

1. Introduction

Sound imaging instruments, also known as acoustic cameras, are a special kind of acoustic analysis
equipment that use a microphone array to measure the distribution of the sound field in a certain
spatial range. A sound imaging instrument can be used to measure the position of the sound source
and the state of sound radiation as well as to display visual images with the aid of a cloud diagram,
which is widely used in the research field of sound source positioning.

Research on sound source localization began in 1996, when Silverman and Brandstein [1] first
performed sound source localization experiments using microphone arrays. Subsequently, in 2000,
Asano et al. [2] used large-scale microphone arrays to locate the glide noise of a Boeing 777, enabling
the real-time monitoring and analysis of moving object noise. In 2006 Li and Chen [3] developed
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an acoustic field visualization system consisting of microphone arrays to perform acoustic signal
acquisition and processing as well as sound source localization. However, no criteria exist for
evaluating the results of sound source identification and localization systems. Not until 2014 did
the Chinese General Administration of Quality Supervision, Inspection and Quarantine issue the
“Sound Source Identification and Localization System Calibration Specification,” which provides only
preliminary technical standards for the quantitative evaluation of sound source localization systems
and is applicable only to sound source localization systems based on the beamforming algorithm.
Sound imaging instruments, which are a part of sound source localization systems, are acoustic devices
that combine microphone array technology with digital camera technology to achieve sound source
localization in the form of cloud mapping while displaying real scene sound sources [4,5]. No uniform
measurement technique is available for assessing source localization imaging results in acoustic phase
cloud maps. Also, there may be some differences in the array elements on the microphone array during
the manufacturing process of the sound imaging instruments, and such errors can have a serious
impact on the positioning of the sound source. Traditional acoustic calibration methods [6] can only
calibrate the measurement characteristics of a single array element to eliminate the differences between
microphone array elements. However, the errors caused by inaccurate element positions cannot be
calibrated [7]. Therefore, not only is a sound imaging instrument’s calibration scheme needed, but also
a suitable method should be developed to assess source localization results in cloud maps.

The technical parameters and calibration methods of sound imaging instruments are provided by
manufacturers and are not the same. The calibration of acoustic phasers by manufacturers is generally
divided into two categories. The first type corrects the system errors by setting parameters through
manual measurements. In the second category, the image processing method extracts the detection
object on the acoustic phase cloud map and compares it with the actual target position to obtain its
localization error. To some extent the image processing method saves the time required for manual
measurements, but when the detection background is complex, extracting the edges of the inspected
object is difficult.

On the basis of the aforementioned issues, this study investigates the calibration of sound imaging
instruments in combination with deep learning. The generalizability of features extracted using target
detection methods involving deep learning is considerably higher than that of traditional artificial
features. Target detection methods involving deep learning have wide applications such as in parts
inspection, facial recognition, and automated driving [8]. The main methods can be divided into two
types. The first type is a target detection algorithm based on area recommendations, an example of
which is the Faster-RCNN algorithm [9]. Another type of detection algorithm is based on regression
methods, which treat the detection problem as a regression problem, directly predicting the target
location and category, and its speed of operation is more in line with real-time detection requirements
compared with the first type of algorithm. An example of the second type is the YOLOv4 [10] algorithm.

In this study, we propose an acoustic phase cloud map evaluation method based on an improved
YOLOv4 algorithm, which combines the advantages of the high precision of deep learning and meeting
real-time applications and divides sound source localization results into lateral and longitudinal
localization errors. This method trains the neural network by using acoustic phase cloud maps
generated by sound imaging instruments to locate sound sources at different positions as a dataset.
The sound phase cloud map is fed into the improved YOLOv4 network to obtain the image region
of the target sound source and a pseudo-color map, and the pixel coordinates of the region’s center
are calculated. After converting them into physical space coordinates through calibration, lateral and
longitudinal positioning errors are calculated.



Sensors 2020, 20, 4314 3 of 18

2. Evaluation of Sound Imaging Instrument Positioning Errors

2.1. Definition of Positioning Errors

Sound imaging instruments combine electronics and information processing technologies to
visualize measurement data. It superimposes the acoustic phase map generated using the microphone
array with video images taken by the camera installed on the array in a transparent way to form
a so-called acoustic phase cloud map, from which the noise state of the measured object can be
visually analyzed.

Because of the asymmetry of microphone arrays, the acoustic resolution of sound imaging
instruments varies in both lateral and longitudinal directions during the detection of a sound source.

As shown in Figure 1, the microphone array plane is parallel to the sound source trigger plane,
and a coordinate system is established with the center of the sound phase image as the origin. (x0, y0)

and (x1, y1), respectively, correspond to the two-dimensional coordinate points of the target sound
source center and the pseudo-color map center in the sound phase image obtained using the sound
imaging instrument. The difference between lateral coordinates is the lateral positioning error, and the
difference between longitudinal coordinates is the longitudinal positioning error.
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2.2. Acquisition of Positioning Errors

The YOLOv3 algorithm is used to locate the target sound source and the pseudo-color map in
the acoustic phase cloud map, and the predicted bounding box of both the target sound source and
pseudo-color map can be obtained. After averaging the coordinates of the four vertices of the predicted
bounding box, the pixel coordinates of the center are obtained. Once obtained, these coordinates
are converted into actual position coordinates based on the ratio of the unit pixel to the actual size.
According to Zhang’s calibration principle [11], a standard chessboard grid with a known actual size
of L0 ×H0 is placed at the position of the sound source, and the lateral and longitudinal proportions of
the sound phase cloud map can be calibrated. It can calculate the lateral scale factor kL = L0/L1 and
the longitudinal scale factor kH = H0/H1 of the image, where L1 and H1 respectively are the lateral and
longitudinal dimensions of the standard chessboard grid in the sound phase cloud map (expressed
as the number of pixels). After determining the lateral scale coefficient kL and the longitudinal scale
coefficient kH of the acoustic phase cloud map, we can acquire the actual position coordinates of the
target sound source and the center of the pseudo-color map as well as the positioning error of the sound
imaging instrument. The lateral positioning error is αε = kL|x0 − x1| and the longitudinal positioning
error is βε = kH |y0 − y1|.
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3. Study of the YOLO Algorithm

3.1. Principle of the YOLO Algorithm

The YOLOv3 [12] algorithm adds applied improvements such as multiscale detection and
multi-label classification to the YOLOv2 [13] algorithm, and uses the improved Darknet53 [12] based
on residual neural networks as a feature extractor. This improvement addresses the shortcomings
of the YOLO [14] series of algorithms that are not efficient in detecting small objects.YOLOv3 has
thus become one of the best target detection algorithms to date. The YOLOv3 algorithm first scales
the original image to a size of 416 × 416 and divides the scaled image into 1 × 1 uniformly equal
grids based on the size of the original image in relation to the detected target. If the grid contains
detection targets, the grid generates B predictive bounding boxes and the corresponding confidence
score. Simultaneously, each predicted bounding box is given a probability value for each classification,
and the classification in which the probability maximum is located is the category of the bounding box.
The confidence level is defined as follows:

Con f idence = pr(Object) × IoUtruth
pred , pr(Object) ∈ {0, 1} (1)

where pr(Object) is the probability that the predicted bounding box contains a detection target,
and IoUtruth

pred is the intersection ratio of the target reference bounding box to the predicted bounding
box. Finally, bounding boxes predicting the same object are filtered through non-maximal suppression
(NMS) [9] to obtain the best bounding box. The prediction process is shown in Figure 2.
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The network prediction process generates the sizes 13 × 13, 26 × 26, and 52 × 52 of the three scales
of feature maps to detect the target object and uses 2× upsampling to enable the detection process to
combine the features of different sizes.

The YOLOv3 algorithm performs convolutional prediction for the generation of three scale feature
maps through (5+ c)∗B convolutional kernels of size 1× 1, where B is the number of prediction bounding
boxes (taken by default as 3). c is the number of categories of the predicted target, and 5 contains four
offset parameters responsible for predicting the target bounding box with the confidence level of the
probability of containing the target within the target bounding box. Figure 3 shows the prediction
process for the target bounding box.
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Figure 3. Target bounding box prediction process.

The dashed region in the figure is the initial bounding box and the solid region is the predicted
bounding box after the network iteration parameter, where (cx, cy) and (pw, ph) are the center coordinates
and width and height dimensions of the bounding box on the feature map, respectively, whereas
(tx, ty) and (tw, th) represent the network-predicted center offset of the bounding box and the scaling of
width and height. The conversion process from the initial bounding box to the predicted bounding
box is shown in the formula on the right side of Figure 3, where the conversion function is the
sigmoid function.

3.2. Parameter Optimization of the Anchor

An anchor is a set of a priori boxes with fixed width and height. In the target detection process,
the size of the a priori frame directly affects the accuracy of the detection. Therefore, in neural network
training, it is particularly crucial to set anchor parameters according to the inherent characteristics of
the detection target. The traditional YOLOv3 algorithm uses a K-means clustering algorithm for target
objects, using the Euclidean distance as an indicator of similarity under the condition of randomly
initializing clustering centers.

When the dataset X is divided with n samples into k categories and the clustering center is
iteratively updated to minimize the squared sum of clusters containing data points in each category,
it is termed as minimizing, which is determined as follows:

J =
n∑

i=1

k∑
k=1

‖xi − uk ‖
2 (2)

Such methods are prone to put the network into local optimization due to the randomness of the
initial clustering center, and the final clustering results will tend to generate large-size prior frames.
Randomness will hinder the regression of small-size predictive bounding box parameters in actual
training and reduce the network’s accuracy in detecting tiny target objects. To solve the aforementioned
problem, this study proposes a K-medians++ clustering algorithm combining the K-means++ [15] and
K-medians algorithms.

On the one hand, according to the density of data distribution, the initial clustering center is
rational, and points containing more data are selected as the new clustering center. On the other
hand, the distance metric is used instead of the Euclidean distance as a similarity metric to update
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the clustering center based on the median of the distance metric. The distance metric is calculated
as follows:

dbox
cen = 1− IoUbox

cen (3)

In this formula, box is the labeled sample frame, cen is the clustering center, and IoU is the
cross-totality ratio.

To adapt to the elemental characteristics of the sound phase cloud map and achieve the optimal
training effect, the dimensional clustering analysis of the target sound source and pseudo-color map
is performed using K-means, K-medians, K-means++, and the improved K-medians++ clustering
algorithm. The average cross-merge ratio of the labeled sample frame to the prior frame is finally
used as a criterion to evaluate the clustering effect of the algorithm. The average cross-merge ratio is
calculated as follows:

avg_IoU =
1
n

n∑
box=0

k∑
cen=0

[
1−max(IoUbox

cen )
]

(4)

4. Improved Design and Implementation of the YOLOv4 Algorithm

4.1. Improvement of the Network Architecture

A network structure combining YOLOv3, YOLOv4, and DenseNet [16] is constructed to meet
the requirements of sound imaging instrument meter testing, as shown in Figure 4. Because of the
uniformity in the size of the sound imaging instrument’s exported images, the SPP block [17] on YOLOv4
is removed and a dense block is added in its place, allowing a better transfer of feature information
and gradients throughout the network, and mitigating overfitting to some extent. The traditional
dense block connected by H1 function contains BN-ReLU [18]-Conv (1 × 1)-BN-ReLU-Conv (3 × 3).
In DenseNet, all previous layers are connected as inputs:

xl = Hl([x1, x2, · · · , xl−1]) (5)

where [x1, x2, · · · , xl−1] is the stitching of all feature maps before the layer xl. The dense block’s
feedforward model combines feature information to perform nonlinear transformation processing,
which facilitates feature reuse and considerably reduces the number of parameters.
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The use of CSPDarknet53 [19] as the backbone of the network, which combines the residual
block [20] in Darknet53 with the CSP model. Compared to the Darknet53 used by YOLOv3, there is a
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significant decrease in overall network computation, and this part of the performance optimization
does not affect the predictive accuracy of the network, even if there is a slight improvement. In the neck
part of the network, the path aggregation network (PAN) [21] is used. Compared with FPN [22] used
by YOLOv3 for multi-scale feature fusion, PAN shortens the path of high and low fusion and has more
flexible ROI pooling. A bottom-up path is also added to make it easier to disseminate information at
lower levels. Table 1 shows a quantitative analysis of the variation in network performance due to
different blocks.

Table 1. Variation in network performance due to different blocks.

Method Structure AP AP50 AP75 APS APM APL FPS

YOLOv3 Darkenet53-FPN 30.6% 55.0% 32.1% 15.1% 32.8% 42.6% 35.3
YOLOv3 CSPDarkenet53-FPN 30.8% 55.3% 32.1% 15.0% 32.9% 42.8% 35.6
YOLOv3 Darkenet53-PAN 32.2% 57.6% 34.9% 17.6% 37.2% 49.3% 35.2
YOLOv4 CSPDarkenet53-PAN 40.7% 62.3% 44.0% 20.1% 43.9% 55.7% 34.7
YOLOv4 CSPDarkenet53-Dense-PAN 41.5% 63.7% 45.1% 20.5% 44.8% 57.4% 34.4

The detection accuracy obtained from the AP50 and AP75 corresponding to different thresholds
filtering the optimal prediction frame in Table 1. APS, APM, and APL correspond to the detection
accuracy of detecting images of different sizes. As can be seen in Table 1, the introduction of the CSP
model improves the detection speed of the network and improves the detection accuracy by a small
amount. Replacing the PAN block with the FPN block increases the repeatability of the information on
the feature map, obtaining objective accuracy at the expense of a small amount of speed. The algorithm
used in this paper removes the SPP blocks from YOLOv4 and adds Dense blocks. This change in
the network structure also improves the accuracy of the algorithm. The improvement in accuracy is
especially noticeable when inspecting large images.

The network uses the mish [23] function as an activation function aspect. The slight allowance of
negative values by the mish function yields a better gradient flow than the traditional relu function
does with a hard zero boundary for negative values. As shown in Figure 5.
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The smoothing nature of mish efficiently allows information to penetrate deeper into the neural
network, resulting in better accuracy and generalization. Also, as the number of network layers
increases, networks using mish show a higher test accuracy than those using relu and softplus do,
which is more effective for optimizing complex networks. The Mish function is defined as follows:

f (x) = x · tanh(so f tplus(x)) = x · tanh(ln (1 + ex)) (6)

In the case of category loss, focal loss [24] is used, which adds a factor to the original cross-entropy
loss. The function is cross-entropy loss when γ = 0, where if γ > 0, focal loss makes the loss
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values generated by well-classified examples negligible. The focus on difficult, misclassified samples
prevents the effect of simple samples on the network and enhances network generalization capabilities.
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Figure 6. Focal Loss Functions.

DIoU loss [25] is introduced for predicting boundary box regression. Traditional IoU loss [26] has
the problem of gradient disappearance when there is no intersection between prediction and target
bounding boxes. DIoU loss solves this problem by introducing a metric parameter to measure the
distance and proximity of the two boxes in the operation. DIoU loss is defined as follows:

LDIoU = 1− IoU +

(
d
c

)2

(7)

where d and c are defined as shown in Figure 7.
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Subsequently, CIoU loss [25] introduces the measure aspect ratio similarity υ and the average
scale parameter α on the basis of DIoU loss, which can achieve better convergence speed and accuracy
in predicting bounding box regression. CIoU loss is defined as follows:

LCIoU = 1− IoU +

(
d
c

)2

+ αυ (8)
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υ =
4
π2

(
arctan

wgt

hgt − arctan
w
h

)2

(9)

α =
υ

(1− IoU) + υ′
(10)

The term υ in Equation (9) gradually tends to 0 as w
h increases. In target detection using CIOU as

a loss function, we want the size of the detection object to be within a relatively regular range. In the
dataset used in this article, the ratio of the length to width of the pseudo-color map and the sound
source is within

[
1
3 , 3

]
, which can ensure that υ plays a role in the loss function. Equation (11) is the

gradient representation of υ with respect to w and h:

∂υ
∂w = 8

π2 (arctan wgt

hgt − arctan w
h ) ×

h
w2+h2

∂υ
∂h = − 8

π2 (arctan wgt

hgt − arctan w
h ) ×

w
w2+h2

(11)

In Equation (11), when the length and width are [0,1] and the value of w2 + h2 is small, there is a
gradient explosion, so in practice, we replace 1

w2+h2 with 1.
All in all, CIoU loss with more favorable convergence is used in prediction bounding box

regression, whereas DIoU NMS [25] with relatively less computation is used in the selection of the best
prediction bounding box.

4.2. Cluster Analysis of Datasets

To improve the robustness of network identification, the dataset is obtained from acoustic phase
cloud maps from sound imaging instrument meter performance tests in different environments.
Base on the experimental data of the full anechoic room, the outdoor snapshot experiment and the
semi-anechoic room experiment are added, as shown in Figure 8.
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blurring, a single data sample is expanded 10 times to the original dataset. This is shown in Figure 9. 

Figure 8. Sound phase image in the data set.

A total of 750 images are selected for the total dataset, including 150 for the outdoor experiment,
150 for the semi-anechoic chamber experiment, and 450 for the full-anechoic chamber experiment.
Considering the problem of insufficient resolution of the sound imaging instrument in outdoor tests,
outdoor experiments use a car as the target sound source, and semi-anechoic and full-anechoic chamber
experiments use a loudspeaker as the target sound source. With the use of image augmentation
processes, such as mirroring, color averaging, light and dark adjustment, and blurring, a single data
sample is expanded 10 times to the original dataset. This is shown in Figure 9.
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Figure 9. Data set image augmentation: Image augmentation methods: (a) original image, (b) 90◦

clockwise rotation, (c) 180◦ clockwise rotation, (d) 270◦ clockwise rotation, (e) horizontal mirror, (f) color
balance processing, (g–i) brightness transformation, and (j) blur processing.

The LabelImg software is used to label sound sources and pseudo-color maps in experimental
images and organize them into a VOC dataset format. Randomly selected 4500, 1500, and 1500 images
from the dataset are used as training, validation, and test sets, respectively.

Because VOC datasets do not contain sound sources, pseudo-color maps, and other detection
data, training with the original anchor parameters exert some effect on training time and accuracy.
Therefore, it is necessary to re-cluster the label sample frames of the target sound source and the
pseudo-color map to obtain more representative anchor parameters for sound imaging instrument’s
localization. K-means, K-medians, K-means++, and K-medians++ algorithms were used for the
dimensional clustering analysis of detection tags, with different values of the number of the anchor
box k. The average cross-tabulation curve is shown in Figure 10.
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As can be observed in Figure 10, the average cross-merge ratio of the four algorithms
gradually increases with an increase in the value of k, and the clustering effect gradually improves.
The initialization of K-means++ and K-medians++ algorithms with the clustering center rule is
smoother and more stable than that of the other two algorithms, which reduces the clustering bias
to some extent. With the number of clustering centers in the interval from 6 to 18, the K-medians++

algorithm is superior to the K-means++ algorithm. Simultaneously, as shown in Table 2, when the
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value of k exceeds nine, a clustering prediction box of a similar size exists, resulting in redundancy,
thus resulting in the selection of the clustering result as improved anchor parameters when k = 9.

Table 2. Clustering prediction boxes corresponding to different k values.

k=6 k=7 k=8 k=9 k=10 k=11 k=12

(23,23) (23,22) (26,28) (23,23) (25,28) (26,29) (22,22)
(28,30) (28,32) (42,41) (29,30) (38,48) (43,40) (24,25)
(43,41) (42,41) (50,67) (38,48) (43,40) (47,66) (29,30)
(53,72) (49,64) (75,80) (43,40) (46,69) (51,53) (36,45)

(123,172) (76,84) (108,154) (50,67) (48,49) (51,74) (43,40)
(230,309) (128,181) (149,211) (75,74) (48,62) (67,93) (47,63)

- (237,319) (214,281) (80,92) (52,54) (75,74) (47,71)
- - (280,382) (125,174) (52,74) (84,86) (52,53)
- - - (230,309) (79,86) (110,160) (52, 74)
- - - - (202,271) (171,244) (75,80)
- - - - - (247,339) (125,174)
- - - - - - (230,309)

4.3. Model Training and Performance Comparison

Prior to the training phase, Darknet-53 network parameters pre-trained using the PASCAL
VOC dataset are partially migrated to and initialized on the YOLOv4 base network, and use label
smoothing [27] to optimize the dataset. The training phase is optimized using a small batch random
gradient descent, setting the momentum parameter to 0.9, the initial learning rate to 0.001, the decay
coefficient to 0.1, the batch size is 16, and the parameter γ of focal loss is 2. To reduce the likelihood of
the network appearing over-fit, the first 1000 batches of training were warm up [18]. The following
learning rate was used: η = ηlr × (Nbatch/1000)2, where Nbatch is the current number of batches, and the
learning rate reaches 0.001 after 1000 batches. The validation set error is then monitored, and the
learning rate multiplies the decay coefficient if the current error is not reduced after 100 epochs.
The definitions of terms associated with network training are shown in Table 3.

Table 3. Definition of terms related to network training.

Terms Related to Network Training Definition

Batch

The input pictures for a single network training session. Due to
limited computer performance, a single training session of the
network does not use all the data in the dataset at once, but
rather trains in several batches.

Epoch When a complete dataset passes through the neural network
once and is returned once, this process is called an epoch

Iteration One iteration is equal to training the network once using a
sample of batches.

This experiment uses an Intel(R) Core(TM) i7-8700 processor and NVIDIA GeForce RTX 2080
graphics card. CUDA10.0 and cuDNN7.5 are used to accelerate YOLOv4 network training under
Ubuntu 16.04 LTS operating system. The trend of loss during practice is shown in Figure 11.

As can be seen from the Figure 11, the validation set loss at the beginning of training decreases
gradually with an increase in the number of training iterations, and the error fluctuation range gradually
closes in. After 8000 iterations, the trend gradually stabilizes. The loss value of 9000 iterations fluctuates
around 0.3 and no longer tends to get smaller, indicating that the ideal training effect is achieved.
Compared with the loss on the validation set, the early loss on the training set drops faster and the
final stability loss is also smaller, with a fluctuation of 2.8. The training-generated weight file is used to
examine the test set images, using different colors to mark the positions of target objects in the test



Sensors 2020, 20, 4314 12 of 18

images and noting the corresponding labels and confidence scores. Figure 12 shows actual test results
for different sites.Sensors 2020, 20, x FOR PEER REVIEW 12 of 18 
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The improved YOLOv4 algorithm can accurately locate target sound sources and pseudo-colors
maps in acoustic phase cloud maps and effectively identify even multiple test targets in an image.
Table 4 compares the improved YOLOv4 algorithm with other mainstream algorithms based on the
four indexes of class recognition accuracy (AP), average precision average value (mAP), F1-score,
and FPS.

Table 4. Performance comparison of different network structures.

Network
Infrastructure AP-Car AP-Loudspeaker AP-Pseudo-Color mAP F1-Score FPS

SSD [28] 89.8% 90.7% 92.7% 91.1% 90.2% 29.4
Faster-RCNN 92.2% 93.4% 95.3% 93.6% 92.4% 10.7

YOLOv3 88.5% 90.8% 91.3% 90.2% 88.9% 35.3
YOLOv4 92.7% 95.1% 95.6% 94.5% 93.9% 34.8

Improved YOLOv4 95.5% 95.9% 97.4% 96.3% 95.2% 34.6



Sensors 2020, 20, 4314 13 of 18

Sensors 2020, 20, x FOR PEER REVIEW 13 of 18 

 

 
(a) Positioning at outdoor 

 
(b) Positioning at thesemi-anechoic chamber 

 
(c) Positioning at the full anechoic chamber 

 
(d) Location of two sound sources 

Figure 12. YOLOv4 algorithm positioning results. 

The improved YOLOv4 algorithm can accurately locate target sound sources and pseudo-colors 
maps in acoustic phase cloud maps and effectively identify even multiple test targets in an image. 
Table 4 compares the improved YOLOv4 algorithm with other mainstream algorithms based on the 
four indexes of class recognition accuracy (AP), average precision average value (mAP), F1-score, 
and FPS. 

Table 4. Performance comparison of different network structures. 

Network 
Infrastructure AP-Car AP-Loudspeaker AP-Pseudo-Color mAP F1-Score FPS 

SSD [28] 89.8% 90.7% 92.7% 91.1% 90.2% 29.4 
Faster-RCNN 92.2% 93.4% 95.3% 93.6% 92.4% 10.7 

YOLOv3 88.5% 90.8% 91.3% 90.2% 88.9% 35.3 
YOLOv4 92.7% 95.1% 95.6% 94.5% 93.9% 34.8 

Improved 
YOLOv4 

95.5% 95.9% 97.4% 96.3% 95.2% 34.6 

In terms of average precision, algorithms of the YOLOv4 family and the Faster-RCNN 
algorithm are more effective than other algorithms. In terms of recognition speed, one-stage target 
detection algorithms other than the Faster-RCNN algorithm have better scores. YOLOv4 is slightly 
slower than YOLOv3 but has improved recognition accuracy. The improved YOLO v4 also sacrifices 
slightly in speed for greater accuracy compared with the unimproved algorithm. Overall, this 
method achieves satisfactory results in both recognition accuracy and recognition speed, with mAP 
of 96.3%, an F1-score was 95.2%, and a detection speed was up to 34.6 fps. Compared with the 
unoptimized YOLOv4 algorithm, mAP is improved by 1.8% and the F1-score is improved by 1.3%. 
In terms of the average recognition accuracy of each category, because of the interference of the 
background environment, the recognition effect of the pseudo color image is the best, and AP can 
reach 97.4%. 

5. Experiments and Analysis 

The experimental system for a sound imaging instrument to locate sound sources mainly 
includes sound sources (speakers), a sound imaging instrument, power amplifiers, signal 

Figure 12. YOLOv4 algorithm positioning results.

In terms of average precision, algorithms of the YOLOv4 family and the Faster-RCNN algorithm
are more effective than other algorithms. In terms of recognition speed, one-stage target detection
algorithms other than the Faster-RCNN algorithm have better scores. YOLOv4 is slightly slower than
YOLOv3 but has improved recognition accuracy. The improved YOLO v4 also sacrifices slightly in
speed for greater accuracy compared with the unimproved algorithm. Overall, this method achieves
satisfactory results in both recognition accuracy and recognition speed, with mAP of 96.3%, an F1-score
was 95.2%, and a detection speed was up to 34.6 fps. Compared with the unoptimized YOLOv4
algorithm, mAP is improved by 1.8% and the F1-score is improved by 1.3%. In terms of the average
recognition accuracy of each category, because of the interference of the background environment,
the recognition effect of the pseudo color image is the best, and AP can reach 97.4%.

5. Experiments and Analysis

The experimental system for a sound imaging instrument to locate sound sources mainly
includes sound sources (speakers), a sound imaging instrument, power amplifiers, signal generators,
and computers, as shown in Figure 13. The positioning of sound imaging instruments for sound sources
at different distances is experimentally measured. Three measurement nodes are set, namely 1 m, 2 m,
and 3 m, with a signal generator transmitting 2–5 kHz at each node. Seven groups of single-frequency
sinewave continuous signals at an interval of 0.5 kHz are amplified by a power amplifier to drive the
sound source. Sound imaging instrumentation locates sound sources excited by different frequency
signals in real time and saves results in the form of acoustic phase cloud maps on the computer.

In the plane orthogonal to the sound source at a fixed distance from the sound imaging instrument,
the sound imaging instrument is used to image the sound source. During the experiment, the center of
the acoustic phase cloud map was used as the coordinate origin, which specifies the x-axis direction of
the coordinate system as the lateral direction of the image and the y-axis direction as the longitudinal
direction of the image. Acoustic phase cloud maps generated by the sound imaging instrument’s
localization imaging of sound sources with different frequencies are input into the YOLOv4 network to
locate target sound sources and the pseudo-color map area. Figure 14 shows positioning results for
fixed distances (1 m, 2 m, and 3 m), respectively.
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Figure 14. Experimental positioning result.

The pixel coordinates of the target sound source and the center of the pseudo-color map are
obtained from the predicted bounding box. The image is calibrated to obtain the coordinates of their
physical positions and the sound imaging instrument positioning error is calculated. The experiment
uses the improved YOLOv4 algorithm to locate acoustic phase cloud maps obtained in each case with
vocal frequencies ranging from 2–5 kHz at distances of 1 m, 2 m, and 3 m. Five repetitive experiments
are conducted at each test point, whereas the localization errors of 105 groups of experimental data are
calculated, and the localization errors of the improved YOLOv4 algorithm are shown in Figure 15.
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By comparing real coordinates measured using the laser rangefinder with coordinates obtained
using the YOLOv4 algorithm, the error of the algorithm in locating the sound source and pseudo-color
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map, respectively, is obtained. As shown in Figure 15, the maximum positioning error of the YOLOv4
network for the target sound source is 0.3332 cm on the X axis and 0.3132 cm on the Y axis. More than
94.28% of the sound source positioning error is within 0.3 cm. Compared with the error in locating the
sound source, due to the variable size of the pseudo-color map, the error produced by the YOLOv4
network in locating the pseudo-color map is on the large side, with the maximum positioning error of
0.5745 cm on the X axis and 0.4878 cm on the Y axis. More than 85.71% of the sound source positioning
error is within 0.5 cm. Whether locating the target sound source or the pseudo-color map, the improved
YOLOv4 algorithm keeps errors to a minimum.

Pseudo-color maps and sound sources can also be extracted by image processing, and their
positioning results are shown in Figure 16. The acoustic phase cloud maps are sequentially processed
by difference image method, filtering, binarization, erosion expansion, etc. With the maximum blank
area preserved, the acquired images are superimposed and identified by different colors finally.
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The excessive variation in light intensity in the anechoic chamber makes it very difficult to extract
targets from the acoustic phase cloud map, and the extraction results have more pronounced distortions.

Figure 17 shows the comparison of real error and positioning error which obtained using improved
YOLOv4 algorithm and image processing method. Groups 1–7, groups 8–14, groups 15–21 correspond
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Figure 17. Comparison of the measured positioning errors.

As shown in Figure 17, the best localization effect is 1 m away from the target source; when
the distance between the two increases, the localization error grows. The localization error of sound
imaging instrument tends to decrease with an increase in the frequency of the target sound source,
and the longitudinal localization error is more obviously affected by frequency. Lateral and longitudinal
errors are affected by the different lateral and longitudinal resolutions of sound imaging instrument,
and results vary in individual experiments. In particular, the deviation can be up to 5.0414 cm at the
lower frequency of the target sound source. Compared to the positioning errors measured using the
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image processing method, the errors measured using the improved YOLOv4 are much more obvious
that the true value is closer to the true value and the error fluctuates more smoothly in both the lateral
and longitudinal directions. Figure 18 shows a comparison curve of the errors introduced by the two
measured methods.
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The error introduced by using the image processing method is significantly higher than that
introduced by using improved YOLOv4, with the maximum lateral method error of 2.5870 cm, with a
maximum method error of 3.4159 cm in the longitudinal direction. The positioning error measured
using the improved YOLOv4 algorithm is close to its actual error. The maximum deviation in the
lateral direction is 0.4526 cm at 1 m, 0.5735 cm at 2 m, and 0.6157 cm at 3 m; the maximum deviation in
the longitudinal direction is 0.4772 cm at 1 m, 0.7436 cm at 2 m, and 0.3594 cm at 3 m. The evaluation
method used in this study is not affected by the measurement distance and the frequency variation of
the target sound source, while the error caused by the evaluation method being within a small range.

6. Conclusions

In this study, an improved YOLOv4-based acoustic phase cloud map evaluation method is
proposed for the accurate evaluation of sound imaging instrument positioning results. First, YOLOv4 is
improved in combination with DenseNet, and anchor parameters are optimized using the K-medians++

clustering algorithm. Second, the trained network is used to identify and localize the target sound
source and pseudo-color map in the acoustic phase cloud map. Finally, predicted bounding box
parameters are obtained from the algorithm to calculate the acoustic phase localization error and the
following conclusions are drawn:

(1) The proposed K-medians++ clustering algorithm has better performance than the K-means
algorithm used in traditional networks. The clustering effect is more conducive to the optimization
of anchor parameters.

(2) Compared with DenseNet’s improved YOLOv4 network and the network before optimization,
mAP is increased by 1.8%, the F1-score is increased by 1.3%, and the detection speed is up to
34.6fps, which can more effectively identify localized sound sources and false color images.

(3) The improved YOLOv4 evaluation method is more accurate than the sound imaging instrument’s
positioning error measured using image processing methods. During the experiment,
the maximum error introduced by the algorithm in sound source localization is 0.3332 cm,
and the maximum error introduced in the pseudo color image localization is 0.5745 cm. In this
study, the positioning error of the imaging instrument is similar to its actual error, with the
maximum lateral deviation of 0.6157 cm and the maximum longitudinal deviation of 0.7436 cm,
which can be controlled within 1 cm of the evaluation accuracy.

Considering that sound imaging instrument is suitable for practical projects, such as car siren
capturing and environmental noise detection, we will design experiments for outdoor fields. In addition,
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we will incorporate a semantic segmentation method with higher recognition and positioning resolution
into the study to evaluate the localization error of sound imaging instrument more comprehensively
and accurately.

Author Contributions: Q.Z. conceived and designed the method and performed experiments; H.Z. and Y.W.
reviewed and edited this manuscript; Y.C. and S.G. carried out part of the experimental verification. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China, grant number
No: 2017YFF0205004, No: 2018YFC0114902-1, National Natural Science Foundation of China, grant number
No: 11904346, Natural Science Foundation of Zhejiang Province, grant number No: 2017YFF0205004,
No: 2018YFC0114902-1, National Natural Science Foundation of China, grant number No: LQ19A040004,
No: LQ20A040007 and Zhejiang Provincial Education Department Research Grant Program, grant number
No: Y201942513.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Brandstein, M.; Silverman, H. A robust method for speech signal time-delay estimation in reverberant rooms.
In Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing,
Washington, DC, USA, 21–24 April 1997.

2. Asono, F.; Asoh, H.; Matsui, T. Sound Source Localization and Separation in Near Field. Ieice Trans. Fundam.
Electron. Commun. Comput. Sci. 2000, 83, 2286–2294.

3. Li, J.; Chen, J.; Liu, X.; Xue, W.; Chen, Y. An Acoustic Field Visualization System Based on Virtual Instruments.
Comput. Eng. Appl. 2006, 42, 219–221.

4. Johnson, D.H.; Dudgeon, D.E. Array Signal Processing: Concepts and Techniques; Prentice Hall: Englewood
Cliffs, NJ, USA, 1993.

5. Brandstein, M.S.; Ward, D.B. Microphone Arrays: Signal Processing Techniques and Applications; Springer: Berlin,
Germany, 2001.

6. Nedzelnitsky, V. Free-field calibration and characterization of microphone systems. J. Acoust. Soc. Am. 1994,
96, 3271. [CrossRef]

7. Molares, A.R.; Seoane, M.A.S.; Giménez, A.P.; Guijarro, S.T. The influence of positional uncertainty in
free-field microphone calibration. Metrologia 2008, 45, 168–177. [CrossRef]

8. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.;
Müller, U.; Zhang, J.; et al. End to End Learning for Self-Driving Cars. arXiv 2016, arXiv:1604.07316.

9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. IEEE Trans. Pattern Anal. Machine Intell. 2015, 39, 1137–1149. [CrossRef] [PubMed]

10. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv
2020, arXiv:2004.10934,2020.

11. Zhang, Z. Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings of the
7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999.

12. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
13. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
14. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.

In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 26 June–1 July 2016.

15. David, A.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, LA, USA,
7–9 January 2007.

16. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks.
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2017, 2, 4700–4708.

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

http://dx.doi.org/10.1121/1.410949
http://dx.doi.org/10.1088/0026-1394/45/2/006
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135


Sensors 2020, 20, 4314 18 of 18

18. Vinod, N.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
International Conference on Machine Learning (ICML), Haifa, Israel, 21–24 June 2010.

19. Wang, C.-Y.; Liao, H.-Y.M.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A new backbone that can
enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshop (CVPR 2020), Seattle, WA, USA, 14–19 June 2020.

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the
2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA,
26 June–1 July 2016.

21. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of
the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake City,
UT, USA, 18–23 June 2018.

22. Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object
Detection. In Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR 2017); Institute of Electrical and Electronics Engineers (IEEE), Honolulu, HI, USA, 21–26 July 2017.

23. Misra, D. Mish: A Self Regularized Non-Monotonic Neural Activation Function. arXiv 2019, arXiv:1908.08681.
24. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of

the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.
25. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding

Box Regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA,
7–12 February 2020.

26. Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. UnitBox: An Advanced Object Detection Network. In Proceedings
of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016.

27. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR 2016), Las Vegas, NV, USA, 26 June–1 July 2016.

28. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector.
In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands,
8–16 October 2016.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Evaluation of Sound Imaging Instrument Positioning Errors 
	Definition of Positioning Errors 
	Acquisition of Positioning Errors 

	Study of the YOLO Algorithm 
	Principle of the YOLO Algorithm 
	Parameter Optimization of the Anchor 

	Improved Design and Implementation of the YOLOv4 Algorithm 
	Improvement of the Network Architecture 
	Cluster Analysis of Datasets 
	Model Training and Performance Comparison 

	Experiments and Analysis 
	Conclusions 
	References

