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Abstract
Deep learning models are increasingly being used to interpret whole-slide images (WSIs) in digital pathology and
to predict genetic mutations. Currently, it is commonly assumed that tumor regions have most of the predictive
power. However, it is reasonable to assume that other tissues from the tumor microenvironment may also provide
important predictive information. In this paper, we propose an unsupervised clustering-based multiple-instance
deep learning model for the prediction of genetic mutations using WSIs of three cancer types obtained from The
Cancer Genome Atlas. Our proposed model facilitates the identification of spatial regions related to specific gene
mutations and exclusion of patches that lack predictive information through the use of unsupervised clustering.
This results in a more accurate prediction of gene mutations when compared with models using all image patches
on WSIs and two recently published algorithms for all three different cancer types evaluated in this study. In
addition, our study validates the hypothesis that the prediction of gene mutations solely based on tumor regions
on WSI slides may not always provide the best performance. Other tissue types in the tumor microenvironment
could provide a better prediction ability than tumor tissues alone. These results highlight the heterogeneity in
the tumor microenvironment and the importance of identification of predictive image patches in digital pathol-
ogy prediction tasks.
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Introduction

The diagnosis of cancer is typically based on a histopatho-
logical assessment of tissue sections, supplemented by
genetic and other molecular tests [1–6]. The identification
of molecular biomarkers and gene mutations is becoming
increasingly important for the development of novel treat-
ment options. For example, KRAS mutations, present in
about 30–50% of colorectal cancers (CRCs), are associated
with poor prognosis and advanced disease [7–13]. In lung
adenocarcinoma (LUAD), EGFR has been reported to be
mutated in about 20% of patients. As a result, multiple
EGFR therapies aimed at targeting these mutations have
been developed and approved by the Food and Drug

Administration [14,15]. However, due to the long turn-
around time, tissue usage, and costs in the current oncol-
ogy workflows for genetic mutations from tissue samples
[16], there is a growing need for the development of cheap,
scalable fast alternatives to predict genetic mutations.
Deep learning-based algorithms have been devel-

oped to predict gene mutations using pathology
images [17–23]. Coudray et al [24] proposed a deep
convolutional neural network (DeepPATH) to predict
gene mutations in LUAD based on whole-slide images
(WSIs). Kather et al [23] proposed, optimized, and
extensively validated a one-stop-shop workflow based
on the lightweight neural network, ShuffleNet. They
showed that a wide range of genetic mutations,
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molecular tumor subtypes, gene expression signatures,
and standard pathology biomarkers could be inferred
from WSIs.
A large number of image patches (ranging from

hundreds to thousands) are available for each WSI,
and not all areas within the WSIs are relevant to gene
mutations. Therefore, use of all image patches of a
WSI to construct a prediction model may lead to
suboptimal prediction performance for certain gene
mutations as, intuitively, pooling patches with little
predictive value with relevant, predictive patches may
dilute the predictive ability of relevant patches and
reduce prediction performance. It has therefore often
been postulated that certain image regions or patches
within the WSI (e.g. tumor regions) could carry
more predictive value. Commonly, pathologist-
annotated tumor regions relevant to the diagnostic
task have been used to train predictive models
[23,25–31]. Scientists also trained tissue classifiers
(tumor and nontumor) to automatically select tumor-
like tiles to predict mutated genes in different can-
cers [18,24,32,33].
In the field of digital pathology, unsupervised cluster-

ing has been widely used to reduce the dimensionality
of patches to facilitate multiple instance learning (e.g.
patches from WSIs can be fitted on a graphics
processing unit (GPU) at once) [34]. This method was
also used to derive additional cluster-based features, and
to identify rare events. Dooley et al [35] and Zhu et al
[36] clustered patches and used the frequency of patches
in each cluster as a new feature to predict heart trans-
plant rejection. Similarly, Abbet et al [34] proposed a
self-supervised learning method that jointly learns from
a representation of tissue regions as well as a clustering
metric to identify spatial tissue features such as cluster
probabilities and cluster transition probabilities.
In addition, unsupervised clustering has been com-

monly used in image-based deep learning survival
analysis. Yao et al [37] clustered the patches in each
WSI individually into different phenotype clusters.
One patch from each cluster was then sampled and
was used to predict survival in CRC patients. Sharma
et al [38] deployed a local cluster-based (clustering
patches from a single WSI) sampling approach for
identifying children with celiac disease. Zhu et al and
Yue et al used global clustering of patches from all
patients to train a survival model based on the infor-
mation derived for each cluster. The features from the
most predictive clusters were then aggregated across
the patches from each cluster to predict the outcome.
Muhammad et al [39] used patch features grouped by
global centroids to calculate the local slide-level cen-
troid and concatenated the nearest patches to local

centroids to represent each slide. The model was then
trained with survival data. Their approach performed
better than other approaches used in the modeling of
intrahepatic cholangiocarcinoma.
Although various applications have been devel-

oped for unsupervised clustering in digital pathology,
very few studies evaluated the use of unsupervised
clustering for the identification of image patches
linked with genetic mutations. Therefore in this
paper, we proposed an unsupervised clustering-based
multiple-instance learning method to develop a deep
learning model for optimization of the prediction of
genetic mutations using the WSIs of three common
cancer types obtained from The Cancer Genome
Atlas (TCGA).

Materials and methods

Datasets, image preprocessing, and feature
extraction
Datasets of WSIs for three tumor types, including CRC,
head and neck squamous cell carcinoma (HNSCC), and
LUAD, were retrieved from TCGA available on https://
portal.gdc.cancer.gov. The corresponding TCGA gene
mutation data and subtype data were downloaded from
the https://xenabrowser.net/datapages/ website.
Clinically relevant genes for each cancer type

reported in [40,41] were selected for analysis
(Table 1). We assigned each patch with label 1 or
0, depending on the presence or absence of the muta-
tion in that patient.
The background region with no tissue from each

H&E stained WSI was excluded using an adapted
Otsu method [42]. This technique involves separating
the pixels in each image on the grayscale space into
foreground and background. The background was then
removed leaving only the tissue. The tissue areas of
the image were then tiled into small nonoverlapping
patches, each with a dimension of 224 � 224 pixels.
Macenko’s method [43] was then used to normalize
the color patches synchronously according to a refer-
ence pathology image patch (supplementary material,
Figure S1). For the LUAD, HNSCC, and CRC, the
number of patches extracted from the WSIs ranged
from about 100 to 50,000 (average = 12,664), 100 to
30,000 (average = 12,772), and a few hundreds to
30,000 (average = 7,888), respectively.
We employed a fine-tuned Xception model to

extract features from the image patches [44], which
was pre-trained on the ImageNet datasets and fine-
tuned on a CRC dataset [45]. It has been shown that
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the fine-tuned Xception model using pathology images
from CRC samples improved the feature extraction
and the predictive performance across different cancer
types [44]. A feature vector with a dimension of
256 was extracted from each patch. For each patient,
an n � 256 feature matrix was obtained whereby
n represents the number of patches in the patient of
interest.

Best-cluster optimized multiple-instance learning
using unsupervised clustering
We randomly selected 100 patients from each of
the three tumor types (LUAD, HNSCC, and CRC) in
the TCGA dataset. After pooling all patches from the
100 patients of each cancer type, we used K-means
clustering to cluster these patches into four groups. A
k-NN algorithm was then used to assign cluster labels
to the rest of the patches of that cancer type, which
were not included in the process of building the clus-
tering model.
To our knowledge, this is the first study that has

made use of unsupervised clustering to optimize the
prediction of genetic mutations on WSIs. However,
we leveraged studies currently available in other areas
to select the number of clusters [37,38]. It was found
that 4–6 clusters usually provide optimal or close to
optimal predictive performance for survival prediction
[37] and breast cancer classification [38]. We

performed preliminary analysis using six genes from
LUAD and confirmed that a cluster number of 4 may
provide satisfactory predictive performance for predic-
tion of gene mutations as well (data not shown). Also,
since global clustering (i.e. clustering was done for
patches from all patients) was used in this study,
implementing large cluster numbers may result in
missing data (e.g. missing certain clusters in some
patients due to lack of certain type of tissues for those
patients). Therefore, a cluster number of 4 was
selected to not only ensure close to optimal predictive
performance, but also to mitigate the potential missing
data issue and to ensure fair comparisons across differ-
ent clusters.
Semiautomatic annotation was used to classify the

patches in each cluster for all three cancers (LUAD,
HNSCC, and CRC), while patches from CRC tumor
were also annotated using an automatic, supervised tis-
sue classifier (Supplementary methods).
To study the effect of clustering on each cluster,

we trained a patch-level multilayer perceptron clas-
sifier that used the features of the patches from each
cluster as the input to estimate the mutation proba-
bility of each patch. The Adam algorithm was used
to optimize the cross-entropy. After averaging the
predicted probability, we obtained a classifier for
each slide level. The algorithm was then tested on
WSIs obtained from the TCGA dataset. Figure 1
shows the pipeline method used to develop our
model.

Model comparisons
The predictive performance of the best-cluster opti-
mized method was compared with (1) a WSI-based
approach without unsupervised clustering, (2) a tumor
region based method (CRC only), and (3) other
published algorithms that utilized unsupervised clus-
tering as follows.

WSI-based approach

As a benchmark comparison, we also trained the mul-
tiple instance learning (MIL) classifier using all
patches from patients as input without clustering the
patches. All the patches obtained from the WSIs were
used to train a patch-level network. The average
predicted probability of patches was used to predict
the slide-level mutation [24].

Tumor-region-based approach

Patches from tumor areas have often been used to train
prediction models for gene mutations [18,24,32,33].
For CRC, we selected tumor tiles using a fine-tuned

Table 1. Mutant and wild type numbers for each gene in three
cancers
Gene Total Mutant Wild type Mutation frequency

LUAD
TP53 434 224 210 0.52
STK11 434 63 371 0.15
KEAP1 434 77 357 0.18
EGFR 434 55 379 0.13
ALK 434 24 410 0.06
KRAS 434 132 302 0.30

HNSCC
TP53 431 320 111 0.74
CASP8 431 47 384 0.11
NSD1 431 51 380 0.12
HRAS 431 27 404 0.06
PTEN 431 10 421 0.02
DNAH5 431 58 373 0.13

CRC
TP53 414 260 154 0.63
PIK3CA 414 158 256 0.38
ATM 414 120 294 0.29
MET 414 38 376 0.09
BRAF 414 91 323 0.22
RET 414 27 387 0.07
ERBB2 414 30 384 0.63
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Xception-based tissue-type classifier [44]. We then
trained the mutation prediction model on the tumor
patches and compared the performance of the model
with the best-cluster-based model. Since patch-level

labels for tissue types were only available for the CRC
dataset, we compared the performance of the best-
cluster optimized approach to the tumor-region based
approach only for the CRC dataset.

Figure 1. Framework of unsupervised clustering-based deep learning modeling for prediction of gene mutations. (A) Each whole-slide
H&E image was preprocessed to (i) remove the background areas using the Otsu method, (ii) split into nonoverlapping tiles with a size
of 224 � 224 pixels, and (iii) color normalized. A fine-tuned Xception model-based feature extractor was used to generate patch repre-
sentations. (B) For each cancer type, K-means clustering was used to group patches into four clusters. The cluster labels of the patch
were then assigned by k-NN algorithm. A neural network was trained on each cluster data and the model with best predictive perfor-
mance among the four clusters was selected based on five-fold cross-validation (the average AUC values on unseen test fold was
reported). (C) For the WSI model, all patches extracted from WSIs were used to train the model. (D) For the tumor region model, we used
the NCT-CRC-HE-100K dataset to train a CRC tissue classifier and tested it on the CRC-VAL-HE-7K dataset. For each WSI, the tumor
patches were selected by the classifier and were used to train the mutation prediction model. Finally, we compared the best-cluster opti-
mized model, the WSI-based model, and the tumor-region-based model using the average AUC of five-fold cross validation.
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Published baseline algorithms

In addition, we compared our method with two recently
published baseline methods by Dooley et al [35] and
Zhu et al [46] that also utilized unsupervised clustering
to improve the accuracy of their prediction models. For
details, please refer to Supplementary methods.

Experiment setup
In all experiments, we used stratified five-fold cross-
validation according to the mutation status for each gene
whereby the dataset obtained from the TCGA for each
cancer type was divided into five folds to avoid the data
imbalance problem. In each fold, 80% of the data were
used for model training and 20% of the data were used
to test the performance of the model. During training, we
used the Adam optimization method with an initial learn-
ing rate of 0.00005 and a cosine annealing schedule with
a maximum number of 20 iterations. Training and valida-
tion were done over 1,000 iterations (supplementary
material, Figure S2). The performance of the model was
evaluated by calculating the area under the curve (AUC)
of a receiver operating characteristic curve. When calcu-
lating the cross-entropy loss, we assigned more weight to
classes with a small number of training images so that
the network was punished more if it falsely predicted the
labels of these classes.

Results

Composition of the tissue clusters within the
LUAD, HNSCC, and CRC datasets
Supplementary material, Figure S3 shows that K-
means clustered the tiles into four distinct clusters for
the three TCGA datasets. Supplementary material,
Figures S4, S5, and S6A show the image annotations
based on the semiautomated annotation approach
where two sequential unsupervised clustering proce-
dures were performed to group the image patches into
16 clusters/subclusters and the centers of the 16 sub-
clusters were manually annotated by a pathologist
(Supplementary methods). The image tiles in supple-
mentary material, Figures S4, S5, and S6A represent
the most common tissue type among the four neigh-
borhood patches near the center of each subcluster
(four subclusters for each cluster) for the LUAD,
HNSCC, and CRC, respectively.
For the LUAD, based on the pathologist’s manual

annotation, Cluster 2 mainly consisted of tumor tis-
sues, while Cluster 4 primarily included stromal cells.
Clusters 1 and 3 consisted of a mix of red blood cells,

stromal cells, pulmonary alveolus, tumor, lympho-
cytes, proliferating fibroblasts, and other nontumoral
cells (supplementary material, Figure S4).
For the HNSCC cohort, according to the patholo-

gist’s annotation, Clusters 3 and 4 consisted of the
nontumor and tumor compartments, respectively. Clus-
ter 1 from the HNSCC cohort was a mix of lympho-
cytes and tumor cells, while Cluster 2 comprised
mostly nontumor cells with some tumor cells (supple-
mentary material, Figure S5).
For CRC, supplementary material, Figure S6A

shows that based on the pathologist’s annotation, Clus-
ter 1 consisted mainly of tumor and mucin cells, while
almost all patches in Cluster 2 were tumor cells. Clus-
ter 3 of the CRC primarily included muscular and stro-
mal cells with some debris and tumor cells as well,
whereas lymphocytes, adipose, tumor as well as
nontumor tissues were identified in Cluster 4.
We also examined the tissue types of each cluster for

CRC tumors using the supervised, automatic tissue type
classifier [47] (supplementary material, Figure S6B).
Similar to the results according to the semiautomated
approach and the pathologist’s annotation (supplemen-
tary material, Figure S6A), the supervised, automatic tis-
sue type classifier (supplementary material, Figures S6B
and S7) also predicted that the patches from Cluster
1 were primarily tumor and mucin while the patches
from Cluster 2 were dominantly tumor tissue. Similar
annotations between the manual- and auto-annotations
were also observed for the four patches selected from
Cluster 3 and Cluster 4 (supplementary material,
Figure S6) except for that the nontumor patches in both
clusters (Subcluster 2 in Cluster 3 and Subcluster 4 in
Cluster 4) from the semiautomated approach (supplemen-
tary material, Figure S6A) were further identified as stro-
mal and normal by the supervised tissue classifier,
prospectively (supplementary material, Figure S6B). Fur-
thermore, supplementary material, Figure S7 demon-
strated that Cluster 3 of the CRC primarily included
muscular and stromal cells with some debris and tumor
cells as well, and various tissue types were present in
Cluster 4, which included all eight tissue types (plus a
small number of background patches). These results indi-
cate that the annotations based on the tissue classifier
were generally consistent with the manual annotations
provided by the pathologist in the semiautomated
approach (supplementary material, Figure S6).

Prediction of gene mutations by tissue clusters and
by WSIs
Tables 2–4 illustrate the average AUC values obtained
from the five-fold cross-validation using the three
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TCGA datasets (LUAD, HNSCC, and CRC, respec-
tively) for the four prediction models based on the
image tiles from the four individual clusters. The
results demonstrated that the image tiles from the dif-
ferent clusters had different predictive abilities. In
addition, the cross-validation also showed that, com-
paring to the method using all patches from WSIs, the
cluster with the best predictive performance consis-
tently provided an improvement in the prediction of
genetic mutations for all the three cancer types
(i.e. LUAD, HNSCC, and CRC) (Figure 2 for genes
that can be robustly predicted [AUC > 0.6] and sup-
plementary material, Figure S8 for all genes regardless
of AUC).

LUAD

For the LUAD (Table 2), the tumor cells in Cluster
2 provided the best prediction for the TP53 and
STK11 mutations, suggesting that the mutant-like
image features for TP53 and STK11 are mainly found
within the tumor region (refer to the heatmap in
Figure 3). This finding is consistent with the results
obtained by Coudray et al [24]. The tumor patches
also predicted the EGFR mutations well (Table 2).
The stromal cells in Cluster 4 provided the highest
AUC for the prediction of ALK gene mutation
(Table 2) and the image tile with the highest likelihood
of ALK mutation demonstrated stromal features

Table 2. Average AUC (standard deviation) from five-fold cross validation for different clusters in TCGA LUAD. Bold numbers represent
the highest AUC values for each gene. Cluster 2 of LUAD mainly consisted of tumor tissues.

Cluster

Gene Cluster 1 (N = 433) Cluster 2 (N = 428) Cluster 3 (N = 434) Cluster 4 (N = 434) Whole image (N = 434)

TP53 0.655 � 0.077 0.692 � 0.082 0.609 � 0.070 0.584 � 0.075 0.679 � 0.084
STK11 0.608 � 0.095 0.647 � 0.100 0.553 � 0.100 0.563 � 0.157 0.586 � 0.122
EGFR 0.649 � 0.126 0.643 � 0.118 0.584 � 0.107 0.595 � 0.123 0.624 � 0.130
ALK 0.549 � 0.192 0.609 � 0.151 0.544 � 0.123 0.655 � 0.233 0.604 � 0.209
KRAS 0.517 � 0.053 0.536 � 0.054 0.608 � 0.068 0.564 � 0.070 0.562 � 0.059
KEAP1 0.630 � 0.137 0.594 � 0.152 0.619 � 0.084 0.611 � 0.081 0.629 � 0.170

Table 3. Average AUC (standard deviation) from five-fold cross validation for different clusters in TCGA HNSCC. Bold numbers represent
the highest AUC values for each gene. Cluster 4 of HNSCC mainly consisted of tumor tissues.

Cluster

Gene Cluster 1 (N = 431) Cluster 2 (N = 431) Cluster 3 (N = 430) Cluster 4 (N = 430) Whole image (N = 431)

TP53 0.690 � 0.073 0.611 � 0.128 0.596 � 0.068 0.719 � 0.061 0.700 � 0.093
DNAH5 0.462 � 0.090 0.604 � 0.064 0.505 � 0.067 0.479 � 0.088 0.521 � 0.068
HRAS 0.590 � 0.152 0.665 � 0.140 0.454 � 0.103 0.658 � 0.178 0.598 � 0.182
CASP8 0.666 � 0.124 0.564 � 0.105 0.638 � 0.061 0.665 � 0.072 0.664 � 0.082
PTEN 0.540 � 0.286 0.625 � 0.230 0.577 � 0.204 0.552 � 0.225 0.568 � 0.234
NSD1 0.630 � 0.100 0.632 � 0.121 0.657 � 0.089 0.639 � 0.070 0.629 � 0.102

Table 4. Average AUC (standard deviation) from five-fold cross validation for different clusters in TCGA CRC. Bold numbers represent the
highest AUC values for each gene. Cluster 2 of CRC mainly consisted of tumor tissues.

Cluster

Gene Cluster 1 (N = 413) Cluster 2 (N = 411) Cluster 3 (N = 414) Cluster 4 (N = 414) Tumor patches* Whole image (N = 414)

TP53 0.657 � 0.034 0.642 � 0.059 0.575 � 0.061 0.653 � 0.028 0.665 � 0.043 0.660 � 0.021
PIK3CA 0.759 � 0.071 0.706 � 0.083 0.721 � 0.081 0.766 � 0.048 0.737 � 0.085 0.757 � 0.085
BRAF 0.729 � 0.043 0.666 � 0.066 0.625 � 0.072 0.703 � 0.078 0.687 � 0.054 0.695 � 0.067
ERBB2 0.554 � 0.145 0.551 � 0.135 0.546 � 0.049 0.633 � 0.167 0.598 � 0.137 0.567 � 0.122
ATM 0.738 � 0.036 0.733 � 0.056 0.720 � 0.030 0.743 � 0.026 0.734 � 0.054 0.747 � 0.021
MET 0.703 � 0.097 0.695 � 0.062 0.696 � 0.096 0.737 � 0.112 0.697 � 0.052 0.709 � 0.121
RET 0.685 � 0.094 0.529 � 0.111 0.510 � 0.123 0.677 � 0.076 0.623 � 0.048 0.631 � 0.081

*Model trained on tumor patches identified by a tissue classifier for CRC.

8 Z Chen, X Li et al

© 2022 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res 2023; 9: 3–17



(Figure 3). Models based on image tiles from Clusters
1 and 3 which consisted of a mix of red blood cells,
stromal cells, interalveolar septum cells, and other
nontumoral cells provided the best prediction for
KEAP1 and KRAS mutations, respectively.
Compared to the method using all patches from

WSIs, a substantial improvement in the AUC was

observed for the STK11 (0.061, p = 0.018), ALK
(0.051, p = 0.016), and KRAS (0.046, p = 0.055)
mutations. In addition, standard deviations of AUC
values for the TP53, STK11, EGFR, and KEAP1 muta-
tions from models based on the cluster providing the
best prediction appear smaller than those based on all
the patches on a WSI (Table 2), indicating that the

Figure 2. Comparison of model performance (average AUC values) of the proposed best-cluster optimized algorithm with the WSI-based
model using all patches from WSIs without patch selection. Red points represent the best-cluster results; green points represent models
using WSIs. The bar charts show the difference in average AUC between the best-cluster optimized model and the WSI-based model.
The genes that can be robustly predicted (AUC > 0.6) are displayed.
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model based on the best cluster may provide a more
robust prediction for these genes than the models
based on WSIs.

HNSCC

Similarly, in the HNSCC cohort, marked differences
in the AUC were noted for the prediction of gene
mutations for the different clusters (Table 3). The pre-
dictive performance of the tumor cells in Cluster 4
was very high for the TP53, HRAS, CASP8, and NSD1
mutations. The heatmap in Figure 4 shows that the
TP53 mutant-like features are highly present in the
tumor compartment of HNSCC (Cluster 4). Con-
versely, nontumor cells in Cluster 3 provided the best
prediction performance for the NSD1 mutations, while
the mix of lymphocytes and tumor cells in Cluster 1
was better at predicting the CASP8 mutation. The

image tiles with the highest likelihood of predicting
the NSD1 and CASP8 mutations were nontumoral
(stromal) and tumor cells, respectively (Figure 4). The
models based on the nontumor cells (including blood
vessels, debris, etc) in Cluster 2 outperformed the
other three clusters in terms of the prediction for the
DNAH5, HRAS, and PTEN mutations. Consistently,
Figure 4 shows that the image tiles with the highest
likelihood of DNAH5, HRAS, and PTEN consisted of
red blood cells, stroma/red blood cells, and tumor/
blood cells, respectively (Figure 4).
When compared to the method using all patches

from WSIs (Figure 2), a substantial improvement in
the AUC based on the best clusters was noted for the
DNAH5 (0.083, p = 0.015), HRAS (0.067, p = 0.06),
and PTEN (0.057, p = 0.031) mutations, whereas the
improvement for TP53, CASP8, and NSD1 was

Figure 3. Visualization of the proposed algorithm for different genes in LUAD. The deep learning-based unsupervised clustering and
mutation predictions are visualized to understand the spatial locations of each cluster, to identify the spatial regions related to mutation
of a specific gene via the resolved probability scores, and to highlight the heterogeneity of a predicted genotype in the tumor microenvi-
ronment. The heatmap shows the probability scores of the gene mutations in the identified best cluster. The tile with the highest proba-
bility of mutations for each gene is displayed and the corresponding tissue type is provided.
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relatively smaller. Again, the standard deviations of
the AUC values based on the WSIs were greater than
those based on the best clusters (Table 3).

CRC

For CRC (Table 4), features from both Cluster 1 (pri-
marily tumor and mucin tissues) and Cluster
4 (a mixture of all types of tissues) had the best pre-
dictive performance for the vast majority of the genes,
although the tumor compartment (Cluster 2) also had a
relatively good prediction performance. These results
suggest that the mutant-like image features for these
clinically relevant genes in CRC are not exclusively
confined to the tumor regions (Figure 5). Other tissues
particularly mucin also have a great predictive value
for predicting genetic mutations on CRC WSIs. These
findings are consistent with the work of Nguyen et al,
whereby image patches for tumor and mucus regions

tended to better predict the microsatellite instability
(MSI) status and other biomarkers for CRC patients
[48]. In addition, Figure 5 demonstrates that the
image tiles in Cluster 4 consisting of lymphocytes
had the highest predictive ability for the ERBB2,
ATM, and MET mutations, while an image tile with
normal-tissue-like features had the highest likeli-
hood of predicting PIK3CA mutation. For TP53,
BRAF, and RET mutations, the highest scoring tiles
were tumor or tumor/mucin tiles (Figure 5).
Compared to the WSI approach (Figure 2 and

Table 4), the prediction based on the best clusters was
remarkably improved for the ERBB2 (0.066, p = 0.05)
and RET (0.054, p = 0.021) mutations in CRC.
Numerical improvement was also observed for MET
and BRAF mutations while similar predictive perfor-
mance was observed for PIK3CA, ATM, and TP53
between these two approaches. In addition, for the

Figure 4. Visualization of the proposed algorithm for different genes in HNSCC. The deep learning-based unsupervised clustering and
mutation predictions are visualized to understand the spatial locations of each cluster, to identify the spatial regions related to mutation
of a specific gene via the resolved probability scores, and to highlight the heterogeneity of a predicted genotype in the tumor microenvi-
ronment. The heatmap shows the probability scores of the gene mutation in the identified best cluster. The tile with the highest proba-
bility of mutation for each gene is displayed and the corresponding tissue type is provided.
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PIK3CA, BRAF, MET, and RET mutations, more
robust prediction (i.e. smaller standard deviation in
AUC values from cross-validation) was observed
based on the best-cluster approach than the WSI
approach. Particularly, for PIK3CA mutation predic-
tion, the standard deviation for the best-cluster
approach was 0.048 compared to 0.085 for the WSI
approach.
These results from LUAD, HNSCC, and CRC

suggest that the best-cluster optimized method can
provide not only more accurate, but also more pre-
cise prediction. For most gene predictions, using all
image patches for the WSI approach may result in

reduced predictive performance as patches with low
predictive ability will reduce the accuracy of pre-
diction when aggregated with mutation-related
patches.

Mutation prediction comparison between the best-
cluster optimized model and the tumor area model
Tumor regions are commonly selected in computational
pathology pipelines for prediction tasks [18,23,24,28,32].
In the previous experiment, it is apparent that the clusters
primarily containing tumor tissues may not provide the
best prediction for certain gene mutations. For instance,

Figures 5. Visualization of the proposed algorithm for different genes in CRC. The deep learning-based unsupervised clustering and
mutation predictions are visualized to understand the spatial locations of each cluster, to identify the spatial regions related to mutation
of a specific gene via the resolved probability scores, and to highlight the heterogeneity of a predicted genotype in the tumor microenvi-
ronment. The heatmap shows the probability scores of the gene mutation in the identified best cluster. The tile with the highest proba-
bility of mutation for each gene is displayed and the corresponding tissue type is provided.
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based on the unsupervised clustering, the cluster with
mixed types of tissues (e.g. Cluster 4 [a mix of all tissue
types]) better predicted gene mutations for CRC than the
cluster primarily with tumor tissue (Cluster 2)
(Table 4). In this experiment, we further evaluated
the concept and compared the best-cluster optimized
approach to tumor-region-based approach using
CRC tumors, for which a supervised tissue classifier
was developed to select the tumor patches. Figure 6
shows the comparison of average AUC values
between the model trained on the best clusters and
the model trained using tumor patches selected from
the supervised tissue classifier. The best tissue clus-
ter model generally outperformed models trained
only on tumor regions, and improvement was
observed for RET, BRAF, MET, PIK3CA, and ATM
mutations. Particularly, the predictions of RET,
BRAF, and MET mutations were significantly
improved by 0.062 (p = 0.026), 0.042 (p = 0.051),
and 0.04 (p = 0.043), respectively. For TP53 muta-
tion, the supervised model-identified tumor patches

provided similar or slightly higher predictive perfor-
mance compared to the best-cluster approach.

Mutation prediction comparison between the
best-cluster optimized model and two baseline
algorithms
In this experiment, we compared the best-cluster opti-
mized method with two recent published machine learn-
ing methods that utilized unsupervised clustering
techniques in different ways (Supplementary methods).
The cluster distribution algorithm proposed by Dooley
et al [35] uses frequency of patches of individual clusters
as a new feature for prediction, while Zhu et al [46]
selected all clusters with predictive values (i.e.
AUC > 0.5). Supplementary material, Figure S9 shows
that our proposed best-cluster method outperformed both
baseline algorithms proposed by Dooley et al [35] and
Zhu et al [46]. The superiority over the Zhu et al model
suggests that the combining of all clusters with an AUC
higher than 0.5 reduces the predictive ability of the

Figure 6. Comparison of the proposed best-cluster optimized model with tumor-region-based for CRC. Red points represent the best-
cluster results; green points represent models trained on tumor patches. The bar charts show the difference in average AUC between
clustering model and all-patch model.
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model. Intuitively, involving data from less predictive
clusters may reduce the predictive performance. The
cluster distribution algorithm of Dooley et al achieved an
AUC mostly around or lower than 0.5, indicating that
the model did not perform well on the gene mutation
data, probably because summary statistics of distribution
of clusters such as tile frequency of a cluster may be an
oversimplified approach for complex prediction tasks for
gene mutations, possibly due to substantial loss of infor-
mation of pathology images like texture features and cell
morphology in patches.
Overall, these results suggest that unsupervised clus-

tering can facilitate the identification of patches with
better predictive values and exclude patches that lack
predictive information. Furthermore, as expected, the
introduction of less predictive clusters reduced the per-
formance of the model. As a result, our proposed best-
cluster approach outperformed Zhu’s method when all
the clusters with an AUC > 0.5 were combined and
used to construct the prediction model.

Discussion

WSIs are widely used in digital pathology to predict gene
mutations, molecular subtypes, and clinical outcomes.
Since WSIs are too large (Giga pixels) to fit on a GPU at
once, they are usually split into small image patches for
training neural networks and prediction models. However,
since patch-level labels are usually not available, we can-
not directly perform classification on each patch. There-
fore, multiple instance learning is often implemented to
develop prediction models for patients. It is commonly
assumed that tumor regions carry the most predictive
information. Therefore, the development of deep learning
models for the prediction of genetic mutations on WSIs is
usually based solely on tumor tiles. In this paper, we pro-
pose an unsupervised clustering method to segment WSIs
according to the different morphologic features. Addition-
ally, we also aim to identify the best tissue tiles for the
training of deep learning models for the prediction of gene
mutations in three different types of cancers.
We demonstrate that the different clusters possessed

had different predictive abilities. In addition, the clustering
of image patches facilitated the identification of predictive
patches and therefore improved the prediction of gene
mutations for all three cancer types (LUAD, HNSCC, and
CRC from TCGA) when compared with a model trained
on all patches obtained from WSIs. These results suggest
that unsupervised clustering can facilitate the identification
of patches with better predictive values and exclude
patches that lacked predictive information. Furthermore,
our proposed algorithm outperformed two recently

published baseline algorithms based on leveraging
unsupervised clustering. Finally, the unsupervised
clustering-based deep learning mutation prediction models
made use of resolved probability scoring to facilitate the
identification of spatial locations from each cluster that are
most likely to be related to specific genetic mutations.
This method further highlighted the importance of evaluat-
ing the heterogeneity of the tumor microenvironment to
predict gene mutations.
Image tiles from tumor regions of a WSI are usually

selected for constructing deep learning digital pathology
models based on the assumption that tumor cells possess
most of the predictive information. Our findings have
shown that while this hypothesis may be true for
HNSCC in Cluster 4 (where tumor patches best
predicted the mutations for HNSCC), for the LUAD
cohort, tumor-like image tiles seem to be less predictive
of the ALK, KRAS, and KEAP1 mutations (Table 3).
Similarly, for the CRC cohort, neither the tumor tiles
(Cluster 2) identified by the unsupervised clustering nor
the tumor patches identified by the supervised classifier
(Table 4) provided a superior prediction performance for
the gene mutation status. This suggests that the selection
of tumor regions on WSIs is not always the best way to
identify patches for the prediction of gene mutations, and
other tissue types in the tumor microenvironment may
provide a better prediction ability for certain phenotypes
than tumor tissues. Previous studies have also shown that
the mucin-to-tumor area ratio is highly correlated with
the consensus molecular subtypes, MSI status, and the
expression of mucin-producing genes [48].
Finally, we also demonstrate that unsupervised cluster-

ing could help reduce the workload for pathologist-based
manual annotation. We assumed that a limited number of
tissue types are present in WSIs, and the repeated cluster-
ing of the tiles could separate individual tissue types based
on their morphologic appearance. Additionally, through
further clustering of each cluster, we selected a small
number of tiles near the center of each subcluster
(e.g. four tiles). Therefore, the pathologist only had to
annotate the selected clusters. We showed that this semi-
automatic annotation approach could identify similar tis-
sue types on CRC WSIs to those identified by an
automatic tissue classifier for CRC. This technique could
be used to improve the interpretability of the unsupervised
clustering-based deep learning model.
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