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HIV as a Cause of Immune Activation and Immunosenescence
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Systemic immune activation has emerged as an essential component of the immunopathogenesis of HIV. It not only leads to faster
disease progression, but also to accelerated decline of overall immune competence. HIV-associated immune activation is
characterized by an increase in proinflammatory mediators, dysfunctional T regulatory cells, and a pattern of T-cell-senescent
phenotypes similar to those seen in the elderly. These changes predispose HIV-infected persons to comorbid conditions that
have been linked to immunosenescence and inflamm-ageing, such as atherosclerosis and cardiovascular disease,
neurodegeneration, and cancer. In the antiretroviral treatment era, development of such non-AIDS-defining, age-related
comorbidities is a major cause of morbidity and mortality. Treatment strategies aimed at curtailing persistent immune
activation and inflammation may help prevent the development of these conditions. At present, the most effective strategy
appears to be early antiretroviral treatment initiation. No other treatment interventions have been found effective in large-scale
clinical trials, and no adjunctive treatment is currently recommended in international HIV treatment guidelines. This article
reviews the role of systemic immune activation in the immunopathogenesis of HIV infection, its causes and the clinical
implications linked to immunosenescence in adults, and the therapeutic interventions that have been investigated.

1. Introduction

More than 3 decades following the discovery that the human
immunodeficiency virus (HIV) causes the acquired immune
deficiency syndrome (AIDS), there is an increasing evidence
that systemic immune activation plays a significant role in
the disease pathogenesis [1]. High levels of systemic immune
activation and inflammation not only promote viral replica-
tion and CD4+ T-cell apoptosis, but also may lead to more
rapid decline of immune function and competence. This
resembles the phenomenon of immunosenescence that has
been associated with ageing [2]. While combination antire-
troviral therapy (cART) has improved the quality of life
and reduced mortality and morbidity in HIV-infected
persons, long-term virally suppressive treatment has not
been successful in normalizing elevated markers of systemic
immune activation [3]. HIV-infected individuals remain at
a high risk of developing degenerative, dysfunctional, or

malignant non-AIDS-defining diseases; many of which have
been linked to immunosenescence and inflamm-ageing [4].

An ageing immune profile is characterized by decreased
production of naïve T-cells and an increase in the proportion
of memory T-cells with oligoclonal expansion [5]. The
senescent T-cell phenotype is marked by a lack of CD28
expression, decreased homing receptors (e.g., CD62L and
CCR7), and increased expression of the senescence marker,
CD57 [6]. In addition, senescent cells are characterized
by decreased proliferative capacity as indicated by short-
ened telomere length (TL), cell cycle arrest, increased β-
galactosidase activity, limited proliferation in response to
antigen stimulation, and activation of proinflammatory
secretory pathways [6]. Several immunological changes seen
in HIV-1-infected people are comparable to those observed
in the aged. Proinflammatory cytokines, which are increased
in HIV infection, including tumour necrosis factor (TNF)-α,
interleukin (IL)-1β, and IL-6, are known to play a role in
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ageing [7, 8]. Increased secretion of interferon (IFN)-α
and reduced production of IL-2 are observed in both
HIV infection and ageing [9]. Similarities in T-cell differenti-
ation also exist, such as a reduction in the longevity of CD4+

and CD8+ T-cells, reduced production of naïve CD4+ T-cells,
increased numbers of late-differentiated CD4+ and CD8+

T-cells, and shortened TL [9].
In HIV-infected persons, systemic immune activation

and CD4+ T-cell function are inextricably linked to immuno-
senescence, in what appears to be a self-perpetuating cycle.
The changes in immune and cytokine release resulting from
HIV-induced immune activation increase susceptibility to
activation-induced cell death [10–13]; consequent immune
exhaustion results in senescence and programmed CD4+ T-
cell death, which further drive immune activation [14–17].
In both the aged and in HIV, immunosenescence has been
associated with negative immune outcomes, such as thymic
involution, reduction in the overall T-cell repertoire, auto-
immunity, and poor antigen responsiveness [6]. Immuno-
senescence seems to be of particular importance in the
pathogenesis of conditions where inflammation represents
a significant risk factor, such as atherosclerosis and cardio-
vascular disease (CVD), neurodegeneration, and cancer [6].
Indeed, in the ART era, development of non-AIDS-defining,
age-related comorbidities, such as osteoporosis, atherosclero-
sis, and neurocognitive decline, is a major cause of morbidity
and mortality in HIV-infected persons [18]. The Strategies
for Management of Antiretroviral Therapy (SMART) study
demonstrated that deaths were mostly due to non-AIDS-
defining malignancies (19%) and CVD (13%), while oppor-
tunistic diseases only accounted for 8% [19].

This study reviews the role of systemic immune activa-
tion in the immunopathogenesis of HIV infection and the
causes of systemic immune activation and inflammation.
We also review the clinical implications of accelerated ageing
and age-related morbidity in adults and therapeutic interven-
tions investigated to date. Data for this review were identified
through searches of publicly available databases, for example,
Medline and Pubmed, and in the references of studies found
through these searches. Particular attention was paid to
biologically mechanistic studies and review articles focused
on systemic immune activation in HIV-infected persons.
Preference was given to recent studies, that is, published in
the last decade, but earlier studies that were relevant were
also included.

2. Systemic Immune Activation in the
Immunopathogenesis of HIV Infection

Introduction of HIV into host cells activates a complex
network of protective responses originating from both the
innate and adaptive immune systems [20]. These responses
are either insufficient or too late to eliminate the virus. This
enables life-long viral latency and chronic infection, which
drives ongoing immune activation and progressive immuno-
deficiency, characterized by high cell turnover, apoptosis,
and activation-induced death of immune cells [21].

Studies of pathogenic and nonpathogenic models of sim-
ian immunodeficiency virus (SIV) infection have provided

insights into the role of systemic immune activation in the
progression to AIDS [22]. The natural hosts of SIV, such as
the African green monkey and sooty mangabey, are able to
live normally with the virus and do not progress to immuno-
deficiency, regardless of high levels of viral replication. On
the other hand, inoculating other nonhuman primates, such
as rhesus macaques and Asian pigtailed macaques, with SIV
results in immunodeficiency and progression to AIDS similar
to that in HIV-infected humans [23–26]. During both path-
ogenic SIV (pSIV) and nonpathogenic SIV (npSIV) infec-
tion, robust viral replication and early antiviral responses
occur during the acute phase of infection. However, it
appears that the natural hosts have devised an evolutionary
strategy to maintain an effective response, which enables
symbiotic coexistence [27, 28]. This adaptive response
appears to be associated with early resolution of acute
T-cell activation, rather than an improved viral control.

It is thought that differences in immune response
determine whether pSIV or npSIV infection develops.
pSIV studies have demonstrated substantial loss of mucosal
T-helper (Th) 17 cells, with subsequent microbial transloca-
tion as evidenced by high levels of plasma lipopolysaccharide
(LPS) and soluble CD14 (sCD14) [28]. pSIV is associated
with dysregulation of cell cycle and T regulatory cell
(Treg) loss. This indicates a failure to the control of T-cell
activation/proliferation and contributes to poor outcome
[28]. Other characteristics distinguishing natural from unnat-
ural hosts include superior cell homeostasis, higher numbers
of CD4+ T-cells, the presence of anti-inflammatory mecha-
nisms such as attenuated IFN signalling, maintenance of
progenitor cell regeneration, and more limited immune
activation, and T-cell apoptosis [27, 28].

In humans, elite controllers are a unique yet heteroge-
neous group of people that maintain adequate control of viral
replication even in the absence of cART [22, 29]. Unlike
in npSIV, elite controllers are able to downregulate viral
replication in lymphoid tissue. They also have powerful
and durable anti-HIV immune responses, with signifi-
cantly higher activation of T-cells compared to uninfected
individuals. However, this is relatively less than that seen
in HIV-infected persons who are not elite controllers
[29, 30]. Many elite controllers do eventually experience
immune-mediated depletion of CD4+ T-cells and develop
AIDS-defining diseases. It has been shown that basal levels
of immune activation determine this progression [31].

3. Causes of Systemic Immune
Activation in HIV

3.1. Direct Effects of Virions and/or Viral Proteins. HIV gene
products, such as gp120 and Nef, directly stimulate the
activation of lymphocytes and macrophages, resulting in
the secretion of proinflammatory cytokines and chemokines
[32]. Certain HIV proteins imitate and/or enhance TNF-
receptor signalling, causing persistent HIV replication in
infected cells through activation of nuclear factor (NF)-κB,
a prototypical proinflammatory signalling pathway [33],
and apoptosis of uninfected bystander T-cells [34].
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3.2. Viral Coinfections. Coinfection with other viruses, such
as cytomegalovirus (CMV), Epstein-Barr virus (EBV), and
hepatitis B virus (HBV) and hepatitis C virus (HCV), is
common in HIV-infected individuals. Pathogenic gene
products enhance the replication of HIV by transactivation
of HIV long terminal repeats (LTRs) [35]. HIV-induced
immunodeficiency and replicative senescence, which result
in the loss of CD8+ T-cell populations that control viral
replication, may, in turn, reactivate other pre-existing viruses
or exacerbate infection by increasing viral load (VL) and
consequent viral persistence [2]. This accelerates disease
progression and contributes to systemic immune activation
[36, 37]. CMV accounts for approximately 10% of the
circulating memory T-cell repertoire in healthy, asymptom-
atic, HIV-uninfected CMV-seropositive individuals. The vast
majority of HIV-infected individuals, between 75% and 90%,
elicit significant CMV-specific T-cell responses [37, 38].
Chronic coinfection with CMV has been associated with
immunological senescence, that is, gradual age-related dete-
rioration of the immune system, homeostatic changes, and
low CD4+ T-cell counts. It is noteworthy that the latter is
particular for naïve T-cell counts, possibly due to decreased
T-cell renewal capacity and thymic involution, which lead
to inadequate T-cell reconstitution [39].

HIV-1-infected individuals normally have a higher
content of EBV in their lymphoid tissues, or a larger number
of EBV-infected cells in their peripheral blood mononu-
clear cells (PBMCs), than HIV-uninfected individuals. It
is thought that the expansion of EBV-positive B-cells may
be caused by chronic B-cell stimulation driven by HIV
proteins and impaired immune surveillance against EBV
secondary to immunodeficiency [40]. A strong association
has been found between HIV viremia, markers of immune
activation, and EBV DNA load in PBMCs [41].

Hepatocytes and Kupffer cells, the latter of which are liver
macrophages, are derived from blood monocytes, phagocy-
tose, and clear particles draining through the portal system.
Decreased Kupffer and CD4+ T-cell counts have been found
in individuals coinfected with HIV and HCV [42–44]. This
cell loss may be due to the direct cytotoxic effects of HIV,
specifically induced programmed cell death due to soluble
viral or host factors, and altered Kupffer cell trafficking to
target sites [44]. In coinfected people, elevated levels of
sCD14 and LPS are found in the blood, due to a decrease in
the clearance of particles and microbial products following
diminished Kupffer cell numbers [42–44]. The reduction in
CD4+ T-cells occurring during HIV-1 infection may also lead
to inadequate viral control, thereby permitting reactivation
of HCV, which perpetuates the cycle of viral replication
and immune activation [32].

3.3. Persistent Elevation of Type I and II Interferons (IFNs).
IFNs I and II are produced by the innate immune system
during HIV infection. IFN I plays an important role in
mediating continuous inflammation. It is produced by plas-
macytoid dendritic cells (pDCs) following direct activation
of toll-like receptor (TLR)-7 and toll-like receptor (TLR)-8
by HIV RNA [45–47]. IFN I levels increase with plasma
HIV-1 RNA levels and decrease with CD4+ T-cell counts

[48]. IFN I leads to the synthesis and recruitment of more
target cells for HIV by upregulating the HIV coreceptor,
C-C chemokine receptor type 5 (CCR5), and inducing
pDC production of CCR5 ligands. IFN I also suppresses
thymic output, limits CD4+ T-cell recovery, induces CD4+

T-cell apoptosis, and limits antigen-specific CD4+ and
CD8+ T-cell responses [49]. IFN I further stimulates
expression of the immunosuppressive enzyme, indoleamine
2,3-dioxygenase (IDO), leading to dysfunctional and immu-
nosuppressive Tregs [48]. The elevated production of IFN-α
leads to upregulation of proapoptotic molecules [50]. The
administration of IFN II to HIV-infected individuals reduces
the number of CD4+ T-cells [49]. There is a close association
between the elevation of types I and II IFN, IL-12, mono-
cyte- and DC-derived inflammatory cytokines, and T-cell
activation in HIV-infected individuals on ART [51]. The
inadequate regulation of IFN responses drives chronic
immune activation [52, 53].

3.4. Microbial Translocation. In the early stages of infection,
HIV preferentially infects and depletes CCR5-expressing
CD4+ T-cells in the gastrointestinal tract (GIT) [54–58].
The accumulation of inflammatory cells, such as pDCs,
neutrophils, and monocytes, and a concomitant decrease in
cells that regulate epithelial homeostasis, such as IL-17 and
IL-22-producing CD4+ T-cells, progressively compromise
mucosal integrity [59–64]. In turn, this inflammatory envi-
ronment may lead to alterations in tight junction protein
expression, decreased expression of claudins, upregulation
of channel-forming claudins (e.g., claudin 2), and possibly
increased epithelial and enterocyte apoptosis [65–69]. Dys-
function of the epithelial barrier in the GIT then allows
translocation of microbial products from the intestinal
lumen into the systemic circulation [70].

Pattern recognition receptors, such as nucleotide-
binding oligomerization domains (NODs) and TLRs, detect
microbial-associated molecular patterns (MAMPs), such as
peptidoglycan, LPS, flagellin, and CpG DNA. The binding
of microbial products to these receptors on cells of the innate
immune system, most notably monocytes, macrophages, and
DCs, activates a signalling cascade resulting in the produc-
tion of proinflammatory cytokines, such as IL-1β, IL-6,
TNF-α, and type-1 IFNs, such as IFN-α and IFN-β [43, 71].
For example, when TLR-4 recognises LPS, peripheral macro-
phages and DCs are directly stimulated to secrete proinflam-
matory cytokines [32]. This results in local and systemic
immune activation and inflammation [65, 72–74].

Elevated levels of intestinal fatty acid-binding protein
(I-FABP), originating from enterocytes, are found in the
bloodstream of HIV-infected individuals [75]. I-FABP is
a marker of enterocyte damage, which is associated with
impaired intestinal function and microbial translocation.
Enterocyte loss may be due to their reduced glucose uptake
and increased expression of proinflammatory markers, such
as TNF-α [43]. In response to the interaction between cell
surface TLR-4 and monocyte activation, sCD14 is secreted
into the blood [76–78]. sCD14 is a marker of LPS bioactivity
and monocyte activation and is an independent predictor of
mortality in HIV infection [75]. It may consequently be a
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clinically useful surrogate marker of immune activation
[51]. The interaction between LPS and LPS binding protein
(LBP) leads to activation of NF-κB and increased cytokine
expression. LPS-induced monocyte activation may also trig-
ger the coagulation cascade through increased production
of procoagulant tissue factor (TF), which correlates with
increased levels of sCD14, D-dimer, and LBP [79]. Microbial
translocation correlates with poor CD4+ T-cell recovery, HIV
disease progression, and susceptibility to non-AIDS condi-
tions such as CVD and neurocognitive impairment [80].

4. The Detrimental Consequences of Systemic
Immune Activation

The detrimental consequences of systemic immune activa-
tion are multifaceted. While some are particular to HIV, for
instance immune system dysregulation, many are similar to
the human ageing process and affect multiple organ systems.

4.1. Immune System Dysregulation. Immune dysregulation
is characterized by a shift in leukocyte activity and an
imbalance in cytokine levels. Derangement of both the
innate and adaptive immune systems is associated with
increased apoptosis of CD4+ T- and B-cells, immunoparaly-
sis of monocytes, and endotoxemia following microbial
translocation [81]. In addition, continuous viral replication
leads to a loss of T-cell homeostasis, characterized by
increased T-cell turnover, an increase in the differentiation
of naïve to antigen-exposed cells, T-cell replicative exhaus-
tion, and apoptosis.

Immune activation also leads to depletion of T-cells and
memory T-cell pools by other mechanisms, such as a
decrease in the overall half-lives of CD4+ and CD8+ T-cells,
irregular T-cell trafficking within T-cell subsets, and selec-
tive T-cell clonal exhaustion [21, 57]. A reduction in CD4+

T-cells compromises the host’s ability to combat patho-
gens and results in frequent and recurrent opportunistic
and nonopportunistic infections. Inhibition of the normal
functions of B-cells, NK, and other antigen-presenting cells
also results in suboptimal viral control, further contributing
to continuous activation of the immune system [82]. T-cells
reach a state of persistent replicative senescence and immune
exhaustion with the loss of antigen specificity in the immune
system [83].

Cytokines play a vital role in coordinating host inflam-
matory response and are consequently useful markers of
inflammation and systemic immune activation. Excessive
production of either proinflammatory, for example, IL-1β,
IL-2, IL-6, IL-8, and TNF-α, or anti-inflammatory cytokines,
for example, IL-4, IL-10, and IL-13, imbalances immune
responses [84]. Activation of T-, B-, and NK cells by HIV
antigens and their components may increase the secretion
of proinflammatory cytokines, chemotactic cytokines, for
example, macrophage inflammatory protein (MIP)-1α, and
adhesion molecules associated with inflammation, such as
intercellular adhesion molecule (ICAM) and vascular cell
adhesion molecule (VCAM) [85–87]. Activation of mono-
cytes, pDCs, and myeloid DCs may increase secretion of
CXCL9, (monokine induced by gamma interferon (MIG)),

CXCL10 (IFN gamma-induced protein 10 (IP-10)), CCL2
(monocyte chemoattractant protein-1 (MCP-1)), and TNF-
α [51]. This culminates in T-cell activation and cytokine-
driven T-cell apoptosis [88]. Increased proinflammatory
cytokine levels increase susceptibility to inflammation-
related conditions, such as osteoporosis, arteriosclerosis,
cardiovascular conditions, and cancers [32].

Infection of pDCs by HIV may also increase immuno-
suppressive IDO and transforming growth factor (TGF)-β1,
which impact immune dysregulation and T-cell homeostasis.
The predominant origin of TGF-β1 is likely to be Tregs, but
platelets, macrophages of the M2 phenotype, and immuno-
regulatory CD8+ T-cells may also produce it [88]. Activation
of TGF-β1 signalling in fibroblasts triggers increased procol-
lagen and chitinase 3-like-1 production. This leads to colla-
gen deposition, tissue fibrosis, and fibroblastic reticular cell
network loss within the parafollicular T-cell zone of lymph
nodes [89–91]. The interaction between mucosal intestinal
myofibroblasts (IMFs) and LPS also leads to an increase in
the soluble mediators of fibrogenesis (IL-6 and TGF-β1),
which directly increase collagen deposition by IMFs [92].
This may contribute to the disproportionate depletion of
CD4+ T-cells in the GIT [90]. The ratio of Th17 to Tregs
remains diminished during ART [93]. Such an imbalance
may drive elevated IDO production by DCs, with subsequent
impaired production of IL-17 and IL-22, leading to compro-
mised antimicrobial immunity and tissue repair at barrier
surfaces, with sustained immune activation [94, 95].

4.2. Thymic Function Alteration. During successful HIV
suppression, CD4+ and CD8+ T-cell numbers are replen-
ished, either through de novo thymic production, or through
the proliferation of existing cells. As thymic output dimin-
ishes with age, naïve cells are mainly created through the
latter process [96]. HIV infection can induce thymic damage
through direct infection and killing of thymocytes, apoptosis,
or disruption of the thymic stromal architecture, resulting in
defective thymopoiesis and apoptosis of CD4+ T-cells [97].
These changes mimic those induced by ageing, characterized
by a decrease in the size and compartments of the thymus,
and reduced thymopoiesis [5]. Thymic involution is asso-
ciated with immunosenescence, with dysfunction of the
immune system secondary to alterations in T-cell compo-
sition, most notably a shift from naïve to terminally differ-
entiated cells [5, 98]. Thymic recovery may occur in some
patients on ART; however, extensive thymic damage
generally hampers immune reconstitution.

Systemic immune activation, independent of CD4+

T-cell count and HIV VL, also results in inflammatory dam-
age to the thymus [99]. In this case, thymic dysfunction
through suboptimal production of naïve T-cells and greater
differentiation of naïve into effector/memory cells occurs
[100]. Immune reconstitution in HIV-infected individuals
has been directly associated with thymic cellularity and
volume, with the efficacy of reconstitution inversely corre-
lated with age [101–103].

4.3. Systemic Inflammation. The proinflammatory state is
associated with the development of major degenerative
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diseases in the elderly [104]. In HIV-associated immune
activation, there is an increase in proinflammatory media-
tors, TNF-α, IFN-α, IL-2, and IL-8, and dysfunctional Tregs,
which lead to such an inflammatory state. HIV-infected
individuals are predisposed to chronic inflammatory condi-
tions leading to a host of progressive age-related diseases,
so-called “Inflamm-ageing” [18]. This includes inflammatory
bowel disease, osteoarthritis, heart disease, kidney and liver
diseases, metabolic syndrome, dementia, cancer, and frailty
[105, 106]. Inflammatory biomarkers, such as C-reactive pro-
tein (CRP), IL-6, and D-dimer, are elevated in HIV-infected
persons compared to HIV-uninfected persons. Randomized
clinical trials have demonstrated correlations between these
biomarkers, disease progression, and mortality [18, 107].

4.4. Development of Non-AIDS-Associated Disease. The most
significant consequence of systemic immune activation,
especially in terms of long-term morbidity and mortality,
is the development of non-AIDS-associated diseases. In
fact, increased inflammatory biomarkers are predictive of
the development of non-AIDS conditions, independent of
CD4+ T-cell count and HIV VL [32]. Many of these are
also associated with ageing and have been linked to immu-
nosenescence. The most common non-AIDS conditions
related to immune activation include the following.

4.4.1. Cardiovascular Disease. Individuals in the chronic
phase of HIV disease have a greater risk of endothelial
dysfunction and subclinical atherosclerosis than HIV-
uninfected persons [108]. Endothelial dysfunction is charac-
terized by elevated levels of endothelial lesion biomarkers
and endothelial cell adhesion molecules, such as ICAM-1,
VCAM-1, E-selectin, P-selectin, thrombomodulin, class 1
tissue plasminogen activator, and class 1 tissue plasminogen
activator inhibitor (PAI-1) [109]. When HIV infects endo-
thelial cells, endothelial dysfunction may result from the
release of cytokines by activated monocytes or directly by
gp120 and transactivator of transcription (Tat) HIV proteins
altering cell signalling pathways [110, 111].

Both HIV and its treatment have been associated with
vasculopathy and hypercoaguability with subsequent throm-
bosis [112]. In vitro studies have demonstrated that HIV may
affect the storage and secretion of proteins that affect homeo-
stasis, such as vonWillebrand factor. HIV may also affect the
fibrinolytic system through the release of TNF-α, which in
turn increases the expression of PAI-1 in endothelial cells, a
known risk factor for thrombosis. HIV proteins, specifically
gp120, activate arterial smooth muscle cells to release TF,
triggering coagulation through the extrinsic pathway. Con-
versely, HIV infection is also associated with reduced levels
of anticoagulant proteins C and S and antithrombin III
[113]. Thrombosis, often in the context of the metabolic
syndrome, has also been linked to the protease inhibitor
(PI) class of HIV treatment [114]. High levels of TNF-α
and PAI-1, and increased expression of the scavenger recep-
tor, CD36, with subsequent increased absorption of choles-
terol, have been found in PI-treated individuals [115, 116].

A key component of atherogenesis in both HIV and
ageing is the formation of lipid-laden macrophages (i.e.,

foam cells), secondary to unregulated uptake of modified
lipoproteins, especially oxidized low-density lipoprotein
(oxLDL), under the influence of CD36 [117]. HIV-infected
persons have been shown to have increased levels of oxLDL
and higher expression of CD36 and TLR-4 in monocytes
[118]. OxLDL levels correlate with markers of monocyte
activation, for example, sCD14, and TF expression on
inflammatory monocytes [118]. Oxidized lipids are thought
to play a role in atherosclerosis through alteration of nitric
oxide (NO) signalling, initiation of endothelial activation,
and expression of adhesion molecules that promote leuko-
cyte homing [119]. The ensuing inflammatory process
releases downstream biomarkers, such as IL-6, VCAM-1,
selectins, fibrinogen, D-dimer, CRP, and TF, that predispose
the patient to accelerated coronary atherosclerosis and
arteriosclerosis and subsequent CVD including myocardial
infarction, heart failure, stroke, and sudden cardiac death
[120–123]. A recent mouse model has shown that the
pathological process is driven by macrophages in the sub-
endothelial space expressing senescence markers, namely
elevated senescence-associated β-galactosidase activity,
p16Ink4a, p53, and p21. This increases expression of key
atherogenic and inflammatory cytokines and chemokines
and promotes plaque instability by elevating metalloprotease
production [124].

4.4.2. Renal Disease. Individuals living with HIV are at an
increased risk of renal diseases such as acute tubular necrosis,
HIV-associated nephropathy (HIVAN) [125], HIV immune
complex kidney disease, hypertensive and atherosclerotic
renal diseases, and toxicity secondary to potentially nephro-
toxic medication, such as tenofovir disoproxil fumarate
(TDF) [126]. HIVAN is one of the major risk factors of
end-stage renal disease and is histologically defined as a col-
lapsing form of focal segmental glomerulosclerosis (FSGS),
microcystic tubular dilation, tubointerstitial inflammation,
and fibrosis [127]. FSGS is similar to atherosclerosis and
involves the buildup of cholesterol, activation of monocytes,
release of lipid-laden macrophages, and fibrosis, suggesting
that similar inflammatory processes may be involved [128].
The pathogenesis of HIVAN is not entirely understood;
however, it has been suggested that it is triggered by direct
viral infection of renal epithelial cells, Nef-induced podocyte
dysfunction, renal tubular epithelial cell apoptosis induced
by Vpr, and upregulation of proinflammatory mediators,
especially those induced by NF-κB [127].

In ageing, senescent cells are important sources of
inflammation and increased levels of biomarkers of inflam-
mation, coagulation, and endothelial dysfunction, such as
TNF-α, IL-6, MCP-1, CRP, and PAI-1, are commonly seen
in this population [128]. Recruitment of T-cells into the renal
tubulointerstitial compartment has been implicated in many
renal inflammatory diseases and is an important mediator of
tubular injury leading to progressive renal failure in HIVAN
[129, 130]. Interactions between primary renal tubule epithe-
lial cells (RTECs) and HIV-infected T-cells induce potent
inflammatory gene responses. The consequent release of
cytokines/chemokines from RTECs may then attract addi-
tional T-cells. Resident proximal tubular epithelial cells also
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participate in the inflammatory process by enhancing cyto-
kine/chemokine communication with interstitial immune
cells [131]. Activation of RTECs by infiltrating T-cells per-
petuate local inflammatory responses through upregulation
of proinflammatory chemokine/cytokine production medi-
ated by soluble factors or by direct cell-to-cell contact
[132]. The HIV-upregulated cytokines/chemokines in the
RTECs include inflammatory cytokines CCL20, IL-6-, and
the IL-8 related chemokines: CXCL1, CXCL2, CXCL3,
CXCL5, CXCL6, and CXCL8 (IL-8). The receptors to these
chemokines are expressed on certain populations of T-cells
(reviewed in [133]) and, thus, may also be involved in pro-
moting the mononuclear infiltration observed in HIVAN.
The infiltration of HIV-infected cells into the kidney and
activation of chemokines have been implicated in reduced
survival of kidney allografts after transplantation, despite
undetectable viremia [134] and the high prevalence of inter-
stitial nephritis found in kidney biopsies in HIV-infected
patients [135].

4.4.3. Cognitive Impairment. HIV-infected individuals
manifest a spectrum of cognitive, motor, and psychological
dysfunctions similar to that found in ageing, ranging from
asymptomatic neurocognitive impairment to HIV dementia.
Following infection, HIV is believed to enter the central
nervous system (CNS) in infected mature CD14+CD16+

monocytes that traffic to the CNS as part of the turnover of
perivascular macrophages [136]. Once inside the CNS, the
virus infects microglia and may remain dormant for an
extended period of time. HIV does not directly destroy cells
of the CNS in large quantities; instead, it triggers a cascade
of deleterious inflammatory changes affecting cellular signal-
ling and resulting in oxidative stress [137]. Proinflammatory
cytokines may damage neurons, while high levels of reactive
oxygen species (ROS) may damage DNA and RNA [138].
The HIV VL in the brain does not determine the extent of
the inflammatory response. In individuals on ART, minus-
cule amounts of residual virus may be sufficient to maintain
a self-perpetuating inflammatory response [137]. High levels
of macrophage activation markers, such as sCD163, sCD14,
and CCL2 in cerebrospinal fluid and blood, together with
inflammatory biomarkers, such as CRP, IL-6, TNF-α,
IP-10, and neopterin, have been implicated in the develop-
ment of HIV-associated neurocognitive disorders (HAND)
[139, 140]. This is similar to what has been observed in the
elderly, where inflammatory markers, particularly IL-6 and
CRP, have been linked to cognitive decline and an increased
risk of dementia [141].

The CNS and microglial cells may potentially serve as
anatomical and cellular reservoirs, respectively, where HIV-
1 may persist during chronic infection despite successful
cART. The persistence of HIV in the CNS and microglia
may result in immune activation with consequent microglia
senescence [142]. Brain imaging of HIV-1-infected patients
on cART using positron emission tomography imaging and
11C-PK11195 as an in vivo marker of microglia activation
reveals activation of microglia even in the absence of neuro-
logical symptoms [143]. The CSF from HIV-1 patients
also contains increased levels of inflammatory cytokines

including TNF-α, β2-microglobulin and neopterin, IL-1α,
and S100β [144]. The latter, an intraneuronal calcium-
inducing cytokine, could further contribute to neuronal
degeneration [145]. Microglia have been demonstrated to
undergo telomere shortening, which is a characteristic of
senescence, in an animal model [146]. Emerging evidence
from in vitro models also suggests that microglia could
potentially develop a senescence-like phenotype character-
ized by reduced phagocytic and migratory capacities of
microglia [147]. A dystrophic microglial phenotype has been
observed to increase with ageing and has been detected in
neuropathological conditions, such as Alzheimer’s disease
[148]. Although the progression and exact nature of micro-
glial “ageing” remains unclear, activation and senescence
appear to be integral parts of the process. Moreover, HIV-1
infection or bystander effects of HIV-1 infection seem to
disrupt the delicate balance of cell survival, cell cycle progres-
sion, and apoptosis, which could contribute to the develop-
ment of HAND [142].

4.4.4. Osteoporosis. HIV-infected persons have an increased
prevalence of osteoporotic fractures compared to age-
matched, HIV-uninfected individuals [149]. In addition to
traditional risk factors, such as smoking, alcohol, low body
weight, and vitamin D deficiency, HIV-infected patients have
additional risk factors brought about by the virus’ direct
and inflammatory effects on bone resorption [150], as well
as the effects of ART, especially TDF [151]. The major
inflammatory pathways that have been identified involved
cytokines that have also been shown to be elevated during
senescence [152]. For example, TNF-α increases the expres-
sion of the receptor activator of NF-κB (RANKL), which
accelerates osteoclastic bone resorption [150]. In addition,
TNF-α and IL-1 inhibit osteoblast function and stimulate
osteoblast apoptosis through activation of the inflammatory
mediator, NO [152].

4.4.5. Cancer. Due to immune deficiency, HIV-infected
persons are at an increased risk of developing non-AIDS-
defining malignancies, such as Hodgkin’s lymphoma, head
and neck, lung, liver, kidney, skin, and anal cancers
[153, 154]. Factors contributing to the development of non-
AIDs defining cancers include the virus itself, tobacco
exposure, and possibly ART [154]. HIV may activate proto-
oncogenes, alter the regulation of the cell cycle, inhibit
tumour suppressor genes, or cause endothelial abnormalities,
such as proangiogenesis signalling that may facilitate tumour
growth and metastasis [154]. Other persistent viral coinfec-
tions commonly found in HIV-infected persons, such as
HBV, HCV, human papillomavirus, and EBV, also play a
role. Elevated levels of EBV-positive B-cells, which express
latent membrane protein 1, a key viral protein in EBV-
mediated transformation of B-cells, correlate with an
increased long-term risk for such individuals to develop
Hodgkin’s lymphoma [40].

The risk of cancer increases with lower CD4+ T-cell
counts; however, there appears to be an added risk even
among infected people with well-preserved immune systems.
CD8+ T-cells and NK cells maintain surveillance of the body
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and kill cells showing signs of anomalous growth or malig-
nant modification. However, in HIV infection, the signal-
ling cascades that control cell development and tissue
restoration may be disrupted, leading to uncontrolled cell
proliferation [155].

In HIV-infected and uninfected persons, inflammation
contributes to cancer development, primarily by causing oxi-
dative stress and DNA damage. ROS and proinflammatory
cytokines, such as TNF-α, activate NF-κB, which induces
the expression of genes involved in cell proliferation, apopto-
sis, and carcinogenesis. This leads to further production of
proinflammatory cytokines [156]. Macrophages, platelets,
fibroblasts, and tumour cells are all sources of inflammatory
angiogenic mediators, for example, basic fibroblast growth
factor, vascular endothelial growth factor, and prostaglan-
din-E1 and E2 that increase the production of ROS. Addition-
ally, many oncogenes inhibit apoptosis and, in doing so,
facilitate survival of preneoplastic and malignant cells [156].
This combination of DNA damage and unchecked prolifera-
tion contribute to an increased risk of cancer.

IL-7 is important in T-cell homeostasis as it maintains
the survival of the naïve T-cell pool during HIV infection
[157]. Increased IL-7 leads to abnormal B-cell differentiation
[158] and the upregulation of both programmed cell death
protein (PD-1) and its ligands [159]. Under physiological
conditions, PD-1, a negative costimulatory molecule, pre-
vents excessive T-cell activation and assists in peripheral
tolerance through promotion of Tregs [160]. The expres-
sion of PD-1, together with its cognate ligand PD-L1, is
upregulated during chronic HIV infection. This is caused
by the HIV Nef protein via a p38 MAPK-dependent
mechanism, the cytokine-rich microenvironment, T-cell
receptor-independent stimulation, and persistent activation
of the innate immune system [161]. Persistently elevated
levels of PD-1 expression have been observed on exhausted
CD8+ T-cells. The PD-1/PD-L1 signalling pathway is critical
in tumour immune surveillance. Tumours may escape host
immune surveillance by expressing PD-L1 [162]. PD-1 signal
inhibitors have emerged as a useful therapeutic strategy in
the treatment of many cancers. They are also being investi-
gated as approaches to reverse HIV latency and facilitate
eradication [160, 162].

5. Immune Activation and Early
Initiation of ART

Owing to improved ART access, the prognosis of HIV-
infected patients has improved, although increased mor-
bidity and mortality persist. This is caused by clinical
events such as CVD, malignancy, and inflammatory condi-
tions exacerbated by incomplete immune recovery and
residual immune activation [29, 163]. The timing of ART
initiation is thought to play an important role in immune
activation [53]. Data indicate that an immunologic activation
set point develops in the acute phase of HIV infection, which
determines the rate at which CD4+ T-cells are lost over time
[164]. Early ART initiation may protect and preserve lym-
phoid gut homeostasis and reduce microbial translocation
through maintenance of epithelial integrity, maturation of

mucosal DCs, and conservation of intestinal lymphoid struc-
tures [165]. Other long-term benefits include conservation of
HIV-specific CD4+ T-cells, reduction of the turnover rate
and activation of CD4+ and CD8+ T-cells, and in prevention
of viral evolution [166–171].

6. Therapeutic Interventions

A number of therapeutic measures have been explored
with the aim of reducing systemic immune activation in
HIV-infected persons. To date, most studies have been
observational in nature, making it impossible to rule out
confounding factors, and to our knowledge, no human trials
have used markers of immunosenescence as the primary out-
come. Prospective interventional studies have rather focused
on the causes of immunosenescence, such as immune activa-
tion and inflammation, linked with specific outcomes [6].
Unfortunately, there is no consensus regarding the optimal
combination of biomarkers for measuring either immune
activation or treatment success. No single strategy has been
found effective in large-scale clinical trials, and no adjunctive
treatment is currently recommended in international HIV
treatment guidelines.

6.1. ART Intensification and Strengthening. Intensification
with the integrase strand transfer inhibitor, raltegravir, in
virally suppressed persons on ART has been found to lead
to a rapid increase in 2-LTR circles with a significant decrease
in levels of D-dimer [172]. Most studies have not shown any
significant change in CD8+ T-cell activation with this
strategy [173–176]. Intensification with maraviroc, a selec-
tive, reversible CCR5-receptor antagonist that inhibits the
binding and signalling of CCR5 ligands, produced no effect
on CD4+ or CD8+ T-cell counts and actually increased LPS
and sCD14 levels [177, 178].

6.2. Gastrointestinal Repair Strategy. The use of prebiotics
and probiotics to modify the imbalance in the bacterial
profile in the GIT of HIV-infected persons has been explored.
Prebiotic use showed a significant reduction in levels of
sCD14 and improved the functional capability of CD4+

T-cells [179–181]. Supplementation with probiotics in
infected macaques demonstrated reduced IDO-1 activity,
indicating improved ability to maintain mucosal homeostasis
[182, 183]. Other studies have shown increased CD4+ T-cell
counts and lower levels of IL-6 and LBP with probiotic use
[180, 181]. Administering bovine colostrum containing
LPS-specific antibodies/immunoglobulin did not yield any
significant change in LPS, sCD14 levels, or CD4+ T-cell
counts [173, 184].

Recently, it has been reported that elite controllers, who
spontaneously maintain sustained control of HIV, possess a
microbiota that is richer and differs in predicted functionality
from treatment naïve HIV progressors, resembling the
micobiota of HIV-uninfected persons [185]. Therapeutic
interventions that modulate gut microbiota richness, not
only composition, are important in reducing HIV-related
inflammation [185]. In addition to bacterial composition,
other factors such as stability, resistance, resilience, and
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redundancy contribute to the functional properties of the
microbiota [186]. Confirmation of microbiota-related con-
trol of HIV infection in elite controllers by metabolomic
studies may result in new intervention strategies, such as
faecal transplants, to control HIV [185, 187].

6.3. Treatment of Coinfections. Treatment of CMV seroposi-
tive patients with valganciclovir has demonstrated significant
decreases in CMV DNA expression and activation of CD8+

T-cell, but had no effect on CRP, IL-6, and sCD14 [188].
The treatment of HCV with IFN-α and ribavirin did, how-
ever, correlate with a significant decrease in TNF receptor-1
and endothelial dysfunction markers, for example, soluble
E-selectin and sVCAM-1 [189].

6.4. Interleukins. The coadministration of IL-21 and probio-
tics to SIV-infected animals was found to increase the
production of polyfunctional Th17 and reduce pathobiont
translocation [190]. Administering IL-7 to patients on ART
restored functionality of CD4+ and CD8+ T-cells, enhanced
CD4+ T-cell production, and restored intestinal Th17 and
Th22 populations [191]. In addition, IL-7 significantly
decreased the viral reservoir by activating latent virus replica-
tion [192]. Reconstitution of the immune system with excit-
atory cytokines such as IL-2 or IL-15 has improved CD4+

T-cell counts and HIV-specific T-cell responses [9, 193].

6.5. Immune Suppressive Agents. Administering cyclosporine
A as a conjunctive therapy increases average CD4+ T-cell
counts, possibly through the inhibition of T-cell activation
and proliferation [194].

6.6. Reducing Activation of Plasmacytoid Dendritic Cells.
Chloroquine and hydroxychloroquine prevent the endoso-
mal acidification and fusion in pDCs and also inhibit IDO,
a regulator of T-cell responses [195]. There is some contro-
versy regarding the effect of chloroquine and hydroxychloro-
quine in HIV-infected people. Studies on chloroquine report
a substantial reduction in VL in newly ART-treated patients
[196, 197], a reduction in memory CD8+ T-cell activation
and CD4+ and CD8+ T-cell proliferation [195, 198].
Additional beneficial effects, such as reduced levels of LPS,
IFN-α, IL-6, and TNF-α and an increase in CD4+ T-cell
counts, have also been demonstrated [195, 198, 199]. On
the other hand, there have also been reports of no significant
changes in CD4+ and CD8+ T-cell activation and prolifera-
tion [200]. An increase in VL and a reduction, or no change,
in CD4+ T-cell counts have also been found [196, 197, 201].

6.7. Immune Modulators. Administering 3-hydroxy-3-
methyl-glutharyl-coenzyme A (HMG-CoA) reductase inhib-
itors was found to reduce D-dimer and CRP [202–207]. A
study of atorvastatin demonstrated a significant reduction
in CD8+ T-cells compared to the control group [202].
Another study observed that the addition of statins to
ART correlates with a decline in the occurrence of non-
AIDS-associated cancer, non-Hodgkin’s lymphoma, and a
decreased mortality rate [206]. Selective cyclooxygenase type
2 (COX-2) inhibitors have been found to reduce CD8+ T-cell
activation and immune activation levels [208]. The active

metabolite of leflunomide, a disease-modifying antirheu-
matic drug, reduced activated T-cell proliferation in an
in vitro study while no significant change was observed in
HIV VL or CD4+ and CD8+ T-cell counts in patients treated
with leflunomide in a randomised clinical trial [209–212].
Studies administering rapamycin and mycophenolate as a
supplementary therapy with ART have shown to lower
activation and proliferation of T-cells [213, 214].

6.8. Senolytics. Senescent cells are known to accumulate in
various tissues during the aging process [215], and even a
small number of these cells can cause adverse age- and
disease-related phenotypes due to their “proinflammatory
senescence-associated secretory phenotype” [216]. Senoly-
tics are drugs that selectively promote apoptosis of senes-
cent cells by temporarily disabling prosurvival signalling
pathways, for example, those involving “PI3K/AKT, p53/
p21/serpines, dependence receptor/tyrosine kinases, and
BCL-2/BCL-XL.” This has delayed or alleviated the appear-
ance of age- and disease-related phenotypes in several
animal models [216]. These drugs consequently hold
promise in attenuating the appearance of age-related cell
phenotypes and chronic diseases, such as diabetes, pul-
monary fibrosis, osteoporosis, cardiovascular disease, and
cancers [216, 217].

Various drug candidates have been identified, for
example, the tyrosine kinase inhibitor, dasatinib; the natu-
rally occurring flavonoids and related compounds, such as
quercetin, fisetin, and piperlongumine; drugs that target
components of the BCL-2 pathway, for example, navito-
clax; and the specific BCL-XL inhibitors, A1331852 and
A1155463 [215–219]. However, none of these drugs have
demonstrated efficacy on all senescent cell types, significant
side effects have been observed, none have yet successfully
completed preclinical studies, and concerns exist regarding
toxicity following long-term use. Fisetin, A1331852, and
A1155463 appear to have more favorable side effect pro-
files and are potentially better candidates for use in
humans [215, 216].

7. Conclusion

Systemic immune activation has become a focus of research
into the immunopathogenesis of HIV. This immune acti-
vation is characterized by an increase in proinflammatory
mediators, dysfunctional Tregs, and a pattern of T-cell-
senescent phenotypes similar to those observed in the
elderly. These changes predispose HIV-infected persons
to comorbid conditions that have been linked to immuno-
senescence and inflamm-ageing. Treatment strategies aimed
at curtailing persistent immune activation may help prevent
the development of these conditions. At present, early ART
initiation appears to be the most effective strategy although
there is difficulty in achieving this in many settings. More
studies of supplementary strategies are required. Consensus
should also be reached regarding the optimal combination
of biomarkers for measuring systemic immune activation
and its successful treatment.
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