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Abstract
At constant average speed (v), a balance between thrust force (Ft) and drag force (Fd)

should occur: Ft−Fd = 0; hence the power generated by thrust forces (Pt = Ft�v) should be

equal to the power needed to overcome drag forces at that speed (Pd = Fd�v); the aim of

this study was to measure Pt (tethered swims), to estimate Pd in active conditions (at sprint

speed) and to compare these values. 10 front crawl male elite swimmers (expertise: 93.1 ±

2.4% of 50 m world record) participated to the study; their sprint speed was measured dur-

ing a 30 mmaximal trial. Ft was assessed during a 15 s tethered effort; passive towing mea-

surement were performed to determine speed specific drag in passive conditions (kP =

passive drag force/v2); drag force in active conditions (Fd = kA�v2) was calculated assuming

that kA = 1.5�kP. Average sprint speed was 2.20 ± 0.07 m�s-1; kA, at this speed, was 37.2 ±

2.7 N�s2�m-2. No significant differences (paired t-test: p > 0.8) were observed between Pt

(399 ± 56W) and Pd (400 ± 57W) and a strong correlation (R = 0.95, p < 0.001) was

observed between these two parameters. The Bland-Altman plot indicated a good agree-

ment and a small, acceptable, error (bias: -0.89 W, limits of agreement: -25.5 and 23.7 W).

Power thrust experiments can thus be suggested as a valid tool for estimating a swimmer’s

power propulsion.

Introduction
When a swimmer moves in water he/she generates propulsion through the action of the upper
and lower limbs; the application of these forces is not constant during a cycle (as in all cyclic
forms of locomotion [1]), but with larger propulsive forces higher speeds can be reached.
When a swimmer moves in water he/she is also subjected to resistive forces (hydrodynamic
resistance, drag) that are larger the higher the swimming speed. The swimmer's velocity thus
shows intra-cyclic variations that are the result of intra-cyclic phases of acceleration (limbs
thrust) and deceleration (water drag) [2]. These fluctuations in speed depend on the swimming
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stroke: in front crawl and backstroke are much lower than in breaststroke and butterfly (15–
20% vs. 45–50%) [3].

During a race, a swimmer must be able to minimize the time spent in the starting phase, in
the turning phases and in the stroking phases. In the start and turn phases the speed is larger
than in the stroking phases due to the possibility to exert additional propulsive forces against
the blocks/pool wall and to minimize water resistance (e.g. by gliding underwater) [4]. In these
phases of the race the biomechanical determinants of performance are somewhat different
than in the stroking phases; they will not be considered in this study.

The speed attained in the stroking phases (neglecting start and turns) is termed clean swim-
ming speed and, during a race (or a lap), is almost constant [5]; indeed, was the swimmer able
to produce (average) propulsive forces larger than the (average) drag forces he/she experiences
he/she would accelerate; indeed, maximal (clean) swimming speed is attained when a swimmer
uses his/her maximal propulsive force for progression.

Thus, at maximal (clean) swimming speed (as well as in all conditions where average speed
is constant and acceleration is nil) a balance between thrust force (Ft) and drag force (Fd)
should occur: Ft−Fd = 0, as suggested by Toussaint et al. [5]. Because power is the product of
force and velocity [6], at constant (maximal) speed the power required to overcome drag
(Pd = Fd�v) and the power required to push the swimmer forward (Pt = Ft�v) should be equal
[5].

This state of affairs implies that, to improve performance in the stroking phase of the race, a
swimmer can either increase his/her propulsive forces (e.g. with a proper training) or reduce
his/her hydrodynamic resistance (e. g. by improving his/her swimming technique or his/her
hydrodynamic body position in water), or both. As an example, rubber full body swimsuits
allow a swimmer to reach larger speeds since, for a given power thrust (a which characterizes a
given swimmer), the power needed to overcome drag forces can be reduced [7].

These principles and considerations hold in all cyclic forms of locomotion; as an example,
in cycling power output can be calculated either based on the resistive forces that the cyclist has
to overcome (e. g. Pd: rolling and air resistance, on flat terrain [8]) or based on the propulsive
forces he/she generates on the pedals (e. g. Pt [9]).

In water, however, the “equal power assumption” (Pd = Pt) is difficult to demonstrate; this
because it is quite difficult to measure forces in the aquatic environment.

To estimate the trust force (Ft), Toussaint et al. [5] proposed the use of a system (MAD sys-
tem) that consists of an integrated series of anchored paddles. The swimmer pulls the paddle
and pushes his body forward; the propulsion force is measured by means of force transducers
mounted on the paddles. The major criticism of this method in measuring accurately Ft con-
cerns the use of arms alone without considering the propulsion of the legs; thus the values of Ft
are necessarily underestimated. Other researchers investigated the hand position during the
pull phase of the stroke to determine the net force produced by the hand and the relative con-
tribution of lift and drag vectors [10]. However, a direct assessment of the swimmer’s propul-
sion during hand movements remains complicated, and the propulsive force in swimming is
still difficult to quantify [11].

With the objective of solving this issue, the measurement of the pulling force during teth-
ered or semi-tethered swimming was proposed as an alternative tool for evaluating Ft [12–13–
14–15–16]. With this method a load cell is anchored to the pool wall and connected to the
swimmer’s belt through a rope; in the case of the tethered experiments there is no forward dis-
placement of the swimmer (pulling force is assessed at zero forward speed). Despite the differ-
ent reports in the literature about this method, after considering its advantages (reliable and
user-friendly) and disadvantages (for some authors the transferability to real swimming is
debatable), tethered swimming is the most frequently used method for determining the
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biomechanics profile of a swimmer [14–17]. A strong relationship between tethered force and
swimmer's speed was indeed reported by several authors [14–18] even if the only reliable
parameter for evaluating this relationship seems to be the average force of the all-out tethered
[19]. The average force measured by the tethered method should then correspond to the useful,
average, force to overcome water resistance at maximum speed [18–20].

Estimating the drag force (Fd) by means of passive towing experiments necessarily leads to
an underestimation of the power needed to overcome drag forces since passive drag is lower
than active drag [21]. Thus, several studies have attempted to measure the swimmer’s Fd in
active conditions [22–23–24–25–26]. Furthermore, in recent years, there have been several
attempts to estimate Fd by applying the computational fluid dynamics simulation to a swim-
mer’s flow [27]. The scientific discussion about the best method to assess active drag remains a
controversial issue within the scientific community [28]. Although the swimmer’s movements
during active propulsion create additional drag [29], the hydrodynamic resistance created
when towing a swimmer in a hydrodynamic stable position has shown to be a remarkably con-
sistent method for measuring the swimmer’s passive drag [30]. To estimate the active drag
from passive towing, a procedure was proposed by Gatta et al. [21]: in that study it was shown,
by means of a planimetric method, that frontal area during a swimming stroke is 1.5 larger
than that observed during passive towing (in the front crawl) so that the former can be calcu-
lated based on the latter.

To the best of our knowledge, the assumption whether the thrust force should be equal to
the useful force to overcome the swimmer’s drag at maximal swimming speed has never been
tested in the scientific literature mainly because both parameters are quite difficult to assess.
The aim of this study was to verify whether there is a balance between the power generated by
thrust forces and the power needed to overcome drag forces in front crawl swimming by using
a tethered test to assess Ft (and Pt) and by estimating active drag (Fd, and hence Pd) based on
measures of passive drag (at maximal speed). We performed the experiments with the front
crawl since its one of the strokes with the smallest intra-cyclic variations in speed and we
decided to perform the experiments at maximal swimming speed to simulate the clean swim-
ming speed during the stroking phase of a sprint race.

Materials and Methods

Participants
Ten freestyle high-level male swimmers participated in this study (23.5 ± 3.4 years of age,
1.88 ± 0.06 m of stature, 80.8 ± 8.98 kg of body mass and 55 ± 10 km/week of training volume);
long-course 50-m and 100-m freestyle personal best times are 22.5 ± 0.6 s and 49.5 ± 1.4 s,
respectively (representing 93 ± 2 and 95 ± 3% of the World Record). The experiments were
performed during the autumn of 2015, when the swimmers were in their competition period.
All participants were non-smokers, and none of them was following specific dietary interven-
tions. All procedures described here were approved by the Bioethics Committee of the Univer-
sity of Bologna. Written informed consent was obtained from all participants prior to their
voluntarily participation in the study.

Design and Methodology
The test sessions were conducted in a 50 m indoor swimming pool (average water temperature:
28.0 ± 0.5°C), and the testing procedure was completed within 3 hours for each swimmer. To
measure the swimmer’s maximal speed (V30), each participant completed 3 maximal effort
front crawl trials of 35 m from a push start. Before these trials, the participants performed a 20
min warm-up period. Average (maximal) speed was calculated between the 10th and 40th m
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from the start by determining the time it took for the participant’s head to pass between two
points that were 30 m apart. The time was measured by means of two aligned underwater cam-
eras (TS-6021PSC, Sony Hyper Had, Tokyo, Japan, sampling rate: 25 Hz) placed at the end
points of the testing zone; the cameras were synchronized using a specially developed software
application [31]. Participants were instructed to not take a breath through the 30 m test section
of the 50 m pool. The best trial (largest value of V30 for each swimmer) was considered in fur-
ther analysis.

To assess Ft, 3 trials of 15 s at maximal intensity during tethered front crawl swimming
(without breathing) were executed. For the present study, the authors selected the tethered test
protocol of 15 s that replicates an equal duration of the maximal speed trial in free swimming
used in this study [17]. The testing apparatus consisted of a load-cell system (range 0–2500 N,
sampling rate 1000 Hz, Globus Ergometer, Globus™, Codognè, Italy) that was connected
through a non-elastic cable to a Globus Ergometer data acquisition system. The load-cell was
anchored to a fixed starting block by a steel cable perpendicularly to swimmer direction, and
the participants were connected to the load cell by means of a nylon belt. The swimmers
adopted a horizontal position with the cable full extended before the starting signal. Data col-
lection only started after the first stroke cycle was performed and the trial’s end was highlighted
by an acoustic signal. The load-cell accuracy was tested by means of a static calibration with
masses of 1–5–10–20 kg. The signal from the load cell was amplified using a Globus amplifier
(Tesys 400, Globus™, Codogne, Italy) and fed through an analog-to-digital converter (12 bit).
Dynamometrical data were recorded and processed with Globus Ergometer software and were
then exported to a PC as TXT format data. The best trial (the largest Ft value recorded for each
swimmer) was considered in further analysis.

The swimmers’ passive drag (Fd) was measured using an electro-mechanical device (Swim-
Spektro, Talamonti Spa, Ascoli Piceno, Italy). A low voltage isokinetic engine was positioned at
the edge of the pool and measured the force (N) needed for the swimmer’s tow [32]. The device
was calibrated before each session. After the experiments, data were downloaded to a PC and
further analysed using dedicated software (DB:4, Talamonti Spa). Each swimmer was con-
nected to the machine via a non-elastic wire and was dragged at a constant velocity (1.0, 1.3,
1.6, 1.9 and 2.2 m�s-1). The participants performed the passive towing test using the best glide
position following the same protocol used in a previous study [32] as follows: the swimmer’s
hands were held together with the swimmer’s head between the arms extended overhead, while
the lower limbs and feet were in maximum extension.

The average values of towing force (Fd, N) were computed between the 10th and 20th m
from the starting wall, when stabile data were attained. Three trials were performed for each
swimmer and each velocity but only data referring to the largest speed (2.2 m�s-1) were consid-
ered in further analysis. Also in this case, the best trial (with the lowest values of Fd, i.e. with
the best glide position for each swimmer) was selected. These values of Fd were divided by the
square of the corresponding speed (2.2 m�s-1) to obtain the speed-specific drag (kP = Fd /v2,
N�s2�m-2). As proposed by Gatta et al. [21] speed specific drag in active conditions (kA) was
then calculated by multiplying kP by 1.5 which is a factor that takes into account that average
frontal area during a swimming cycle is 1.5 times larger than during passive towing (in the
front crawl).

Before both experiments, and with the aim of familiarizing the swimmers with the method-
ology, several training sessions were conducted at various intensities and with different
durations.

For all participants the three tests were performed in the following order: 1—maximal speed
test; 2 –test to determine the power needed to overcome drag forces; and 3 –test to determine
the power generated by thrust forces. The first and third tests were separated by the second test
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to prevent any effect of fatigue, and each trial was separated by a minimum of 20 min of active
recovery.

The following parameters were thus calculated for each swimmer:

• Mean swimming speed (V30) during the maximal swimming test and stroke frequency values
(SFv) during this test;

• Mean thrust force (Ft) as the average force registered during the 15 s of tethered swimming
and stroke frequency values (SFt) during this test;

• Mean thrust power (Pt) as a product of Ft and V30;

• Speed specific drag in passive (kP) and active conditions (kA) as described above [17]

• Mean drag power in passive (Pd P = kP V30
3) and active (Pd A = kA V30

3) conditions.

Statistical analysis
Data presented as mean ± SD. To quantify the agreement between the 3 trials (for the Ft and Fd
experiments), the coefficient of variation (CV%) was calculated. Correlation between variables
in linear regression was evaluated as indicated by Geigy Scientific Tables. A paired t-test was
used to investigate eventual differences in the variables measured with different approaches
(velocity, stroke frequency and power). A Shapiro-Wilk test was performed for the evaluation
of normality for statistical distribution. A Bland-Altmann plot [33] was constructed to evaluate
the agreement between Pt and Pd values; the upper and lower limits of agreement were also cal-
culated for these data. Statistical analysis was performed using SPSS for Windows (SPSS Statis-
tic 17.0).

Results
Only the “best” trials (the highest Ft and the lowest Fd values for each swimmer) were utilized
in this study to calculate Pd and Pt. Considering all trials the coefficient of variation (CV%)
amounted to 3.5 ± 1.9% for Fd and 6.2 ± 1.7% for Ft.

The individual values of maximal swimming speed (V30), stroke frequency (SFv) and length
(SLv) during the maximal swim trials are reported in Table 1 along with the average and maxi-
mal values of tethered force (Ft), of stroke frequency during this test (SFt) and of power gener-
ated by thrust force (Pt). The values of drag force (Fd) as determined during the towing tests at
different speeds (1–2.2 m�s-1) are reported in Table 2 along with the coefficient of drag in pas-
sive (kP) and active (kA) conditions (at a speed of 2.2 m�s-1) and of power needed to overcome
drag forces (Pd) in passive and active conditions. No significant differences were observed
between SFt and SFv (paired t-test: p = 0.247) as well as between Pt and Pd (paired t-test:
p = 0.828); moreover, maximal swimming speed (2.2 ± 0.07 m�s-1) was similar to the maximal
speed during passive drag measurements (2.2 m�s-1).

The relationship between maximal swimming speed and tethered force is significant when
the average values of Ft are considered (V30 = 1.72 + 0.0027� Ft mean; R = 0.820, p< 0.01) but
not when the maximal values of Ft are considered (V30 = 2.04 + 0.0004� Ft max; R2 = 0.519,
NS).

The relationship between Pt and Pd is reported in Fig 1; this relationship is significant
(p< 0.001) considering both the passive (triangles: PdP) and active (diamonds: PdA) values of
power needed to overcome drag forces; however, the slope of this relationship is much closer to
the identity line for PdA (0.999) than for PdP (0.664).
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In Fig 2 the Bland Altman plot is reported; this figure indicates that the values of power gen-
erated by thrust forces (Pt) are in good agreement with those of power needed to overcome
drag force (PdA). The bias amounts to -0.89 W and the levels of agreement are -25.5 and 23.7
W.

Discussion
The aim of this study was to estimate the power generated by thrust forces and the power
needed to overcome drag force in front crawl sprint swimmers in order to investigate the bal-
ance, at a given speed (2.2 ± 0.07 m� s-1, in this study), between thrust force (Ft) and drag force
(Fd). We used the tethered test to compute the thrust force and we calculated the active drag
force from passive drag experiments. Data reported in this study show that a good (significant)
relationship indeed exists between the power generated by thrust forces (Pt = 399 ± 56 W) and

Table 2. Individual data assessed during passive dragmeasurements.

Fd (N) 1.0 m�s-1 Fd (N) 1.3 m�s-1 Fd (N) 1.6 m�s-1 Fd (N) 1.9 m�s-1 Fd (N) 2.2 m�s-1 kP 2.2 m�s-1 kA 2.2 m�s-1 PdP (W) PdA (W)

1 31.5 40.2 56.0 77.7 115.6 23.9 35.9 231 346

2 37.2 46.3 66.0 88.0 130.0 26.9 40.4 327 491

3 30.8 44.4 58.8 75.8 116.5 24.1 36.2 260 390

4 34.2 47.0 64.0 82.0 128.1 26.5 39.8 270 406

5 32.3 42.3 58.2 92.2 126.0 26.0 39.0 297 444

6 29.6 44.0 49.8 71.8 100.3 20.7 31.1 200 300

7 29.0 45.4 62.1 86.0 121.7 25.1 37.7 271 406

8 32.7 48.3 58.8 87.8 120.3 24.9 37.4 302 454

9 30.0 43.0 57.4 76.0 115.4 23.8 35.7 230 345

10 34.1 46.1 61.8 86.9 125.1 25.8 38.7 279 418

mean 32.1 44.7 59.3 82.4 119.9 24.8 37.2 267 400

SD 2.5 2.4 4.6 6.7 8.6 1.8 2.7 38 57

Fd: average force during passive drag measurements; kP: speed specific drag in passive conditions (at a speed of 2.2 m�s-1); kA: speed specific drag in

active conditions (at a speed of 2.2 m�s-1: kA = 1.5� kP); PdP = kP� V30
3; PdA = kA� V30

3.

doi:10.1371/journal.pone.0162387.t002

Table 1. Individual data assessed during the maximal swim trial and during the tethered test.

V30 (m�s-1) SFv (Hz) SLv (m) Ft mean (N) Ft max (N) SFt (Hz) Pt (W)

1 2.13 0.92 2.32 170 303 0.99 362

2 2.30 1.10 2.10 210 507 1.08 483

3 2.21 1.01 2.21 182 376 0.88 401

4 2.17 0.92 2.36 179 429 0.94 389

5 2.25 0.92 2.27 201 396 0.83 453

6 2.13 1.05 2.04 141 235 1.03 301

7 2.21 0.97 2.29 181 296 0.83 401

8 2.30 0.98 2.36 191 336 0.98 438

9 2.13 0.94 2.29 156 370 0.87 333

10 2.21 0.93 2.39 195 319 1.01 432

mean 2.20 0.97 2.26 181 357 0.94 399

SD 0.07 0.06 0.11 21 77 0.09 56

V30: average speed during the maximal swim test; SFv: stroke frequency during the maximal swim test; SLv: stroke length during the maximal swim test; Ft:

tethered force (mean and max values); SFt: stroke frequency during the tethered test; Pt = Ft� V30.

doi:10.1371/journal.pone.0162387.t001

Power Propulsion in Swimming

PLOS ONE | DOI:10.1371/journal.pone.0162387 September 21, 2016 6 / 11



the power needed to overcome drag force and that this relationship is closer to the identity line
when power drag in active conditions (PdA: 400 ± 57 W) is considered rather than in passive
conditions (PdP = 267 ± 38 W).

The individual differences between PdA and Pt (on average = -0.89 ± 12.57 W) can not be
attributed to individual differences between V30 and the velocity at which KP was assessed (on
average = 0.004 ± 0.065 m�s-1) neither between SFt and SFv (on average = 0.03 ± 0.08 Hz) since
no relationship is observed when the individual differences in velocity or SF are plotted against
the differences in power output (R2 = 0.018 and 0.045, respectively); they can be attributed to
an incorrect determination of Ft and/or Fd (measurement errors and intra-individual variabil-
ity) as discussed in detail below.

1. Test duration and swimming speed. The speed of the maximal swim test was calculated
over the last 30 m of a 35 m maximal sprint; the time to cover this distance was thus compa-
rable to that of the tethered test (15 s): 2.2 m�s-1 in 30 m = 13.6 s. The swimmers, however,
had to accelerate to that speed from zero (a push start) in the first 5 m and, also in this
phase, they generated thrust; the duration of the entire swim test is, however, as close as pos-
sible, to that of the tethered test.

2. Tethered Force.Many authors have investigated the tethered force using different trial
durations, ranging from a few seconds [13–34] to several minutes [12]. The average tethered
force measured in this study was 181 ± 21 N for a 15 s front crawl trial, e.g. comparable to
the values reported by Mosterd et al. [35] and Morouco et al. [17]: 132, 113 and 101 N in

Fig 1. The relationships between power generated by thrust forces (Pt) and power needed to overcome drag forces (PdA: active and PdP:
passive). PdP = 1.68 + 0.664�Pt, R2 = 0.953, N = 10, p < 0.001 (triangles); PdA = 1.09 + 0.999�Pt, R2 = 0.952, N = 10, p < 0.001 (diamonds).

doi:10.1371/journal.pone.0162387.g001
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tethered trials of 20, 30 and 60 s, respectively. The difference between our data and their val-
ues could be attributed to the age and skill level of the swimmers.

3. Drag force. The average speed-specific passive drag measured in this study (kP) on male
athletes was 24.8 N�s2�m-2, which is similar to the values reported by Cortesi et al. [7] and
Zamparo et al. [26]. The power needed to overcome drag forces was calculated by consider-
ing that kA = 1.5 kP in the front crawl (Gatta et al. [21]); kA was then calculated based on
individual values of kP but assuming a factor = 1.5 for all subjects. This factor represents the
average difference between active and passive frontal area as measured in the study of Gatta
et al. [21] in male and female competitive swimmers and thus does not allow to take into
account inter-individual differences in “active” frontal area that could indeed contribute to
the inter-subject differences between Pt and PdA. The choice not to use a direct method for
measuring active drag can be considered a limitation of this study. However, the active drag
measure remains controversial within the scientific community and we used a procedure
that allows indeed to estimate the power needed to overcome drag force with quite a good
accuracy (see Figs 1 and 2).

4. Best vs. average values. Whereas the largest values of Ft (for each swimmer) were utilized
in this study to calculate Pt (i.e. the best value in the three trials), the lowest values of kP
were selected to estimate kA, and then PdA. Indeed, the “best trial” in passive towing experi-
ments is the one where the lowest value of Fd is recorded, larger values being attributable to
a non optimal hydrodynamic position of the swimmer during the test or to a incorrect test

Fig 2. Bland-Altman plot of the differences between Pt and Pd (in active conditions) as a function of the correspondingmean. The dotted and
solid lines represent, respectively, the ± 1.96 SD limits of agreement and the mean.

doi:10.1371/journal.pone.0162387.g002

Power Propulsion in Swimming

PLOS ONE | DOI:10.1371/journal.pone.0162387 September 21, 2016 8 / 11



execution. When the average (instead of the best) values are considered, the relationships
between the power generated by thrust force (Pt) and the power needed to overcome drag
force (PdA: active and PdP: passive) are still highly significant: PdP = 38.69 + 0.618 Pt, R2 =
0.942, N = 10, p< 0.001; PdA = 58.04 + 0.926 Pt, R2 = 0.942, N = 10, p< 0.001. Compared
to the relationships reported in Fig 1 those calculated based on the average values of Ft and
Fd have a slightly lower coefficient of determination and slope and a larger intercept. Thus,
the choice to utilize the best values of Ft (largest) and Fd (smallest) indeed allows to refine
our understanding of relationships between the power generated by thrust forces and the
power needed to overcome drag force in sprint swimming (slopes closer to 1 and intercepts
closer to 0, as it should be the case).

General Discussion and Conclusions
The present study is the first to show that the swimmer’s thrust force is close to the force
needed to overcome the swimmer’s drag in active conditions, as theoretically is the case. The
relationship between the power generated by thrust forces and the power needed to overcome
drag forces has indeed a large determination coefficient (R2 = 0.952), an intercept close to zero
(1.09 W) and a slope close to the identity line (0.999); moreover, the difference between Pt and
PdA is rather small (bias = -0.89 W), and the limits of agreement (-25.5 and 23.7 W) are about
50% of the SD of both PdA and Pt values (about 50 W).

Data were collected in three separate experiments, all referring to maximal sprint condi-
tions: a maximal tethered test the duration of which (15 s) was as close as possible to that of the
maximal swim test which, in turn, was covered at the same speed at which drag data were
assessed/calculated.

The results of the present study should encourage coaches to consider the validity of the
tethered test to evaluate the power balance of a swimmer. Indeed, when swimming at constant
speed, propulsive forces should equal resistive forces and, therefore, to compute a swimmer’s
power output either the power needed to overcome drag or the power generated by thrust
forces could be measured. Whereas there is still a debate in the literature on how to measure
power drag (and the method proposed in this study has its own weakness) our findings support
the use of the tethered test as an accurate, reliable test, to determine the power balance in sprint
swimming.

Indeed, since Fd�v = Ft�v, an increase in v without a proportional increase in Ft (in tests of
similar duration and at maximal effort) would imply that the swimmer has reduced his/her
hydrodynamic resistance (as could be the case when wearing a rubber body swimsuit, as an
example) whereas an increase in v with a proportional increase in Ft would mean that Fd is
unchanged, and so on. Thus the measure of the tethered force in relation to the swimmer’s
maximal speed can help coaches monitoring the increase or decrease in the swimmer’s power
output as well as to infer variations in his/her hydrodynamic resistance.

Acknowledgments
We would like to thank the Italian Swimming Federation for technical support and the swim-
mers for their willingness to participate. We also would like to thank Rocco di Michele for his
help in statistical analysis.

Author Contributions

Conceptualization: GGMC.

Formal analysis:MC PZ.

Power Propulsion in Swimming

PLOS ONE | DOI:10.1371/journal.pone.0162387 September 21, 2016 9 / 11



Funding acquisition: GG.

Investigation: MC GG.

Methodology: GGMC.

Project administration: GG.

Resources: GG.

Supervision: GG.

Validation: PZ GG.

Writing – original draft: PZ MC GG.

Writing – review & editing: PZ.

References
1. Barlett R. Introduction to sports biomechanics: Analysing human movement patterns. Abingdon, UK:

Routledge; 2007.

2. Barbosa TM, Morais JE, Marques MC, Costa MJ, Marinho DA. The power output and sprinting perfor-
mance of young swimmers. J Strength Cond Res. 2015; 29(2):440–450. doi: 10.1519/JSC.
0000000000000626 PMID: 25029007

3. Craig AB Jr, Pendergast DR. Relationships of stroke rate, distance per stroke and velocity in competi-
tive swimming. Med Sci Sports Exer. 1979; 11:278–283.

4. Lyttle A, Blanksby B. A review of swimming dive starting and turning performance. In: TheWorld Book
of Swimming: From Science to Performance. Seifert L., Chollet D., Mujika I., eds. New York: Nova Sci-
ence Publishers, 2011. pp. 425–442.

5. Toussaint HM, De Groot G, Beek PJ. Biomechanics of competitive front crawl swimming. Sports Med.
1992; 13(1):8–24. PMID: 1553457

6. Knuttgen HG, Kraemer WJ. Terminology and measurement in exercise performance. J Strength Cond
Res. 1987; 1(1):1–10.

7. Cortesi M, Fantozzi S, Di Michele R, Zamparo P., Gatta G. Passive drag reduction using full-body swim-
suits: the role of body position. J Strength Cond Res. 2014; 28(11):3164–3171. doi: 10.1519/JSC.
0000000000000508 PMID: 24796982

8. di Prampero PE. The energy cost of human locomotion on land and in water. Int J Sports Med 1986; 7
(2): 55–72. PMID: 3519480

9. Zamparo P. Minetti AE, di Prampero PE. Mechanical efficiency of cycling with a new developed pedal
crank. J Biomech 2002; 35(10): 1387–1398. PMID: 12231284

10. Schleihauf RE. A hydrodynamic analysis of swimming propulsion. In: Terauds J, Bedingfield EW, ed.
Swimming III. Baltimore Maryland: University Park Press; 1979. pp. 70–109.

11. Lecrivain G. Payton C, Slaouti A, al Kennedy I. Effect of body roll amplitude and arm rotation speed on
propulsion of arm amputee swimmers. J Biomech. 2010; 43(6):1111–1117. doi: 10.1016/j.jbiomech.
2009.12.014 PMID: 20106479

12. Magel JR. Propelling force measured during tethered swimming in the four competitive swimming
styles. Res Quart. 1970; 41(1):68–74

13. Yeater RA, Martin RB, White MK, Gilson KH. Tethered swimming forces in the crawl, breast and back
strokes and their relationship to competitive performance. J Biomech. 1981; 14(8):527–537. PMID:
7276012

14. Vorontsov A. Strength and power training in swimming. In: World book of swimming: from science to
performance. Editors: Seifert L, Chollet D and Mujika I: Nova Science Publisher 2011: 313–343

15. Dominguez-Castells R, Izquierdo M, Arellano R. An updated protocol to assess arm swimming power
in front crawl. Int J Sports Med. 2012; 34:324–329. doi: 10.1055/s-0032-1323721 PMID: 23065661

16. Shionoya A, Shibukura T, Koizumi M, Shimizu T, Tachikawa K, Hasegawa M. Development of ergome-
ter attachment for power and maximum anaerobic power measurement in swimming. Appl Hum Sci.
1999; 18:13–21.

Power Propulsion in Swimming

PLOS ONE | DOI:10.1371/journal.pone.0162387 September 21, 2016 10 / 11

http://dx.doi.org/10.1519/JSC.0000000000000626
http://dx.doi.org/10.1519/JSC.0000000000000626
http://www.ncbi.nlm.nih.gov/pubmed/25029007
http://www.ncbi.nlm.nih.gov/pubmed/1553457
http://dx.doi.org/10.1519/JSC.0000000000000508
http://dx.doi.org/10.1519/JSC.0000000000000508
http://www.ncbi.nlm.nih.gov/pubmed/24796982
http://www.ncbi.nlm.nih.gov/pubmed/3519480
http://www.ncbi.nlm.nih.gov/pubmed/12231284
http://dx.doi.org/10.1016/j.jbiomech.2009.12.014
http://dx.doi.org/10.1016/j.jbiomech.2009.12.014
http://www.ncbi.nlm.nih.gov/pubmed/20106479
http://www.ncbi.nlm.nih.gov/pubmed/7276012
http://dx.doi.org/10.1055/s-0032-1323721
http://www.ncbi.nlm.nih.gov/pubmed/23065661


17. Morouco PG, Marinho DA, Keskinen KL, Badillo JJ, Marques MC. Tethered swimming can be used to
evaluate force contribution for short-distance swimming performance. J Strength Cond Res. 2014; 28
(11):3093–3099. doi: 10.1519/JSC.0000000000000509 PMID: 24796981

18. Keskinen KL, Tilli LJ, Komi PV. Maximum velocity swimming: interrelationships of stroking characteris-
tics, force production and anthropometric measures. Scand J Sports Sci. 1989; 11:87–92.

19. Taylor S, Lees A, Stratton G, MacLaren D. Reliability of force production in tethered freestyle swimming
among competitive age-group swimmers. J Sports Sci. 2001; 19:12–13.

20. Wilson B, Thorp R. Active drag in swimming. In: Chatard JC, ed. Biomechanics and Medicine in Swim-
ming IX. Saint Etienne: Universite de Saint Etienne Publications; 2003. pp. 15–20.

21. Gatta G, Cortesi M, Fantozzi S, Zamparo P. Planimetric frontal area in four swimming strokes: Implica-
tions for drag, energetic and speed. HumMov Sci. 2015; 39:41–54 doi: 10.1016/j.humov.2014.06.010
PMID: 25461432

22. di Prampero PE, Pendergast DR, Wilson DR, Rennie DW. Energetics of swimming in man. J Appl Phy-
siol. 1974; 37(1):1–5. PMID: 4836558

23. Holmer I. Physiology of swimming man. Acta Physiol Scand [Suppl]. 1974; 407:1–55.

24. Kolmogorov S, Duplischeva O. Active drag, useful mechanical power output and hydrodynamic force
coefficient in different swimming strokes at maximal velocity. J Biomech. 1992; 25(3):311–318. PMID:
1564064

25. Clarys JP. Human morphology and hydrodynamics. In: Terauds J, Bedingfield EW, ed. Swimming III.
Baltimore Maryland: University Park Press; 1979. pp. 3–41.

26. Zamparo P, Gatta G, Pendergast D, Capelli C. Active and passive drag, the role of trunk incline. Eur J
Appl Physiol. 2009; 106(2):195–205. doi: 10.1007/s00421-009-1007-8 PMID: 19224240

27. Bixler B, Pease D, Fairhurst F. The accuracy of computational fluid dynamics analysis of the passive
drag of a male swimmer. Sports Biomech. 2007; 6(1):81–98. PMID: 17542180

28. Zamparo P, Capelli C, Pendergast D. Energetics of swimming: A historical perspective. Eur J Appl Phy-
siol. 2011; 111(3):367–378. doi: 10.1007/s00421-010-1433-7 PMID: 20428884

29. Toussaint HM, Roos PE, Kolmogorov S. The determination of drag in front crawl swimming. J Biomech.
2004; 37:1655–1663. PMID: 15388307

30. Havriluk R. Variability in measurement of swimming forces: a meta-analysis of passive and active drag.
Res Q Exerc Sport. 2007; 78(2):32–39. PMID: 17479572

31. Ceseracciu E, Sawacha Z, Fantozzi S, Cortesi M, Gatta G, Corazza S, Cobelli C. Markerless analysis
of front crawl swimming, J Biomech. 2011; 44(12):2236–2242. doi: 10.1016/j.jbiomech.2011.06.003
PMID: 21719017

32. Gatta G, Zamparo P, Cortesi M. Effect of swim-cap model on passive drag. J Strength Cond Res. 2013;
27(10):2904–2908. doi: 10.1519/JSC.0b013e318280cc3a PMID: 23287832

33. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical
measurement. Lancet. 1986; 8:307–10.

34. Fomitchenko TG. Relationship between sprint swimming speed and power capacity in different groups
of swimmers. In: Keskinen K, Komi PV, Hollander Ap, ed. Proceedings of the VIII International Sympo-
sium on Biomechanics and Medicine in Swimming. Jyvaskyla, Finland: University of Jyvaskyla;
1999. pp. 209–211.

35. Mosterd WL, Jongbloed J. Analysis of the stroke of highly trained swimmers. Int Z Angew Physiol.
1964; 20:288–293. PMID: 14252789

Power Propulsion in Swimming

PLOS ONE | DOI:10.1371/journal.pone.0162387 September 21, 2016 11 / 11

http://dx.doi.org/10.1519/JSC.0000000000000509
http://www.ncbi.nlm.nih.gov/pubmed/24796981
http://dx.doi.org/10.1016/j.humov.2014.06.010
http://www.ncbi.nlm.nih.gov/pubmed/25461432
http://www.ncbi.nlm.nih.gov/pubmed/4836558
http://www.ncbi.nlm.nih.gov/pubmed/1564064
http://dx.doi.org/10.1007/s00421-009-1007-8
http://www.ncbi.nlm.nih.gov/pubmed/19224240
http://www.ncbi.nlm.nih.gov/pubmed/17542180
http://dx.doi.org/10.1007/s00421-010-1433-7
http://www.ncbi.nlm.nih.gov/pubmed/20428884
http://www.ncbi.nlm.nih.gov/pubmed/15388307
http://www.ncbi.nlm.nih.gov/pubmed/17479572
http://dx.doi.org/10.1016/j.jbiomech.2011.06.003
http://www.ncbi.nlm.nih.gov/pubmed/21719017
http://dx.doi.org/10.1519/JSC.0b013e318280cc3a
http://www.ncbi.nlm.nih.gov/pubmed/23287832
http://www.ncbi.nlm.nih.gov/pubmed/14252789

