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Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an enduring public health problem globally, particularly in
sub-Saharan Africa. Several studies have suggested a role for host genetic susceptibility in increased risk for TB but results
across studies have been equivocal. As part of a household contact study of Mtb infection and disease in Kampala, Uganda,
we have taken a unique approach to the study of genetic susceptibility to TB, by studying three phenotypes. First, we
analyzed culture confirmed TB disease compared to latent Mtb infection (LTBI) or lack of Mtb infection. Second, we analyzed
resistance to Mtb infection in the face of continuous exposure, defined by a persistently negative tuberculin skin test (PTST-);
this outcome was contrasted to LTBI. Third, we analyzed an intermediate phenotype, tumor necrosis factor-alpha (TNFa)
expression in response to soluble Mtb ligands enriched with molecules secreted from Mtb (culture filtrate). We conducted a
full microsatellite genome scan, using genotypes generated by the Center for Medical Genetics at Marshfield. Multipoint
model-free linkage analysis was conducted using an extension of the Haseman-Elston regression model that includes half
sibling pairs, and HIV status was included as a covariate in the model. The analysis included 803 individuals from 193
pedigrees, comprising 258 full sibling pairs and 175 half sibling pairs. Suggestive linkage (p,1023) was observed on
chromosomes 2q21-2q24 and 5p13-5q22 for PTST-, and on chromosome 7p22-7p21 for TB; these findings for PTST- are novel
and the chromosome 7 region contains the IL6 gene. In addition, we replicated recent linkage findings on chromosome
20q13 for TB (p = 0.002). We also observed linkage at the nominal a= 0.05 threshold to a number of promising candidate
genes, SLC11A1 (PTST- p = 0.02), IL-1 complex (TB p = 0.01), IL12BR2 (TNFa p = 0.006), IL12A (TB p = 0.02) and IFNGR2 (TNFa
p = 0.002). These results confirm not only that genetic factors influence the interaction between humans and Mtb but more
importantly that they differ according to the outcome of that interaction: exposure but no infection, infection without
progression to disease, or progression of infection to disease. Many of the genetic factors for each of these stages are part of
the innate immune system.
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Introduction

Tuberculosis (TB), caused by the bacterium Mycobacterium

tuberculosis (Mtb), is a significant, global public health problem,

particularly in sub-Saharan Africa, where the prevalence of TB is

increasing dramatically with the rise of the HIV pandemic. One-

third of the world is infected by Mtb [1]. According to the World

Health Organization, almost 8 million new cases of TB occur

annually, with 2 million deaths attributed to the disease each year.

Uganda is one of the world’s 22 highest burden countries with TB,

with an estimated annual risk of tuberculosis infection of 3% and

an annual incidence of new smear positive TB cases of 9.2 per

1000 in an urban setting [2]. An increased understanding of the

host response to Mtb will facilitate the development of new

vaccines and therapeutics [3].

Since only 10% of individuals infected with Mtb go on to

develop active disease (TB), it has been suggested that host genetics

may influence the risk for TB. Early evidence for susceptibility for

TB was suggested by twin studies and difference in susceptibility

observed among different human populations. Numerous candi-
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date gene studies have been conducted for TB; though there is

consistent support for a role of human genetics in disease risk, the

results for specific genes have been equivocal (reviewed in [4]).

Four genome-wide linkage scans have been conducted [5–8], but

their results did not replicate each other. This may be due to

differences in TB diagnostic criteria, population genetic differences

(Brazilian, Gambian, Malawian and South African), small sample

size, or analytic approach.

The pathogenesis of TB can be thought of as a two-stage

process [9]. The first stage consists of latent Mtb infection (LTBI),

in which Mtb establishes a productive infection but does not

produce symptoms. LTBI is diagnosed by a positive tuberculin

skin test (TST) and/or positive interferon-c response assay (IGRA)

and the absence of clinical signs and symptoms of full-blown

disease [10]. Interestingly, some people remain uninfected,

evidenced by a negative TST and/or negative IGRA, despite

prolonged exposure to an infectious TB case. Negative TSTs

occur even in TB-endemic settings, where exposure to Mtb is

known to be persistent [10]; repeated negative TSTs over several

occasions are even less likely to be false-negatives. These

individuals are thought to be resistant to Mtb infection, but have

not been studied extensively because few studies assess exposure to

an infectious TB case within a home and prospectively conduct

repeat TSTs. Previous studies have shown ethnic differences in the

prevalence of LTBI and the rate of TST conversion [11] and in

the relative permissiveness of macrophages to Mtb infection [12].

Another study showed differences in FOXP3 gene expression

between TST2 and TST+ individuals [13]; however, it was

unknown if those TST2 individuals ever converted their TST,

which is possible since they were contacts of TB cases, so they

cannot be definitively classified as resistant to Mtb infection. These

findings have suggested a role for human genetics in resistance to

Mtb infection [14], but this has not been examined in a formal

genetic epidemiological study. The second stage is TB (disease), in

which Mtb replication and the host immune response disrupts

normal physiology and produces characteristic signs and symp-

toms including productive cough and cavities on chest x-ray. It is

this stage, development of TB, which has been studied in previous

genetic epidemiological studies as well as mouse models.

In our previous studies [15–17], we have taken a unique

approach to the study of TB genetics by studying tumor necrosis

factor-a (TNFa) expression as an intermediate phenotype.

Intermediate phenotypes are more closely tied to underlying

disease biology [18,19]. We have focused on TNFa because it is a

central cytokine in TB pathogenesis that is involved in granuloma

formation, induces symptoms including fever and weight loss

[20,21], and is important in the containment of latent Mtb

infection [22]. Our previous studies have suggested that TNFa
responses to Mtb are strongly influenced by genetic factors

[15,17], and that genes in the TNFa pathway also influence TB

[16]. Genome-wide linkage studies have examined genetic

influences on host immunity, and include studies of immune

response to Mtb [23], IgE levels in asthma [24], and CD4+ and

CD8+ cell levels in healthy persons [25].

Here we present a whole genome scan conducted in a

household contact study of Mtb infection and disease in Kampala,

Uganda. We focused on three phenotypes: persons with TB,

compared to persistent TST2 persons and TST+ LTBI

individuals in their households; resistance to Mtb infection,

compared to persons with LTBI; and TNFa as a continuous

intermediate phenotype, measured on all study subjects. Analysis

of these three phenotypes allowed us to examine the clinical

spectrum from Mtb exposure to pulmonary TB. We hypothesized

that these three distinct phenotypes each would have have unique

genetic influences. This is the first genome scan to be conducted in

Uganda, the largest linkage scan for TB, and the first to study

resistance to Mtb infection.

Results

After data cleaning (Figure 1), we analyzed a total of 193

pedigrees comprising 803 individuals (Table 1). Of these, 95

households were enrolled in Phase I of the study and 98

households were enrolled in Phase II. Both children and adults

were included in the analysis. A total of 160 individuals had

culture confirmed TB, 130 were HIV infected, and 85 were

PTST-. Most of the PTST- and LTBI individuals were not HIV

infected (89.6% and 91%, respectively); slightly more than half

(51.9%) of the TB patients were HIV infected, which is consistent

with our previous study in this population [26] (Table 2). HIV tests

were not conducted for 66 very young children, since they were

not at risk for HIV infection because neither parent was HIV

infected. For linkage analysis, there were 258 full sibling pairs and

175 half sibling pairs.

We compared TNFa levels in the three clinical groups (PTST-,

LTBI, and TB) after covariate adjustment and log-transformation.

Figure 1. Flow diagram showing study sample before and after data cleaning.
doi:10.1371/journal.pone.0004094.g001
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Boxplots illustrating the median and distribution of these adjusted

and transformed TNFa values are provided in Figure 2. TNFa
levels differed significantly between TB and both PTST-

(p = 0.009) and LTBI (p = 0.009) in HIV negative individuals.

TNFa levels did not differ significantly between PTST- and LTBI

(p = 0.389). This analysis further illustrates that TNFa expression

varies with TB progression.

Linkage analysis results are summarized in Table 3, which lists

regions attaining significance at the nominal a= 0.05 level. In

addition, the information content in those regions, as well as the

candidate genes in the vicinity of these regions, is also listed.

Linkage findings for TNFa levels are provided in two ways: in the

first column, pooled results are provided, and in the second

column, results for Phase II of the study analyzed alone are

provided, since previous results suggested these TNFa phenotypes

were different [15].

Though none of the regions attained genome-wide significance

by conventional standards (p,1025) [27], three regions attained

suggestive significance (p,1023). Two of these regions were linked

to PTST-, one on chromosome 2 (p = 0.0003) (Figure 3) and

another on chromosome 5 (p = 0.0005) (Figure 4). The region on

chromosome 2q21-2q24 is 30 cM long and the region on

chromosome 5p13-5q22 is 50 cM long; neither region contains

any previously characterized candidate genes. A 34 cM long

region on chromosome 7, linked to TB, also attained suggestive

linkage (p = 0.0002) (Figure 5); the interleukin (IL)-6 gene resides at

the centromeric end of this region. Though not quite attaining the

suggestive significance threshold, we also observed linkage to TB

on chromosome 20q13 (p = 0.002) (Figure 6). This same region,

which was 25 cM long in this analysis, has recently been mapped

in African populations [8] and found to contain genes for

melanocortin 3 (MC3R) and cathepsin 7 (CTSZ). There were no

regions attaining genome-wide significance or suggestive signifi-

cance for TNFa.

In addition, a number of regions were linked at the a= 0.05

level to chromosomal regions in which possible TB candidate

genes reside. Since linkage effects may extend up to 20 cM [28],

we also considered linkage results within 20 cM of previously

characterized candidate genes as possible replications. TNFa level,

as assayed in both study phases, was linked to chromosome 1 (total

sample p = 0.014, Phase II p = 0.006); the linked region (120–

130 cM) is roughly 15 Mb from the interleukin (IL)-12 receptor b2

(IL12RB2). Another region on chromosome 1, extending from 130

through 180 cM, was linked to TB (p = 0.01). On chromosome 2

(Figure 3), a region extending from 250 to 260 cM was also linked

to PTST- (p = 0.02); this region is approximately 17 Mb from the

location of NRAMP1 (SLC11A1), the most analyzed candidate

gene in TB [29]. A second region on chromosome 2, between 86–

108 cM, was linked to TB (p = 0.01); this region contains genes for

the IL-1 complex (IL1, IL1RA, etc.). Another region on

chromosome 2, extending from 54–80 cM, was linked to TNFa
level in the Phase II sample (p = 0.02) but, because this region ends

only 6 cM from the region linked to TB, it cannot be distinguished

from the IL1 complex region. Other suggestive linkages to TB

alone were seen on: chromosome 3, in a region containing IL12A

(p = 0.02); chromosome 6, in the region containing the MHC

complex and TNFA (p = 0.03); and the chromosome 7 and 20

regions mentioned above. Finally, a region on chromosome 21, in

which the gene for IFNc receptor 2 (IFNGR2) resides, was linked to

TNFa levels from the whole sample (p = 0.009) and TNFa from

Phase II (p = 0.01).

Several other regions attained linkage at the a= 0.05 level, but

did not contain any previously characterized TB candidate genes.

One region on chromosome 2, extending from 120–128 cM, was

linked to PTST- (p = 0.007), and a second region ,18 cM away,

extending from 146–176 cM, was also linked to PTST-

(p = 0.0003). Markers on the short arm of chromosome 8 were

linked to all three phenotypes in the region between 32 and

72 cM, though only TNFa levels from the whole sample attained

significance with p,0.01. Linkage to this chromosome 8 region

has been previously reported in a Moroccan study population

Table 1. Descriptive statistics for final analysis sample.

Total number of individuals 803

Numbers of females/males 435/368

Median age (range) 15.00 (1–80)

Number of individuals with TB 160

Number of PTST- individuals 85

Number of HIV infected individuals 130

Number of households 193

Median pedigree size (range) 4.00 (2–24)

Number of full sibling pairs 258

Number of half sibling pairs 175

doi:10.1371/journal.pone.0004094.t001

Table 2. Clinical group by HIV status.

HIV negative HIV positive

PTST- 69 8

LTBI 455 45

TB 83 77

HIV tests were not conducted for 66 children because they were not clinically
relevant.
doi:10.1371/journal.pone.0004094.t002

Figure 2. Boxplot of covariate-adjusted and log-transformed
TNFa across stage of Mtb infection and disease. This boxplot
displays the median and distribution of TNFa values across the three
clinical groups. PTST- = persistent TST negative (resistant to Mtb
infection), LTBI = latent Mtb infection (TST positive, no disease),
TB = tuberculosis (disease).
doi:10.1371/journal.pone.0004094.g002
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[30], but the specific gene(s) in this region have not been

characterized.

To explore whether these results were confounded by the

presence of HIV positive individuals in the analysis, we repeated

the genome scan by restricting the analysis to sibling pairs that

were concordantly HIV negative (Table 4). In general, most of the

significant results remained, though some candidate regions were

no longer significant or less significant in this restricted analysis. A

few regions actually increased in their statistical significance. It is

likely that the fluctuations in p-values were due to reductions in

sample size for these analyses of subpopulations. Finally, we note

that the information content, which is a measure that depends on

the informativity of both the markers and the trait being analyzed,

is 0.72.

Discussion

In this report, we present a full genome scan of a Ugandan

population with different responses to Mtb exposure and infection.

To our knowledge, this is the largest sample from a TB-endemic

population analyzed with a full genome-wide linkage scan. Also,

this analysis includes both HIV positive and negative individuals,

so these findings are relevant to a general population. This is also

the first investigation of a novel phenotype, PTST-, which is an

indication of resistance to Mtb infection. We found that two novel

regions, on chromosomes 2q21-2q24 and 5p13-5q22, attained

suggestive genome-wide significance to PTST-. There may also be

a second novel region on chromosome 2q14, which is close

enough to 2q21-2q24 that it cannot be distinguished using sib-pair

linkage analysis [28]. Since these regions have not been linked to

TB in previous studies, future studies will focus on fine mapping

these regions. We have also replicated the recent linkage findings

of Cooke et al. [8], thus providing the first replication report of the

newly published TB candidate genes, CTSZ and MC3R. By

examining distinct phenotypes that represent different stages of the

natural history of Mtb infection, we demonstrate that these

different stages (i.e. exposure, infection, disease) have distinct

genetic influences that underlie the likely different biological

mechanisms involved in resistance to infection vs. controlling

latent infection vs. progression to active pulmonary TB.

This report provides the first investigation of individuals who

have persistently negative TSTs over time despite prolonged and

persistent exposure to infectious individuals with TB. Previous

studies have suggested that host genetics may play a role in

Table 3. Chromosomal regions significant at the a= 0.05 level by trait.

Chromosomal
region cM rangea

Marker information
(range) Most significant p-value by trait Genes in vicinity/Notes

TB PTST- TNFa (meta)b TNFa (Phase II)b

1p31 120–130 .72–.80 0.014 0.006 15 Mb from IL12RB2

1p21-1q24 130–180 .71–.80 0.02

2p22-2p16 54–80 .68–.80 0.02

2p13-2q11 86–108 .72–.81 0.02 IL1 complex

2q14 120–128 .75–.76 0.007

2q21-2q24 146–176 .68–.75 0.0003

2q27 250–260 .73–.80 0.02 17 Mb from SLC11A1

3q23 150–168 .73–.75 0.02 IL12A

5p13-5q22 64–114 .69–.77 0.0005

6p21 36–50 .76–.86 0.03 TNF/MHC

7p22-7p21 0–34 .68–.82 0.0002 IL6

7q35-7q36 158–172 .51–.57 0.02

8p22 32–40 .57–.73 0.04 Linked in Morrocan study[30]

8p12-8q11 64–72 .73–.77 0.001 0.02 0.02

8q21-8q23 104–124 .64–.75 0.010 0.02

9p21-9q12 54–66 .72–.78 0.02

10q24-10q24 121–163 .57–.81 0.02

11p15 0–16 .69–.73 0.02

11q14-11q23 88–118 .72–.84 0.034 0.007

14p13-14q11 2–24 .51–.77 0.02

14q21-14q24 55–82 .64–.83 0.02

19p13-19q12 40–54 .75–.76 0.006

20q13 64–89 .47–.65 0.002 MC3R and CTSZ

21q22 38–44 .56–.62 0.009 0.01 IFNGR2

22p13-22q11 2–46 .65–.76 0.02 0.02

cM = centimorgans, Mb = Megabases.
P-values in boldface indicate results attaining suggestive significance according to Lander-Kruglyak criteria.
acM range indicates locations significant at the nominal a= 0.05 level.
bThe first column of linkage results for the TNFa phenotype are for pooled p-values, and the second column is for the Phase II data analyzed alone.
doi:10.1371/journal.pone.0004094.t003
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resistance to Mtb infection [11,12,14] but did not link this

phenotype with any underlying genotype. This study of resistance

to Mtb infection therefore provides insight into an early stage of

the natural history of disease progression. Since our study is the

first to focus on this end of the spectrum of the natural history of

Mtb exposure and infection, it is not surprising that we have

identified linkage findings that are new to the TB literature. It is

very likely that host genetic and immunologic responses differ

between resistance to infection, containment of initial Mtb

infection and progression of latent Mtb infection to active

pulmonary TB. All genetic epidemiological studies of TB to date

have focused entirely on the genetic influences underlying the

development of disease. Furthermore, since our study observed

households over a period of two years, we were uniquely poised to

assess the PTST- phenotype. Though it is possible that individuals

may convert their skin test beyond this period of observation, it is

Figure 3. Plot of linkage results for chromosome 2. 2log10(p-value) from the linkage analysis of each trait is plotted against marker location.
This plot illustrates that different TB phenotypes were linked to different regions on chromosome 2.
doi:10.1371/journal.pone.0004094.g003

Figure 4. Plot of linkage results for chromosome 5. 2log10(p-value) from the linkage analysis of each trait is plotted against marker location.
doi:10.1371/journal.pone.0004094.g004
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very unlikely; in our study we observed that most adult TST

negative household contacts converted their skin tests within

3 months of study enrollment (,67%, unpublished data). We

observed linkage between this phenotype and several chromo-

somal regions, some of which were novel, while others – like

SLC11A1 – have been studied extensively. Though the role of

SLC11A1 in murine models of TB is well-established, studies of

human TB have revealed inconsistent results, and thus its role in

the disease phenotype remains controversial [29]. Since we

observed linkage between this gene region and PTST-, and not

TB, our results may provide a further clue into the role of this gene

in the natural history of Mtb infection.

In addition, we observed linkage at the a= 0.05 level to several

regions containing potential TB candidate genes. Some of these

qualify as replications of previous genetic associations using

genome-wide criteria [27]. We detected linkage to a region

containing the IL6 gene. IL6 is known to have both pro- and anti-

inflammatory properties in TB [31] and IL6 knock-out mice

Figure 5. Plot of linkage results for chromosome 7. 2log10(p-value) from the linkage analysis of each trait is plotted against marker location.
doi:10.1371/journal.pone.0004094.g005

Figure 6. Plot of linkage results for chromosome 20. 2log10(p-value) from the linkage analysis of each trait is plotted against marker location.
doi:10.1371/journal.pone.0004094.g006
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succumb to Mtb infection [32]. One case-control study did not

find an association between IL6 and TB [33]; our study is the first

to suggest an association. We also observed linkage to the region

containing the IL1 complex of genes, with TB as the phenotype;

IL1B has been associated with TB in Japanese [34], Gambian [35]

and Columbian [36] study populations, while IL1RA has also been

associated with TB in a Gambian population [37]; both genes

were associated with pleural TB in a Gujarati Hindu population in

England [38]. Additionally, we observed linkage to regions

containing genes within the interferon-c (IFNc)/interleukin (IL)-

12 pathway, including IL12RB2, IL12A and IFNGR2. Though

deficiencies in IFNGR2 have been associated with disseminated

non-tuberculous mycobacterial disease [39,40], this gene was not

associated specifically with TB in a case-control study [41]. In the

present analysis, IFNGR2 was linked to TNFa expression levels,

which may be the result of crosstalk between the IFNc and TNFa
pathways [42]. IL12RB2 has been associated with leprosy [43] but

not TB and, to our knowledge, IL12A has not been associated with

TB in any study. Previous genetic epidemiological studies have

found associations between IL12B, IL12RB1 and TB, though not

with IL12A and IL12RB2 [44]. A possible explanation for this

apparent discrepancy could be that risk alleles in IL12A and

IL12RB2 are rare and better detectable by linkage [45]. In our

analysis, IL12RB2 was linked to TNFa expression, which may

reflect the feedback loop between IFNc, TNFa, and IL12 [46].

Finally, we observed linkage between all three traits and the

chromosome 8 region found to be linked to TB in a whole genome

scan in a Moroccan population [30]; our results suggest that this

region may contain multiple genes each linked to the different

stages of the natural history of Mtb infection and disease, or one

gene with pleiotropic effects.

A previous genome scan by Wheeler et al. [23] examined linkage

to TB immune phenotypes; these phenotypes were immunoglobulin

and IFNc responses to various Mtb proteins. We found some

commonality between their results and ours. The study by Wheeler

and colleagues observed linkage to IgG responses to purified protein

derivative (PPD) on chromosome 3q23 (p = 0.008) and also linkage to

IFNc responses to PPD, both on chromosome 1q24 (p = 0.0009) and

chromosome 19q12 (p = 0.007). In our analysis, the chromosome

1q24 and 3q23 regions were linked to TB and chromosome 19q12

was linked to TNFa responses. This further illustrates the role of these

chromosomal regions in immunity related to TB and warrants further

investigation.

Though our previous candidate gene analysis [16] demonstrat-

ed that some genes were linked to both TNFa and TB, very few

regions were linked to multiple traits in this genome scan. There

may be several reasons for this. First, the candidate genes in our

previous work were chosen specifically because they were part of

the TNFa pathway and previously associated with TB. Second,

the markers in that study were more densely spaced so that those

specific genes were being targeted. And finally, linkage for one

trait may not have the same statistical power as for another.

Conversely, the present agnostic analysis did not target genes in

any specific pathway. Interestingly, several of these candidate

Table 4. Chromosomal regions significant at the a= 0.05 level by trait for analysis of HIV concordantly negative sibling pairs.

Chromosomal region cM rangea Marker information (range) Most significant p-value by trait Genes in vicinity/Notes

TB PTST- TNFa (meta)b TNFa (Phase II)b

1p31 120–130 .72–.80 0.02 0.006 15 Mb from IL12RB2

1p21-1q24 130–180 .71–.80 0.01

2p22-2p16 54–80 .68–.80 0.01

2q14 120–128 .75–.76 0.003

2q21-2q24 146–176 .68–.75 0.0003

2q27 250–260 .73–.80 0.03 17 Mb from SLC11A1

5p13-5q22 64–114 .69–.77 0.003

7p22-7p21 0–34 .68–.82 0.002 IL6

7q35-7q36 158–172 .51–.57 0.01

8p12-8q11 64–72 .73–.77 0.02

8q21-8q23 104–124 .64–.75 0.005 0.02

9p21-9q12 54–66 .72–.78 0.007

10q24-10q24 121–163 .57–.81 0.04

11p15 0–16 .69–.73 0.03

11q14-11q23 88–118 .72–.84 0.003 0.003

14p13-14q11 2–24 .51–.77 0.006

14q21-14q24 55–82 .64–.83 0.02

19p13-19q12 40–54 .75–.76 0.007

20q13 64–89 .47–.65 0.02 MC3R and CTSZ

21q22 38–44 .56–.62 0.0005 0.01 IFNGR2

22p13-22q11 2–46 .65–.76 0.007 0.02

cM = centimorgans, Mb = Megabases.
P-values in boldface indicate results attaining suggestive significance according to Lander-Kruglyak criteria.
acM range indicates locations significant at the nominal a= 0.05 level.
bThe first column of linkage results for the TNFa phenotype are for pooled p-values, and the second column is for the Phase II data analyzed alone.
doi:10.1371/journal.pone.0004094.t004
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genes that were previously only associated with TB were linked

with TNFa in the present study, including IL12RB2, NRAMP1

(SLC11A1), IFNGR2, and the region on chromosome 8 identified

by El Baghdadi et al. [30]. This linkage between TB genes and

TNFa lends further support to our intermediate phenotype model.

These results further support that progression of Mtb infection to

disease is a complex trait with likely several underlying distinct

genetic risk factors. This complexity of Mtb infection and disease

likely explains the inconsistency of results across genetic epidemi-

ological studies. In addition, these results imply that the various

stages of the natural history of Mtb infection [9] have unique

genetic influences. These results confirm not only that genetic

factors influence the interaction between humans and Mtb but

more importantly that they differ according to the outcome of that

interaction: exposure but no infection vs. infection but no

progression to disease vs. progression of infection to disease.

Because of missing genotype and phenotype data, this analysis

was limited to 803 individuals, reducing its statistical power.

Furthermore, since TNFa was assayed differently in Phase I and II

of the study, the data could not be pooled, further affecting power.

However, because our results are consistent with current TB

immunological models, we think they are unlikely to be false positive

findings. This study might have been underpowered to detect genes

with smaller effects, since very large sample sizes are required to

detect small effects using linkage analysis [45]. Another limitation of

the analysis was that empirical p-values could not be computed

because we analyzed both full and half sibling pairs together and

then defining the appropriate permutation distribution becomes

problematic. Future studies will focus on replication in independent

populations using an association strategy. Additional studies will use

focused microarray and immunological approaches to examine the

functional implications of these and other genes.

Materials and Methods

Study design
Families were enrolled through the Household Contact Study

[26] in Kampala, Uganda. The first phase of the study enrolled

households from 1995 through 1999 ascertained through index TB

patients who presented to the National TB and Leprosy Programme

(NTLP), and had positive acid-fast smear (AFB positive) and positive

Mtb cultures; the household was enrolled if the index case lived with

at least one person and the individuals in the household as well as

the index case provided informed consent to participate in the study.

The second phase of the household contact study started enrolling

patients from 2002 and continues to the present. Written informed

consent was obtained from all individuals in both study phases (or in

the case of children, the child provided assent and his/her legal

guardian provided written consent on their behalf). Ascertainment

in Phase II differed in that index cases were required to be only

culture positive for Mtb and, in addition to referral from the NTLP,

came to the clinic directly after learning about the study through

community sensitization (education) efforts and word-of-mouth.

The index case and household members were observed over a two

year period in order to capture clinical outcomes as described

below. The present analysis of Phase II includes families enrolled

from April 2002 through February 2004. Any individuals who

withdrew consent were excluded from the analysis. The institutional

review boards at University Hospitals of Cleveland and the Uganda

Council for Science and Technology approved the study.

Clinical characterization and phenotypes
After enrollment in the study, all household members were

given a full clinical examination, including testing for HIV.

Individuals who were suspected to have pulmonary TB received a

chest x-ray, and provided sputum samples for culture and AFB

smear, or gastric aspirates in the case of young children. Diagnosis

of TB disease in contacts was based on ATS criteria [10]; all

individuals diagnosed with active TB disease received standard TB

therapy for 6 months. In this analysis, ‘‘TB case’’ refers to all

individuals with culture-confirmed TB [10]; this includes the index

case, co-prevalent cases (diagnosed within 3 months of enroll-

ment), and incident cases (development of TB more than 3 months

after baseline study assessment).

Tuberculin skin testing (TST) was done for all individuals in the

home, using purified protein derivative (PPD) with the Mantoux

method. A positive TST was defined as an induration of 5 mm or

greater in children less than or equal to 5 years of age or in HIV

positive individuals, or an induration of 10 mm or greater in HIV

negative individuals aged greater than 5 years. Skin tests were

repeated 3, 6, 12, and 24 months after enrollment in individuals

who were TST negative at baseline assessment. A persistently

negative TST (PTST-) was defined as a negative skin test on two

or more occasions over 2 years of observation in an individual who

had been living with the index case. By our definition, these

individuals did not go on to develop TB. Individuals who had a

negative TST at the time of study enrollment but converted to a

positive TST during study follow-up were included in the LTBI

group for this analysis. In Phase II of the household contact study,

all individuals with positive TST results were offered Isoniazid

preventative therapy.

In addition to these clinical outcomes, we also examined

cytokine production by whole blood stimulation with soluble Mtb

ligands enriched for molecules secreted by Mtb (culture filtrate).

Whole blood was stimulated with culture filtrate (10 mg/ml),

incubated for 24 hours, and TNFa measured by ELISA in culture

supernatant. Additional details regarding the methods for these

assays can be found elsewhere [15,17]. This study measured

TNFa expression in response to Mtb culture filtrate proteins and

glycolipids.

Data analysis
Prior to further analysis, TNFa expression variables were

adjusted for demographic differences between study cohorts [15].

To examine differences in TNFa between individuals PTST-, with

latent Mtb infection (LTBI), and TB, we used nonparametric

methods since TNFa values were still not normally distributed

even after covariate adjustment and log transformation. This

analysis was restricted to HIV negative individuals only so that

results would not be confounded by immunosuppresion. Since the

ELISA kit and source of culture filtrate differed between Phase I

and II of the study [15], we conducted linkage analysis for the

TNFa variable separately by study cohort and then combined p-

values using Fisher’s method [47]; we present the pooled results

and results for Phase II alone since the latter data were more

complete [16]. Since our diagnosis of TB and PTST- did not differ

by study phase, we combined the cohorts for those analyses.

Molecular methods
DNA was obtained from buffy coat specimens extracted from

blood samples taken as part of the study; further detail about DNA

preparation is described elsewhere [16]. A microsatellite genome

scan was conducted by the Mammalian Genotyping Service at the

Center for Medical Genetics in Marshfield, Wisconsin. Four

hundred microsatellite markers (Screening Set 16), with an

average intermarker spacing of 9.04 cM, were genotyped across

the 22 autosomes, chromosome X, and chromosome Y for 828
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individuals. The average marker heterozygosity was 0.777 (range

0.462–0.941).

There were several steps involved in genotype cleaning. Eleven

of the 400 markers were removed from the analysis because they

were in significant Hardy-Weinberg disequilibrium among the

founders (p,0.0001), using the method of Montoya-Delgado et al.

[48]. We genotyped 18 subjects in duplicate in order to estimate a

genotype error rate. The proportion of discordant genotypes in the

replicate samples was 0.417%, across all 400 markers. No marker

showed large discrepancies compared with any other and no

individual sample showed higher error rates compared with any

other. Discordant genotypes were deleted prior to further analysis.

In addition, Marshfield blindly genotyped DNA samples for

estimating typing error, and arrived at an estimated 0.63% rate,

most of which were 1 base shifts in allele size. With the genotype

data itself, Marshfield provided a number of reports, some of

which flagged alleles that were unexpected from the assay (e.g.

more or less repeats than had been seen in previous study

populations, putative ‘‘null’’ alleles). Alleles at four of these

markers segregated within families, so they were retained in the

analysis, but the remainder were treated as genotype errors and

deleted from the analysis.

Then, we validated pedigree structures using RELTEST [49]

and RELPAIR [50] (Figure 1). When these methods identified

relationships inconsistent with the molecular data, we queried the

on-site staff in Uganda to clarify these relationships. If the

molecular data were still inconsistent with the reported relation-

ship, the individual in question was removed from the analysis

(N = 13). We also confirmed gender as reported in the database

with X and Y chromosome genotypes, and discrepant results were

queried and corrected according to the patients’ clinic charts;

however, some discrepancies were unresolvable for these individ-

uals and their genotypes were deleted from the analysis (N = 12)

since DNA contamination or poor quality was suspected. Finally,

Mendelian inconsistencies were detected using MARKERINFO

(S.A.G.E. v5.3), and inconsistent genotypes were deleted from the

data using PedScrubber (courtesy of Dr. Robert Igo, Jr.). In total,

13.6% of the genotypes (including Mendelian errors and poor

quality genotypes) were coded as missing. Marker map locations

were based on the Screening Set 16 map. Because chromosome 8

inversions have been reported in some populations [51], we

verified our chromosome 8 marker order by conducting two-point

marker-to-marker linkage analysis using LODLINK (S.A.G.E.

v5.3); this analysis demonstrated that the published marker order

was correct (data not shown).

Statistical genetic analysis
Prior to further analysis, we examined the autosomal marker

data for population substructure, since the households were

enrolled in two different time periods with slightly different

ascertainment criteria. We used the STRUCTURE program [52]

to attempt to cluster together families with similar subpopulation

allele frequencies. This approach has been used successfully in a

family study of African Americans to partition families into

subpopulations [53]. We attempted 2, 3, and 4 subpopulations,

but families did not fall into clusters. Since this analysis supports

genetic homogeneity within our study population, we analyzed the

data together.

Multipoint analysis of the autosomes and X chromosome was

conducted using a model-free approach. Marker allele frequencies

in the founders were estimated using FREQ (S.A.G.E. V5.3), and

the proportion of alleles shared identical by descent by each

relative pair was estimated using GENIBD (S.A.G.E. v5.3).

Linkage analysis was conducted using the Haseman-Elston

method [54,55], which regresses a measure of sibpair trait

similarity on the proportion of alleles shared identical by descent.

Though a quantitative trait linkage method, this model is also

applicable for binary traits such as TB and PTST-. This method,

as implemented in SIBPAL (S.A.G.E. v5.3), has been recently

extended to also incorporate half sibling pairs [56]. Originally, the

measure of sibling pair trait similarity was parameterized as the

trait difference squared [55]; in recent years, this method was

extended to model the dependent trait as the mean-corrected

sibpair trait sum [54], and a weighted combination of these two

[57], the latter method being referred to as ‘‘W4’’ within SIBPAL.

Since trait variance, heritability, and ascertainment method all

have an impact on the ‘‘best’’ parameterization of the dependent

trait [58], we analyzed the three phenotypes using the original

difference squared and W4 options; in all cases, the binary trait

analyses were most significant using the difference squared option

because of the relatively small number of concordantly affected

pairs, while the results for TNFa were most significant using the

W4 option. We also included HIV status as a covariate,

parameterized as the sibpair sum, in all Haseman-Elston

regression models to account for variability due to HIV

seropositivity. Genome-wide statistical significance was deter-

mined using standard criteria [27]; extent of linked region is

reported for markers significant at a= 0.05. Information content

within linked regions was evaluated using the method proposed by

Krugylak et al. [59], as implemented in MLOD (S.A.G.E. v5.3).
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