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Abstract

Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be espe-

cially useful in the regression context. However, difficulties are encountered extending resid-

ual resampling to regression settings where residuals are not identically distributed (thus not

amenable to bootstrapping)—common examples including logistic or Poisson regression

and generalizations to handle clustered or multivariate data, such as generalised estimating

equations. We propose a bootstrap method based on probability integral transform (PIT-)

residuals, which we call the PIT-trap, which assumes data come from some marginal distri-

bution F of known parametric form. This method can be understood as a type of “model-free

bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals

have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the

key property, not afforded by any other residual resampling approach, that the marginal dis-

tribution of data can be preserved under PIT-trapping. This in turn enables the derivation of

some standard bootstrap properties, including second-order correctness of pivotal PIT-trap

test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property

that it preserves correlation in data without the need for it to be modelled, a key point of dif-

ference as compared to a parametric bootstrap. The proposed method is illustrated on an

example involving multivariate abundance data in ecology, and demonstrated via simulation

to have improved properties as compared to competing resampling methods.

Introduction

The bootstrap is a generally applicable inferential tool that is so intuitive and widely used in

statistics that it not only appears in most university courses, but it has also been proposed for

teaching in high schools. A key challenge however arises when applying the bootstrap to

regression models with a non-Gaussian response. Common examples include logistic and

Poisson regression, and extensions to handle clustered or multivariate data such as generalised

estimating equations [1]. Specifically, regression models are specified conditionally on the
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observed explanatory variables, so bootstrapped values should usually be generated condition-

ally, with the set of design points remaining fixed in resamples. One way to achieve this is to

use a parametric bootstrap [2], although this requires specification of a fully parametric model

for the data, which can be a challenge in high-dimensional settings. A non-parametric boot-

strap that keeps the design fixed can be achieved in models with additive errors, by estimating

residuals and then resampling them in some way [3, 4]. But for non-Gaussian regression mod-

els, it is sometimes not obvious how residuals should be defined. For example, when bootstrap-

ping generalized linear models, Pearson, deviance or Anscombe residuals have been

considered [2] but none of these are identically distributed, even in large samples. Some have

proposed resampling quantities in the estimating equations [5–7], but for non-normal

responses these are also not identically distributed, even in large samples. We will see later that

resampling from non-identical distributions can lead to undesirable properties in resultant

resampling procedures.

Table 1 is a well-known example data set from ecology [8] which serves to highlight the

problems of current bootstrap methodology. The data are multivariate counts of invertebrates

(copepods) collected in a randomized blocks design along beaches in Tasmania, Australia, to

study the nature of the effect of crab exclusion on communities of small invertebrates. The

design has two treatment replicates and two control replicates in each of four blocks, and we

would like to start by testing the hypothesis of no interaction between treatment and block.

Notice that the number of variables (p = 12) is not small compared to the number of observa-

tions (n = 16), meaning that we cannot rely on standard large-n-fixed-p inference. One way to

address this issue is to use a resampling approach for inference, where we resample rows of

data to make inferences that are robust to misspecification of the correlation between the

twelve species [9, 10].

The key stumbling block is developing a resampling algorithm that preserves in resamples

both the non-normality of the data and the fixed nature of the sampling design. Permutation

tests, which are exact in some designs [3], are not directly applicable for the example of Table 1

as the null hypothesis (in a test for interaction) does not imply that observations in different

Table 1. A 16 × 12 matrix of copepod abundances, classified to species. Data taken from a study at Eagle Neck, Tasmania [8], in which twelve species of

copepods (a type of small crustacean) were sampled at 16 transects in each of 4 sites. At each site, crabs had disturbed two transects and left two undis-

turbed. It is of interest to determine if there is an effect of disturbance and if it interacts with block, collectively across all twelve species.

Treatment Block Am Ad Ec(a) Ec(b) Ha Le(a) Le(b) Le(c) Mi Pa Qu Rh

Disturbed A 43 0 0 1 0 30 1 0 0 0 0 1

Disturbed A 63 0 0 15 0 97 11 0 0 0 0 0

Undisturbed A 124 0 0 7 2 151 0 0 0 0 2 6

Undisturbed A 105 0 2 7 0 117 0 0 0 1 3 6

Disturbed B 4 0 0 14 0 27 3 0 8 2 0 0

Disturbed B 5 0 0 4 0 35 0 0 3 0 0 0

Undisturbed B 91 0 0 4 0 15 2 0 0 0 0 0

Undisturbed B 57 0 0 5 0 88 5 0 0 1 0 0

Disturbed C 7 0 0 2 0 3 0 10 0 0 0 0

Disturbed C 6 0 0 3 0 1 0 180 1 0 0 0

Undisturbed C 10 0 1 5 0 3 0 0 1 0 0 0

Undisturbed C 60 1 4 0 0 0 0 10 0 0 0 0

Disturbed D 69 4 1 1 0 29 0 3 3 0 0 0

Disturbed D 5 1 0 1 0 47 1 1 5 0 0 0

Undisturbed D 142 3 6 2 0 6 0 0 0 0 2 0

Undisturbed D 96 2 7 1 0 2 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0181790.t001
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treatment groups are exchangeable. Case resampling [2], where we resample rows of the design

matrix and response matrix jointly, creates singularities in the design matrix with high proba-

bility (each treatment-block combination having a 12% chance of containing no replicates).

Residual resampling is a way forward, since it keeps the sampling design fixed in resamples,

but it requires identically distributed residuals to be available. What is needed is a general

method of calculating residuals for data from any parametric distribution, that will produce

approximately independently and identically distributed (iid) residuals under the null

hypothesis.

There is a generally applicable definition of residuals for parametric regression models that

can produce approximately iid observations—the probability integral transform (PIT) residual

[11]. PIT-residuals have the key property that if the regression model is correct and the true

values of parameters are known, they are exactly an iid sample from the standard uniform dis-

tribution. In practice, PIT-residuals can only approximately satisfy these properties, because of

sampling error estimating parameters, which are usually not known. PIT-residuals, or variants

thereof, have hence been proposed primarily for use as diagnostic tools, and referred to by a

variety of names, including forecast distribution transformed residuals [11], randomized

quantile residuals [12] and universal residuals [13]. A particular part of their appeal is that they

have the same distribution (when the model is true) irrespective of the values of model param-

eters, and irrespective of discreteness in the raw data. Hence, for example, when comparing

residual vs fits plots for the data of Table 1, it is difficult to assess model fit using Pearson resid-

uals (Fig 1a), but the model fit appears reasonable upon study of the PIT residuals (Fig 1b).

Fig 1. Residual plots for a negative binomial regression model fitted to the copepod data of Table 1, using (a) Pearson residuals; (b) PIT-

residuals. Different colours used for different species. Notice that the predominant patterns in (a) are the line of points towards the left (corresponding to

zeros) and asymmetry about the horizontal line y = 0 (marked in red). These trends, due to the discreteness of the data rather than lack of fit, have been

removed in (b) such that the reader can focus on the question of goodness-of-fit.

https://doi.org/10.1371/journal.pone.0181790.g001
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In this paper we propose the PIT-residual bootstrap, which we refer to for conciseness as

the “PIT-trap”. The name is a reference to pit traps, or pitfall traps, a method of sampling

invertebrates in ecology that is commonly used to collect data of the form of Table 1. This

method can also be understood as a special type of “model-free bootstrap” [14] for discrete,

highly multivariate data. The idea behind our method is also very similar to the residual boot-

strap proposed by [15], a key distinction being our extension of the method to handle regres-

sion models for responses from any distribution, including the discrete case, and our

derivation of some key properties of the PIT-trap. One particularly useful property is that stan-

dard results from the classical bootstrap apply quite generally to the PIT-trap, including second

order accuracy of pivotal test statistics, a benefit not afforded to competing residual resampling

approaches [2]. A second useful property, that does apply to any residual resampling approach,

is that when applied to multivariate data, the PIT-trap can preserve the correlation in the data

without explicitly modelling it via row-resampling. This is the key point of difference as com-

pared to a parametric bootstrap.

First PIT-residuals are reviewed, then the PIT-trap is proposed and some of its key proper-

ties discussed, then the approach is applies to the data of Table 1, and simulations are reported

which verify some desirable properties of the method.

PIT-residuals

The key innovation in this paper makes use of probability integral transform (PIT-) residuals,

which are reviewed below. PIT-residuals have been used by others to develop related bootstrap

algorithms for continuous data [14, 15].

It is well-known that for a univariate, continuous Y, which has cumulative distribution

function F(y; θ), U ¼ FðY; θÞ � Uð0; 1Þ where Uð0; 1Þ denotes the standard uniform random

variable. A multivariate version of this result maps a p-variate variable Y onto the uniform dis-

tribution on the p-variate unit cube [16], but in this paper only the univariate version of this

result will be used.

This result can be generalized to discrete data as follows [16]:

U ¼ Q FðY ; θÞ þ ð1 � QÞ FðY � ; θÞ � Uð0; 1Þ

where F(y−) denotes the limiting value of F(y) as y is approached from the negative direction,

and Q is a standard uniform random variable independent of Y. The random variable Q is

introduced to handle the discreteness in the data, by uniformly distributing the probability

mass from the point F(y) across all real values between F(y) and the previous allowable value of

this function F(y−).

The above results can be used to define probability integral transform residuals (PIT-resid-

uals) as follows. Consider a parametric regression model for Y, conditional on explanatory var-

iables x, which has cumulative distribution function F(y; θ, x). The PIT-residual ui

corresponding to the observation yi conditional on xi is defined as follows:

ui ¼
Fðyi; θ̂; xiÞ if Yi is continuous

qi Fðyi; θ̂; xiÞ þ ð1 � qiÞ Fðy�i ; θ̂; xiÞ if Yi is discrete
ð1Þ

8
<

:

where qi is an observation from the standard uniform distribution.

While the ui are typically referred to as residuals [11, 13], they do not behave like residuals

in the usual sense—they are centred around a value of 0.5 rather than a value of 0, and are

bounded between 0 and 1. To address this the ui can be mapped onto the standard normal
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distribution, zi = F−1(ui) [12], to improve interpretability (as in Fig 1). Whether or not this is

done is irrelevant to the development of the PIT-trap, in the next section.

Note that if θ̂!P θ then the ui come from a distribution whose limit is Uð0; 1Þ, provided

that F(y; θ, xi) has been specified correctly. In this sense, PIT-residuals are pivotal quantities.

Further, if the yi are independent, then the only dependence in the ui is via θ̂ , and this depen-

dence decays to zero as sample size increases. So in large samples the ui are iid—this is the key

property that makes PIT-residuals amenable to bootstrapping.

The PIT-trap

The fundamental idea of this paper is to use a PIT-residual bootstrap, or PIT-trap, as a basis

for inference. The idea of a residual resampling technique that makes use of the probability

integral transform has been proposed previously in the context of survival analysis [15, 17].

[15] considered Cox proportional hazard models for univariate data, and later generalized his

algorithm to multivariate survival analysis [17] by making use of the marginal cumulative dis-

tribution and row resampling. We do the same in the below, but apply the technique more

generally beyond proportional hazard models, and study some of its theoretical properties. As

[17] note, the idea of making inferences based on models for the marginal distribution, but

which are robust to correlation in responses, is very much in the spirit of generalized estimat-

ing equations [1] methodology, previously adapted to problems such as the analysis of Table 1

[10].

Another related idea is the “model-free” approach [14, 18] to fitting and prediction, based

on analysis of residuals and searching for transformations to “iid-ness” that imply particular

models for the observed data. [14] proposed a “model-free bootstrap”, based on resampling

transformed quantities that play the role of PIT-residuals, for continuously distributed data.

This is referred to as model-free on the grounds that it is motivated via transformation of the

response to iid-ness rather than from fitting a given model to data. Thus PIT-residual resam-

pling, as proposed below, could be understood as a type of model-free bootstrap, where the

PIT-residuals are considered as the data transformation to “iid-ness”. While the model-free

bootstrap of [14] required the response to be continuous, such that there was a one-to-one

transformation between response and residuals, in the discrete data case [14] advocated a

“limit model-free bootstrap”, related to the parametric bootstrap, to be discussed later. Below

we propose an alternative but related approach appropriate for discrete and highly multivariate

data. Specifically, discreteness will be handled by using PIT-residuals defined with “jittering”

via Q, such that algorithms along the lines of [15] and [14] can be extended directly to discrete

data. Further, multivariate data will be handled using block resampling so that we are not

required to model the correlation structure in the data—a useful property when analysing data

such as in Table 1, where data are not very informative about the correlation structure, espe-

cially given the large number of response relative to the number of observations.

The PIT-residual bootstrap, or PIT-trap, can be applied whenever we observe a n × p matrix

of responses y ¼ ðyT
1
; . . . ; yT

n Þ
T

for which marginal distribution functions are available for each

variable in yi = (yi1, . . ., yip). Denote as F(y; θj, xi) the distribution of yij that is marginal with

respect to yik, k 6¼ j, but conditional on covariates xi. The focus in this paper will be on the

case where the p-variate observations yi are independent of each other, but dependence can

also be handled if the F(y; θj, xi) specify the conditional distribution of yi given previous

responses y1, . . ., yi−1 as in [13]. Each response observation yij in the cluster yi has been

assumed in our notation to be related to the same set of covariates xi, as that is most relevant to

our situation, but if this assumption were relaxed the below results would still apply.
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The PIT-trap is simply a bootstrap method that resamples PIT-residuals {u1, . . .,un}, then

uses these to construct resampled values fy�
1
; . . . ; y�ng by inverting the cumulative distribution

function. The PIT-trap algorithm computes resamples T� to approximate the sampling distri-

bution of some statistic T = g(y) as follows:

1. Estimate θ̂ by fitting the regression model to the observed y.

2. Generate an n × p matrix, q, of independent random values from the standard uniform

distribution.

3. Calculate an n × p matrix of PIT residuals u ¼ ðuT1 ; . . . ;uTn Þ
T

by applying Eq (1) element-

wise to {y, q}. Optionally, each column can be centered and rescaled (see below).

4. For b = 1 . . . B:

a. Resample with replacement the n vectors {u1, . . ., un}, to obtain fu�1; . . . ; u�ng.

b. Calculate resampled p-variate observations fy�1; . . . ; y�ng by solving for each y�ij as a func-

tion of u�ij (the jth elements of y�i and u�i respectively):

u�ij ¼ Fðy�ij; θ̂ j;xiÞ if Yij is continuous

Fððy�ijÞ
�
; θ̂ j;xiÞ < u�ij < Fðy�ij; θ̂ j;xiÞ if Yij is discrete

8
<

:

c. Compute the required statistic, T� = g(y�).

If data are discrete, then some randomness has been introduced into residual calculation by q.

This can be accounted for in the PIT-trap algorithm by recalculating q and u for each resam-

ple, i.e. moving steps 2-3 inside the loop at step 4 rather than leaving them outside, at some

(usually small) computational cost.

This algorithm is especially suited to situations where we have a reasonable idea of the

nature of the marginal distribution of the yij, but relatively little knowledge of the correlation

within clusters. If the marginal distribution Fðyij; θ̂ j; xiÞ is correct then PIT-residuals may be

correlated across response variables but they will (asymptotically) be marginally standard uni-

form. By resampling rows (clusters) of data fu�
1
; . . . ;u�ng as proposed, the correlation structure

in the p-variate observations is preserved in resamples and subsequently accounted for in

inferences.

In small samples, we have found improved performance when centering and rescaling

residuals, as in [19] and [20]. The method used was to map them onto the standard normal

distribution (F−1(uij)) and divide by their sample standard deviation, denoted as sF−1(uj). That

is, we calculated rescaled residuals ~uij to satisfy

F� 1ð~uijÞ ¼ F� 1ðuijÞ=sF� 1ðujÞ

This rescaling can be understood as an empirical correction for the fact that the model typi-

cally overfits the data, thus underestimates the magnitude of residuals. This is especially the

case in small samples and the effect tends to vanish as sample size increases.

Properties of the PIT-trap

In the below we will derive some attractive properties of the PIT-trap algorithm.

The PIT-trap—A residual resampling approach for any parametric model
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Theorem 1 Consider a PIT-trap sample of Y, where the (i, j)th PIT-trap value Y�ij is computed

using a plug-in estimate of the marginal distribution of Yij, Fðy; θ̂ j; xiÞ, and the true marginal dis-
tribution of Yij is F(y; θj, xi). Assume F(y; θj, xi) is twice differentiable with respect to θj.

For each j, if θ̂ j is a
ffiffiffi
n
p

-consistent estimator of θj, then:

P�ðY�ij � yÞ ¼ Fðy; θj; xiÞ þ Opðn� 1=2Þ

where P�ðAÞ denotes the probability of A from repeated PIT-trapping.

The proof, and indeed all proofs, can be found in on-line supplementary material (S1 File).

Theorem 1 shows that when applied to a large data set, the distribution of a PIT-trapped

observation y�ij approximates the true marginal distribution of the corresponding original

observation yij, converging to the target marginal distribution asymptotically. The conditions

under which this result was derived—a known parametric form for the marginal distribution

F(y; θj, xi), and a
ffiffiffi
n
p

-consistent estimate of the parameter θ̂—considerably relaxes the condi-

tions previously required for residual resampling to be applicable, to the point where the

method can readily be applied to most common parametric regression models, including the

important case of generalized linear models for discrete data.

Theorem 1 can be generalized to handle misspecification of the marginal distribution, if the

“working” marginal distribution leads to pivotal PIT-residuals. This follows since the proof to

Theorem 1 does not use the fact that the PIT-residuals uij come from a standard uniform dis-

tribution, it only requires them to be iid.

The PIT-trap, when applied to clusters of correlated data, will preserve the correlation in

the data, as in the following theorem.

Theorem 2 Consider p-variate PIT-trap residuals U�i , i = 1, . . ., n, obtained by resampling
PIT-residuals with replacement. Let Ŝ be the sample variance-covariance matrix of PIT-residuals,
Ŝ ¼ 1

n

Pn
i¼1
ðui � �u iÞ

T
ðui � �uiÞ. Then:

var�ðU
�

i Þ ¼ Ŝ

where var�(�) denotes the variance-covariance matrix under repeated PIT-trapping.

The proof is straightforward and is omitted.

Note that Theorem 2 does not necessarily imply that varðU�i Þ ! varðUiÞ because it may not

be the case that the Ui share the same variance-covariance matrix S. If they do not, then the Ui

are not identically distributed and the PIT-trap might not have desirable properties for multi-

variate inference. On the other hand, when the Ui are identically distributed, we can show the

following result.

Theorem 3 Let T = g(Y) be an asymptotically standard normal statistic calculated from some
multivariate sample Y characterized by its marginal distributions F(y; θj, xi) and the variance-
covariance matrix of PIT-residuals, var(Ui) = S. Let T� = g(Y�) be the same statistic calculated
from the PIT-trap sample Y� using Fðy; θ̂ j; xiÞ. Assume Y and g(�) are such that T admits an

Edgeworth expansion. If θ̂ j is
ffiffiffi
n
p

-consistent for each j then

P�ðT� � tÞ ¼ PðT � tÞ þ Opðn� 1Þ

P�ð� t � T� � tÞ ¼ Pð� t � T � tÞ þ Opðn� 3=2Þ

This theorem parallels standard bootstrap results [21] and can be proved in a similar way,

using Edgeworth expansions (with some modification to handle the discrete case).
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The conditions under which T admits an Edgeworth expansion, required for Theorem 3,

can be found in [21], but briefly, Y must satisfy Cramér’s condition, the first four moments of

Y must be finite, and g must be able to be expressed as a smooth function of means of indepen-

dent random variables (in the sense that it is four times differentiable in the neighbourhood of

the mean).

We use simulation later to consider the question of how robust the performance of the PIT-

trap is to settings where the conditions of Theorem 3 are not satisfied—specifically, we are con-

cerned about situations where the distributional assumptions are mildly misspecified.

The requirement that the joint distribution of Y be characterized by its marginal distribu-

tions and the variance-covariance matrix of PIT-residuals S is not unlike working assumptions

often made in the generalized estimating equations literature [1], but it also has an interesting

connection to the literature on copula models [22]. Copula models are specified via a similar

structure to the PIT-trap, and one way to view the PIT-trap is as a bootstrap method for a type

of copula model. In the simulation section we use a copula model to generate correlated data

in order to assess the performance of the PIT-trap.

Relation to other bootstrap methods

Beyond [14, 15, 17], the PIT-trap has relationships to other bootstrap methods, most closely, the

parametric bootstrap [2]. Roughly speaking, the PIT-trap can be understood as a compromise

between the parametric bootstrap and residual resampling, inheriting the attractive features of

each method—the ability to generate data (approximately) from F(y; θj, xi) is inherited from the

former, and the ability to preserve correlation in clustered data is inherited from the latter.

The parametric bootstrap follows a very similar algorithm to the PIT-trap, the key differ-

ence being that it obtains PIT-residuals (u�ij) by simulating them instead of resampling them.

That is, the parametric bootstrap can be understood as replacing step 4a of the PIT-trap algo-

rithm as follows:

(a). Generate u�ij from Uð0; 1Þ.

Hence the inverse transformation of step 4b generates samples directly from Fðy; θ̂ j; xiÞ. (Step

3 is redundant for the parametric bootstrap and could be removed.)

[14] proposed the limit model-free bootstrap, and advocated the approach for bootstrap-

ping discrete data. The procedure requires as a starting point a transformation G(yi) of the

data to “iid-ness”. Then one simulates standard uniform values u�ij and obtains bootstrapped

values as y�i ¼ G� 1ðu�i Þ. Note that, by the probability integral transform, this generates inde-

pendent data with distribution function G(yi), hence the limit model-free bootstrap can be

understood as a parametric bootstrap assuming G(yi).

In the case of multivariate or clustered data, step 4a of a parametric bootstrap involves sim-

ulating vectors of u�i with covariance matrix Ŝ, but where each element is marginally Uð0; 1Þ.
Ŝ should be a consistent estimate of S.

A key point of difference between the parametric bootstrap and the PIT-trap is in their

assumptions. The PIT-trap resamples uij under the assumption that the PIT-residuals uij are

iid for i = 1, . . ., n in the limit as n!1. An important situation where this assumption can be

satisfied is when the marginal distribution of the yij has been correctly specified and PIT-resid-

uals share a common correlation structure. The parametric bootstrap, in contrast, requires the

full joint distribution of data to be specified correctly—i.e. the correlation structure must be

known in order to simulate u�ij with the required correlation structure. Hence the PIT-trap is

applicable in some settings where the parametric bootstrap is not—in particular, generalized
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estimating equations, for which a joint distribution is not specified, and situations where data

are clustered but the precise form of within-cluster correlation is not well understood. An

important example of where the within-cluster correlation is not well understood is when y is

high-dimensional [10], or more generally, when p is not small compared to n.

A different way to view the PIT-trap is as a special type of residual resampling, indeed it

inherits some advantages from residual resampling—in particular, the ability to resample clus-

tered data in such a way that any within-cluster correlation between residuals can be preserved.

Also, residual resampling methods are often advocated in the regression context [2, 21]

because they preserve the conditioning on xi. The key issue when implementing residual

resampling for non-Gaussian regression models, most commonly using Pearson and deviance

residuals [2, 23], has been that they do not result in pivotal quantities in general. Subsequent

residual-resampled data Y� does not adequately approximate the sampling distribution of Y in

general. For discrete and sparse data, as in Table 1, subsequent bootstrap samples would devi-

ate conspicuously from the desired distribution, some values being non-integer, negative or

even undefined. Correcting for this issue could introduce considerable bias. In contrast, the

PIT-trap circumvents these difficulties, provided that the parametric form of the marginal dis-

tribution of data is known.

A final set of relations of interest link the PIT-trap to classical resampling methods for mod-

els with iid errors. Consider first the model yij = μij + �ij, where the μij are fixed and the random

errors �ij are parameterized by their standard deviation σ only, linear regression being an

important special case. For such models, raw residuals rij ¼ yij � m̂ij are monotonically related

to PIT-residuals:

uij ¼ Fðyij; m̂ij; ŝÞ ¼ Fðrij; 0; ŝÞ

This monotonicity implies that bootstrapping PIT-residuals is equivalent to the standard resid-

ual resampling approach where raw residuals are bootstrapped [2], if one assumes errors are

iid. Now consider the situation where we wish to test the null hypothesis that all observations

are iid. In this case, and by a similar argument, the PIT-trap reduces to resampling the yi with

replacement. Further, if resampling PIT-residuals without replacement, this would reduce to

the usual permutation test [3]. Hence many classical resampling methods can be understood

as special cases of the PIT-trap, the key innovation of the PIT-trap being its ability to extend

these well-known resampling methods to parametric modeling where errors are no longer iid.

Practical application

In this section the PIT-trap will be applied to the data of Table 1 [8]. This data set consists of

counts of the abundance of twelve species of copepod (small crustaceans) in 16 sites. The study

was conducted to explore the effect of crab disturbance on copepod communities on intertidal

sandflats on the Tasman Peninsular, Australia. A randomized blocks design was used where

two disturbed and two undisturbed sites were sampled at each of four sites (“blocks”).

The purpose of analysis was to test for evidence of an effect of disturbance (treatment

effect), and whether the effect was different at different sites (block×treatment interaction).

When testing for interaction, difficulties arise for resampling-based hypothesis testing because

observations are not exchangeable under the null hypothesis, and instead residual resampling

has been proposed [3].

Three important properties of the data are evident in Table 1. Firstly, there are many zeros

in the data, because not every species is observed in every site. Secondly, abundance appears to

be strongly right-skewed. Each of these features is problematic for most types of residuals that

have previously been defined [2, 23]. Thirdly, the number of variables (p = 12) is not small
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compared to the number of observations (n = 16), which motivates the use of resampling for

inference as in [9, 10].

Negative binomial regression models [24] were fitted to the data, to account for overdisper-

sion in the counts. Let Yijkl be the abundance of the lth replicate (l 2 {1, 2}) at site k 2 {1, 2, 3, 4}

of species j 2 {1, . . ., 12} in treatment i 2 {1, 2}. We assumed Yijkl have a negative binomial mar-

ginal distribution with mean μijk satisfying:

log ðmijkÞ ¼ a0j þ aij þ bkj þ gijk ð2Þ

where the αij, βkj and γijk respectively represent treatment, block and treatment×block effects

for the jth species, and for identifiability, each of these terms is zero whenever it is indexed by

an i or k which equals one.

The variance was assumed to be a quadratic function of the mean:

Var ðYijklÞ ¼ mijk þ cjm
2
ijk: ð3Þ

and a residual plot (Fig 1b) suggested this model accounted for overdispersion in the data rea-

sonably well.

Model parameters were estimated separately for each species via maximum likelihood. This

corresponds to a working assumption of independence across species, but we expect that there

is in fact correlation across species, despite it not being explicitly modelled in the above.

We tested the hypothesis of no interaction:

H0 : gijk ¼ 0 8i; k Ha : otherwise

using a score statistic based on a ridge-regularized estimate of the correlation matrix of residu-

als [10]. This approach incorporates correlation between species into the test statistic, using

linear shrinkage towards an identity matrix in order to obtain a more numerically stable statis-

tic which has better properties [9, 10]. We assessed the significance of this test statistic using

1000 resamples from each of a residual bootstrap using Pearson residuals, the PIT-trap with

negative binomial marginals, and a parametric bootstrap which simulated from a copula

model with an unstructured correlation matrix, and again assumed negative binomial margin-

als. The copula was fitted in a two-step approach, using negative binomial regression again to

estimate parameters in the marginal distribution, and a ridge-regularised estimate of the corre-

lation matrix [10] of PIT-residuals mapped onto the standard normal, F−1(uij)

The observed test statistic for a test for no interaction was 40.99, and the bootstrap estimates

of the P-value for the PIT-trap, parametric bootstrap and Pearson residual bootstrap were (to

three decimal places) 0.039, 0.046, and 0.014, respectively. The difference between the Pearson

result and the other two is larger than would be expected by Monte Carlo error, and while all

suggest some evidence of an interaction effect, only marginally so for the PIT-trap and

parametric bootstrap.

We have developed freely available software in the R package mvabund [25], indeed our

PIT-trap and Pearson residual bootstrap results can be easily replicated using the following

code:
data(Tasmania)
attach(Tasmania)
abund= mvabund(copepods)
ftMain= manyglm(abund�block+treatment,family= “negative.binomial”)
plot(ftMain)
ftInter= manyglm(abund�block�treatment,family= “negative.binomial”)
anova(ftMain,ftInter,cor.type= “shrink”,test = “score”,p.uni=
“adjust”,resamp=���)

where ��� is chosen to be “pit.trap” or “residual” (Pearson residuals).
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Simulations

We conducted two simulation studies to investigate the small sample properties of the PIT-

trap, in comparison to its immediate competitors.

Logistic regression

First we studied logistic regression in small to moderate samples. We compared the properties

of likelihood ratio tests where the null distribution was estimated using the PIT-trap, the Pear-

son residual bootstrap, the parametric bootstrap, case resampling, and the usual chi-squared

approximation from classical statistics.

The sampling design, inspired by Table 1, was a randomized blocks design with four blocks,

two treatments, and balanced sampling. We generated Bernoulli random variables with the

mean in the ith treatment and the kth block given by:

log
mik

1 � mik

� �

¼ a0 þ ai þ bk þ gik ð4Þ

where as previously the αi, βk and γik respectively represent treatment, block and treatment×-
block effects, and for identifiability, each of these terms is zero whenever it is indexed by an i
or k which equals one. We tested for no interaction:

H0 : gik ¼ 0 8i; k Ha : otherwise

This hypothesis is of biological interest, while also being difficult to resample data from, since

response observations Yi are not exchangeable under H0.

We simulated 1000 data sets such that (α0, α2, β2, β3, β4, γ22, γ23, γ24) = (−1, 1, 0, −1, 1, 0, 0, 0)

and varied the number of replicates such that total sample size ranged from 16 to 128. Each

bootstrap test was conducted using 1000 bootstrap samples, and we compared Type I error at

the 0.05 significance level.

The PIT-trap and parametric bootstrap converged rapidly to nominal Type I error levels

(Fig 2), as expected from Theorem 3, with close to nominal levels when there were as few as

four replicates per treatment group. The classical test for interaction, comparing the likelihood

ratio statistic to a w2
3

null distribution, was too liberal for small-moderate sample sizes, and was

relatively slow to converge to nominal levels. Hence these results provide some motivation for

using the PIT-trap or parametric bootstrap to test hypotheses concerning logistic regression

parameters using small-moderate samples.

A striking pattern in results (Fig 2) was that the Pearson residual bootstrap was grossly

inadequate, with Type I error always in excess of four times the nominal level, and not

converging to the nominal level as n increased. As explained previously, Pearson residual

resamples (Y�) do not have the correct marginal distribution—resampled values typically

are not integers and are not always between 0 and 1. The latter we believe is the greater prob-

lem, because it is necessary in test statistic construction to truncate data to the unit interval

[0, 1], which introduces bias and changes the mean-variance relationship of the bootstrap

samples.

Case resampling also had very highly inflated Type I error at small sample sizes, but con-

verged towards correct values as n increased. Case resampling treats the number of replicates

per treatment-block combination as random, which leads to unbalanced designs in resamples,

with some treatment-block combinations often empty. This is the likely reason for the poor

small-sample performance, with randomness in the design introducing additional uncertainty,

considerably so for small n.
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Multivariate counts

A second simulation generated multivariate count data to mimic the properties of the data of

Table 1, looking at the effect of increasing dimension of the data as well as increasing sample

size.

Correlated, overdispersed count data were generated via two methods—using a

copula model, and a Poisson lognormal model. In the copula approach, we generated

zi�MVN(0, R) for some correlation matrix R, then uij = F(zij) and Yijkl = F−1(uij; μijk, ψj)

where F(x) and F(x; �, �) are the cumulative distribution functions of the standard normal and

negative binomial distribution, respectively, and μijk is defined in Eq 2. Hence copula data had

constant cov(Ui), as was required for Theorem 3. The Poisson lognormal model simulated

counts as Yijkl� Poisson(mijk) and

log ðmijkÞ ¼ a0j � 0:5s2
j þ aij þ bkj þ gijk þ zij

Fig 2. Type I error of different resampling methods in logistic regression simulations varying n. The shaded

grey region represents a 95% confidence band around the nominal Type I error rate of 0.05. Note that both the PIT-trap

and parametric regression performed well for n� 32, the Pearson residual bootstrap was very poor for all n, and (for

small-moderate n) classical tests via the χ2 distribution had inflated Type I error, motivating the use of resampling.

https://doi.org/10.1371/journal.pone.0181790.g002
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where zij was the jth element of zi�MVN(0, SdRSd) and σj played the role of ψj in controlling

the extent of overdispersion. The values of σj for the p response variables were stored in the

diagonal matrix Sd. This model maintained the same mean model and mean-variance rela-

tionship as for the negative binomial copula model, but data were no longer marginally nega-

tive binomial and no longer had constant cov(Ui). Hence this second simulation gives some

insight into the robustness of the PIT-trap to (modest) violations of assumptions.

The values for slope parameters to be used in simulations were taken from the fit of the null

(main effects) model to the sample data of Table 1. To look at the effect of average species

abundance on performance, we multiplied the matrix of the means μ by a factor δ 2 {1, 2.5, 5}.

The correlation matrix was set using an AR(1) structure with the autocorrelation parameter

ρ 2 {0.5, 0.6, 0.7, 0.8, 0.9} to look at the effect of strength of correlation structure on perfor-

mance. Results were similar across different values of ρ so we only report ρ = 0.7 here. We var-

ied the sample size n 2 {16, 32, 64, 96, 128, 160} and number of variables p 2 {12, 24, 36, 48,

60} by replicating the design matrix and the matrix of means μ as required.

We used the same testing procedure here as in the practical application described previ-

ously: fitting negative binomial distributions to each species, then constructing a score statistic

which estimates correlation between variables using a ridge-regularized correlation matrix

[10]. We compared results when significance of this statistic was assessed using Pearson resid-

ual resampling, the PIT-trap, and the parametric bootstrap assuming either an unstructured

correlation matrix or incorrectly assuming an exchangeable correlation structure. The latter

choice looks at the question of robustness of the parametric bootstrap to misspecification of

the correlation structure.

As before, for each of 1000 sample data sets, 1000 resamples were used to estimate the P-

value of a test for interaction, and the Type I error rate at the 0.05 level was recorded. This was

very computationally intensive, taking a total of over a year of computation time on 2.8 GHz

processors.

Type I error rates of the PIT-trap approached nominal levels as n increased (Fig 3), con-

verged faster for larger mean abundances (Fig 3b and 3c), and remained close to nominal lev-

els as n increased. Problems arose in simulations with low abundances (Fig 3a). When

abundance was low and sample size small, all tests had inflated Type I error, although this set-

tled down at larger sample sizes. Further, as p increased, all tests had inflated Type I error

increasing with p, if abundance was low. For medium or high abundance this problem did not

seem to arise for the PIT-trap.

The PIT-trap seemed to perform better than alternatives. The Pearson residual bootstrap

often had highly inflated Type I error, emphasising the costs of bootstrapping quantities that

are not pivotal. The parametric bootstrap became problematic if the correlation structure was

not correctly specified. When incorrectly assuming an exchangeable correlation structure, it

became too liberal as n increased (Fig 3, left), and was highly conservative when p was not

small for large mean abundances (Fig 3c, right). Using an unstructured correlation matrix in

combination with the parametric bootstrap performed about as well as the PIT-trap in most

cases.

Poisson-lognormal simulations suggested that under violations of the underlying data

model, the PIT-trap maintained close to nominal Type I error rates as n increased, but Type I

error became noticeably inflated at large p when mean abundances were low (Fig 4). There

seemed to be little difference between the PIT-trap and parametric bootstrap in robustness to

violation of underlying model assumptions.
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Fig 3. Type I error of different resampling methods in multivariate count simulations from a copula model

varying n (left) and p (right). Mean abundances were manipulated by multiplying the matrix of the means μ by a

factor (a) δ = 1, (b) δ = 2.5, (c) δ = 5. The shaded grey region represents a 95% confidence band around the nominal

Type I error rate of 0.05. The PIT-trap performed reasonably well in all contexts, although for low abundances it

deviated from nominal levels for small n and large p. The parametric bootstrap also performed well, provided that the

correlation structure was taken to be unstructured, it was less reliable if incorrectly assuming an exchangeable

correlation structure.

https://doi.org/10.1371/journal.pone.0181790.g003
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Fig 4. Type I error of different resampling methods in multivariate count simulations from a lognormal-

Poisson model, varying n (left) and p (right). Mean abundances were manipulated by multiplying the matrix of the

means μ by a factor (a) δ = 1, (b) δ = 2.5, (c) δ = 5. The shaded grey region represents a 95% confidence band around

the nominal Type I error rate of 0.05. The PIT-trap performed reasonably well in simulations varying n, but became

inflated at large p because of failure of model assumptions, for low-medium abundances (a-b). The parametric

bootstrap, assuming an unstructured correlation matrix, performed similarly.

https://doi.org/10.1371/journal.pone.0181790.g004
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Discussion

In this paper we have described a very general residual resampling approach, based on proba-

bility integral transform, which we refer to as the PIT-trap. This can be understood as a special

case of the model-free bootstrap [14], adapted to the problem of discrete, highly multivariate

data. The method was demonstrated by theory and simulation to perform well even in a very

challenging situation arising in ecology, where data were sparse, overdispersed, and high

dimensional. Simulations suggest the method can perform reasonably well when p> n, and

under mild forms of model misspecification, although problems can arise when both of these

elements may be present.

The PIT-trap is most closely related to the parametric bootstrap, and in simulations, these

two methods behaved similarly (Figs 2–4). A key distinction however is that the PIT-trap only

requires knowledge of the marginal distribution of data. In contrast, the parametric bootstrap

requires knowledge of the joint distribution, and can perform poorly when assumptions of

correlation structure are incorrect. Further, one might expect the PIT-trap to have greater

robustness to failure of assumptions in the marginal model (see on-line Appendix, Lemma 2),

although this was not borne out in simulations (Fig 4).

Because it is a residual resampling method, the PIT-trap can be used to model clustered

observations without explicitly specifying a model for how they are correlated. This is some-

what analogous to the setup under which the generalized estimating equations method was

derived [1], and indeed the PIT-trap is readily applicable to problems where generalized esti-

mating equations are used. Another important application, and the one which inspired this

work, is the analysis of discrete multivariate data in ecology, when p may not be sufficiently

small compared to n to adequately estimate the correlation structure (Table 1). However simu-

lations suggest that when p is too large compared to n the PIT-trap might not reliably maintain

nominal levels. This is likely to arise in part because the PIT-trap will become increasingly sen-

sitive to assumption violations in the marginal model as p increases (Fig 4). But it is also likely

to arise in part because errors in the PIT-trap distribution accumulate across response vari-

ables, so for example the asymptotic one-tailed approximation of Theorem 3 can be written as

a function of p as well as n as Op(pn−1). This quantity is not negligible when p is large.

PIT-residuals are pivotal measures of the agreement between observed and fitted values for

any parametric regression model, and their pivotal nature is a particularly useful property. It is

this property that makes them so useful in diagnostic tools [12, Fig 1b], and in this paper, this

property has been exploited to develop a very general residual resampling scheme with desir-

able properties. We speculate that there may be other opportunities to improve methodology

for parametric regression modelling via PIT-residuals.
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