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Abstract

We demonstrate that dual entropy expressions of the Tsallis type apply naturally to 

statistical–mechanical systems that experience an exceptional contraction of their 

configuration space. The entropic index 𝛼 > 1 describes the contraction process, 

while the dual index 𝛼′ = 2 − 𝛼 < 1 defines the contraction dimension at which 

extensivity is restored. We study this circumstance along the three routes to chaos 

in low-dimensional nonlinear maps where the attractors at the transitions, between 

regular and chaotic behavior, drive phase-space contraction for ensembles of 

trajectories. We illustrate this circumstance for properties of systems that find 

descriptions in terms of nonlinear maps. These are size-rank functions, urbanization 

and similar processes, and settings where frequency locking takes place.

Keywords: Physics, Statistical physics, Nonlinear physics, Nonlinear dynamical 

systems

1. Introduction

It is generally acknowledged that the validity of ordinary, Boltzmann–Gibbs 

(BG), equilibrium statistical mechanics rests on the capability of a system 

composed of many degrees of freedom to transit amongst its many possible 

configurations in a representative manner. The number of configurations of a 
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typical statistical–mechanical system increases exponentially with its size, and 

when these configurations are reachable in an adequate fashion through a 

sufficiently long time period, the indispensable BG properties, ergodicity and 

mixing, are established [1]. Therefore, to explore the limit of validity of BG 

statistical mechanics it is relevant to look at situations where access to 

configuration space can be controlled to various degrees down to a residual set of 

vanishing measure. A classic example is that of supercooled molecular liquids 

where glass formation signals ergodicity breakdown [2].

Here we refer to an especially tractable family of model systems in which the 

effect of phase space contraction in their statistical–mechanical properties can be 

studied theoretically. These are low-dimensional nonlinear maps that describe the 

three different routes to chaos, intermittency, period doublings and quasi 

periodicity [3]. Because these systems are dissipative they possess families of 

attractors, and the dynamics of ensembles of trajectories towards these attractors 

constitute realizations of phase space contraction. When the attractors are chaotic 

the contraction reaches a limit in which the contracted space has the same 

dimension as the initial space, a set of real numbers. But when the attractor is 

periodic the contraction is extreme and the final number of accessible 

configurations is finite. When the attractors at the transitions to chaos are 

multifractal sets contraction leads to more involved intermediate cases. Chaotic 

attractors have ergodic and mixing properties but those at the transitions to chaos 

do not [4]. We consider them here to discuss their association with generalized 

entropies.

The dynamical properties imposed by the attractors at the mentioned transitions 

to (or out of) chaos in low-dimensional nonlinear maps can be easily determined 

[5] and it is our purpose to describe these properties in terms of phase space 

contraction. Interestingly, these contractions are found in all cases to be analytically 

expressed in terms of the so-called deformed exponential function, exp𝑞(𝑥) ≡
[1 + (1 − 𝑞)𝑥]1∕(1−𝑞), 1 ≤ 𝑞 ≤ 2, and these in turn, as we describe below, appear 

associated with dual entropy expressions via the inverse function, the deformed 

logarithm, ln𝑞(𝑥) ≡ (1 − 𝑞)−1[𝑥1−𝑞 − 1]. The entropy expressions are of the Tsallis 

type [6], i.e.,

𝑆1[𝑝𝑘] =
𝑘max∑
𝑘=0

𝑝𝑘 ln𝛼 𝑝−1
𝑘
, (1)

and

𝑆2[𝑝𝑘] = −
𝑘max∑
𝑘=0

𝑝𝑘 ln𝛼′ 𝑝𝑘, (2)

where 𝑝𝑘 are probabilities. The dual entropy expressions satisfy a maximum 

entropy principle (MEP) and their values coincide, 𝑆2[𝑝𝑘] = 𝑆1[𝑝𝑘], when the 
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deformation indexes obey 𝛼′ = 2 − 𝛼 < 1. The dynamics towards the attractor is 

measured by the index 𝛼, whereas the index 𝛼′ characterizes the contraction 

achieved by the attractor. Absence of (effective) contraction implies 𝛼 = 𝛼′ = 1 and 

total contraction is signaled by 𝛼 = 2 and 𝛼′ = 0. We define a contraction 

dimension via the index 𝛼′,

𝛼′ =
ln𝜋𝑘
ln 𝑝𝑘

, (3)

where 𝜋𝑘 and 𝑝𝑘 are, respectively, the probabilities associated with the contracted 

set and the initial set of configurations.

In the following sections we describe the effect of phase space contraction for 

the three routes to chaos that occur in nonlinear maps 𝑓 (𝑥) of a single variable 𝑥, 

𝑓 and 𝑥 real numbers. We consider the effect of attractors at the transitions to chaos 

on ensembles of initial conditions that occupy fully one-dimensional intervals. We 

begin first with the simplest case of the tangent bifurcation associated with 

intermittency of type I [3], for which the ensemble contracts into a finite set of 

points. This is the most extreme situation that leads (in general) to 𝛼 = 2 and 

𝛼′ = 0 [7], and we corroborate this case with ranked data for forest fire sizes. Next 

we consider the accumulation point of period-doubling bifurcations in quadratic 

maps, where contraction into the most open region of the multifractal attractor 

leads to 𝛼 ≃ 1.7555 and 𝛼′ ≃ 0.2455 [8]. We refer to systems where period 

doubling is observed or to processes modeled by quadratic maps. Finally, we look 

at the quasi-periodic transition to chaos in the circle map along the golden-mean 

route and its chosen representative region yields 𝛼 ≃ 1.9489 and 𝛼′ ≃ 0.0510 [9]. 

We describe this contraction in terms of its mode-locking property [3] widely 

observed elsewhere.

2. Tangent bifurcation

A common account of the tangent bifurcation, that mediates the transition 

between a chaotic attractor and an attractor of period 𝑛, starts with the composition 

𝑓 (𝑛)(𝑥) of a one-dimensional map 𝑓 (𝑥), e.g. the logistic map, at such bifurcation, 

followed by an expansion around the neighborhood of one of the 𝑛 points tangent 

to the line with unit slope [3]. That is

𝑥′ = 𝑓 (𝑛)(𝑥) = 𝑥 + 𝑢𝑥𝑧 +⋯ , 𝑥 ≥ 0, 𝑧 > 1, (4)

where 𝑥𝑧 ≡ sign(𝑥) |𝑥|𝑧. The functional composition Renormalization Group (RG) 

fixed-point map is the solution 𝑓 ∗(𝑥) of

𝑓 ∗(𝑓 ∗(𝑥)) = 𝜆−1𝑓 ∗(𝜆𝑥) (5)
liyon.2015.e00045
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Figure 1. (a) The map in Eq. (7) with 𝑧 = 2 and 𝑢 = −0.005 (red), two trajectories are shown with 
𝑥0 < 0 and 𝑥0 > 0 (blue). The insets show the time dependence of these trajectories that obey Eq. (10). 
(b) Rank-order statistics for the occurrence of forest fires (blue dots) from Ref. [13]. They are reproduced 
by the smooth curve from Eq. (11) with 𝛼 = 2 and −1 = −𝑢 (red). The inset shows the same data (blue) 
plotted in ln𝛼′ (𝑝𝑘∕𝑝min) scale, 𝑝𝑘 = 1∕𝑁(𝑘) and 𝛼′ = 0. The straight line is the corresponding plot of 
Eq. (12) (red) and evidences the extensivity of the entropy in Eq. (13). See text for details.

together with a specific value for 𝜆 that upon expansion around 𝑥 = 0 reproduces 

Eq. (4). An exact analytical expression for 𝑥′ = 𝑓 ∗(𝑥) was obtained long ago [3]. 

This is

𝑥′1−𝑧 = 𝑥1−𝑧 + (1 − 𝑧)𝑢 (6)

or, equivalently,

𝑥′ = 𝑥 exp𝑧(𝑢𝑥𝑧−1), (7)

with 𝜆 = 21∕(𝑧−1). Repeated iteration of Eq. (6) leads to

𝑥1−𝑧
𝑡

= 𝑥1−𝑧0 + (1 − 𝑧)𝑢𝑡 (8)

or

ln𝑧 𝑥𝑡 = ln𝑧 𝑥0 + 𝑢𝑡. (9)

So that the iteration number or time 𝑡 dependence of all trajectories is given by

𝑥𝑡 = 𝑥0 exp𝑧
[
𝑥𝑧−10 𝑢𝑡

]
, (10)

where the 𝑥0 are the initial positions. In Fig. 1a we plot the map in Eq. (7) when 

𝑧 = 2 together with two trajectories initiated at 𝑥0 < 1 and 𝑥0 > 1, that in the insets 

are shown as functions of 𝑡 (also reproduced by Eq. (10)). The 𝑞-deformed 

properties of the tangent bifurcation are discussed at greater length in Ref. [7]. An 

ensemble of trajectories with initial conditions 𝑥0 distributed within an interval 

𝑋 ≤ 𝑥0 < 0, 𝑋 < 0 arbitrary, undergoes progressive phase space contraction 

ending up into the point 𝑥 = 0.
liyon.2015.e00045
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Interestingly, a manifestation of the dynamical properties at the tangent 

bifurcation appears in ranked data that follow Zipf’s law for large enough rank. It 

has been shown [10, 11] that size-rank functions, as given by a basic argument [12]

that generalizes Zipf’s law, are strictly analogous to the RG fixed-point map 

trajectories in Eq. (10). The expression for the size-rank function 𝑁(𝑘), the 

magnitude of the data 𝑁 for rank 𝑘,

𝑁(𝑘) = 𝑁max exp𝛼[−𝑁𝛼−1
max

−1𝑘], (11)

where  = 𝑘max is the total number of data, becomes that in Eq. (10) with the 

identifications 𝑘 = 𝑡, −1 = −𝑢, 𝑁(𝑘) = −𝑥𝑡, 𝑁max = −𝑥0 and 𝛼 = 𝑧. We note 

that the most common value for the degree of nonlinearity at tangency is 𝑧 = 2, 

obtained when the map is analytic at 𝑥 = 0 with nonzero second derivative, and 

this implies 𝛼 = 2, close to the values observed for many sets of real data, as this 

conforms with the classical Zipf’s law form 𝑁(𝑘) ∼ 𝑘−1 when 𝑘 is large. The 

inverse of 𝑁(𝑘), 𝑝𝑘 = 1∕𝑁(𝑘), the (uniform) probability for the occurrence of each 

unit that constitutes 𝑁(𝑘), is given by

𝑝𝑘 = 𝑝min exp𝛼′ (𝑝𝛼
′−1

min −1𝑘), (12)

where 𝑝min = 1∕𝑁max. In Fig. 1b we plot 𝑁(𝑘) in Eq. (11) when 𝛼 = 2 together 

with ranked data of forest fires areas [13] while in the inset we plot Eq. (12) when 

𝛼′ = 0 also with the corresponding forest fire data. We notice that, if 𝑊 (𝑘max) ≡
𝑁max∕𝑁(𝑘max) is identified as the number of configurations of the system of size 

equal to the maximum rank 𝑘max that generates the data set 𝑁(𝑘), 𝑘 =
0, 1, … , 𝑘max, then from Eq. (12) we observe that the size-dependent entropy [14]

𝑆(𝑘max) ≡ ln𝛼′ 𝑊 (𝑘max) (13)

is extensive.

3. Period-doubling accumulation point

The classic example of functional composition RG fixed-point map is the 

solution of Eq. (5) associated with the period-doubling accumulation points of 

unimodal maps [3]. In practice it is often illustrated by use of the quadratic 𝑧 = 2
logistic map 𝑓𝜇(𝑥) = 1 − 𝜇𝑥2, −1 ≤ 𝑥 ≤ 1, 0 ≤ 𝜇 ≤ 2, with the control parameter 

located at 𝜇 = 𝜇∞(𝑧 = 2) = 1.401155189092 ⋯ , the value for the accumulation 

point of the main period-doubling cascade [4]. The scaling factor, known as 

Feigenbaum’s universal constant, is 𝜆(𝑧 = 2) = −2.50290 ⋯ (for convenience we 

denote below its absolute value with the same symbol).

Fig. 2a shows two features of the trajectory at 𝜇∞(𝑧 = 2) with initial condition 

at 𝑥0 = 0 that are relevant to our discussion. Notice that in this figure we have used 
liyon.2015.e00045
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Figure 2. (a) Absolute value of trajectory positions 𝑥𝑡, 𝑡 = 0, 1, … , for the logistic map 𝑓𝜇(𝑥) at 𝜇∞, with 
initial condition 𝑥0 = 0, in logarithmic scale as a function of the logarithm of the time 𝑡, also shown by the 
numbers close to the points. The arrows indicate the distances equivalent to the principal diameters 𝑑𝑛,0 . 
(b) The positions ||𝑥𝑡|| of the trajectory in (a) at selected iteration times 𝑡 = 2𝑛 −1 (black dots) reproduced 
by Eq. (14) with 𝛼 = 1.7555 (red). The inset shows the same data plotted in ln𝛼′ 𝑝𝑘∕𝑝min scale, 𝑝𝑘 =
1∕ ||𝑥𝑘||, 𝑝min = 1 and 𝛼′ = 0.2445. The straight line evidences the (time) extensivity of the entropy in 
Eq. (13). See text for description.

absolute values of iterated positions ||𝑥𝑡|| to facilitate the use logarithmic scales. The 

labels correspond to iteration times 𝑡. The first visible feature in the figure is that 

the positions fall within equally-spaced horizontal bands. Since all positions visited 

at odd times form the top band one half of the attractor lies there. Inspection of the 

iteration times for positions within the subsequent bands indicates that one quarter 

of the attractor forms the second band, one eighth the third band, and so on. 

Repeated functional composition of the unimodal map eliminates bands 

successively starting with the top band, and these in turn can be recovered 

(approximately) by repeated rescaling by a factor equal to 𝜆. This removal and 

recuperation of bands correspond to a graphical construction of the functional 

composition and rescaling of the RG transformation.

The second feature evident in Fig. 2a is that all the attractor positions fall into a 

well-defined family of straight diagonal lines, all with the same slope. All the 

attractor positions can be allocated into subsequences formed by the time 

subsequences 𝑡 = (2𝑘 + 1)2𝑛 − 1, with 𝑛 = 0, 1, 2, … and fixed 𝑘 = 0, 1, 2, … . 

Thus, the subsequences ||𝑥𝑡|| have each a common power-law decay ||𝑥𝑡|| ≃
(𝑡 + 1)1∕1−𝛼 , with 𝛼 = 1 + ln 2∕ ln 𝜆(𝑧), 𝛼 ≃ 1.7555 when 𝑧 = 2 [5, 8]. 

Interestingly, these subsequences can be seen [5, 8] to reproduce the positions of 

the so-called ‘superstable’ periodic trajectories [3]. In particular, the positions for 

the main subsequence 𝑘 = 0 are given by ||𝑥2𝑛−1 || ≃ 𝑑𝑛,0 = 𝜆−𝑛, where 𝑑𝑛,0 ≡||||𝑓 (2𝑛−1)
𝜇𝑛

(0)
|||| is the ‘𝑛-th principal diameter’ [3]. With use of 𝜆−𝑛 ≡ (1 + 𝑡)− ln 𝜆∕ ln 2, 

𝑡 = 2𝑛 − 1, this subsequence can be expressed as
liyon.2015.e00045
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||𝑥𝑡|| = exp𝛼(−Λ𝛼𝑡) (14)

with 𝛼 as above and Λ𝛼 = (𝑧 − 1) ln 𝜆∕ ln 2. See [5, 8].

The band structure in Fig. 2a involves families of phase-space gaps that decrease 

in width as power laws (equal sizes in logarithmic scales of the figure). These gaps 

are formed sequentially, beginning with the largest one, in the dynamics towards 

the attractor at 𝜇∞. This process has a hierarchical organization and can be 

observed explicitly by placing an ensemble of initial conditions 𝑥0 distributed 

uniformly across phase space and record their positions at subsequent times [5, 15, 

16]. The main gaps in Fig. 2a decrease with the same power law of the principal 

diameters 𝑑𝑛,0 described above and expressed as the deformed exponential in 

Eq. (14). The locations of this specific family of consecutive gaps advance 

monotonically toward the sparsest region of the multifractal attractor located at 

𝑥 = 0 [5, 8, 15]. The decreasing values of ||𝑥𝑡||, 𝑡 = 2𝑛 − 1 in Eq. (14) with 

increasing 𝑛, describe phase-space contraction along iteration time evolution as 

these intervals represent the widths of the gaps forming consecutively, the diameter 

𝑑𝑛,0 being the width of the gap formed after 𝑡 = 2𝑛+1 − 1 [15]. Similarly other 

families of diameters represent widths of gaps leading to the multifractal attractor. 

In Fig. 2b we plot Eq. (14) with 𝛼 ≃ 1.7555 that reproduces the positions 𝑥𝑡 of the 

trajectory initiated at 𝑥0 for iteration times 𝑡 = 2𝑛 − 1, 𝑛 = 0, 1, 2, … . In the inset 

we plot ln𝛼′ 𝑝𝑘, 𝑝𝑘 = 1∕ ||𝑥𝑘|| with 𝛼′ = 2 − 𝛼 = 0.2445. The straight line 

corresponds to Eq. (13) (with 𝑝min = 1 and  = ln 2∕ ln 𝜆) in Eq. (12), and 

corroborates the (time) extensivity of entropy.

4. Golden-mean route to chaos

The quasi periodic route to chaos is often studied by means of the circle map,

𝑓Ω,𝐾 (𝜃) = 𝜃 + Ω −𝐾∕(2𝜋) sin 2𝜋𝜃, mod 1, (15)

where the control parameters Ω and 𝐾 are, respectively, the bare winding number 

and the degree of nonlinearity [3]. Another quantity relevant to the dynamics 

generated by this map is the dressed winding number 𝜔 ≡ lim𝑡→∞[𝜃𝑡 − 𝜃0]∕𝑡. 
Locked motion (a periodic attractor) occurs when 𝜔 is rational and unlocked 

motion (a quasi periodic attractor) when 𝜔 is irrational. We are interested in the 

critical circle map 𝐾 = 1 when locked motion occurs for all Ω, 0 ≤ Ω ≤ 1, except 

for a multifractal set of unlocked values. Sequences of locked motion values of Ω
can be used to select attractors of increasing periods such that a transition to chaos 

is obtained at their infinite-period (quasi periodic) accumulation points [3].

A well-known specific case of the above is the sequence of rational 

approximations to the reciprocal of the golden mean 𝜔gm = (
√
5 − 1)∕2 ≃
liyon.2015.e00045
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0.618034. This sequence is formed by the winding numbers 𝜔𝑛 = 𝐹𝑛−1∕𝐹𝑛, where 

𝐹𝑛 are the Fibonacci numbers 𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1. The route to chaos is the family 

of attractors with increasing periods 𝐹𝑛, 𝑛 → ∞. Amongst these attractors it is 

possible to select specific values of Ω with the superstable property [3]. As before, 

a superstable trajectory of period 𝑇 satisfies 𝑑𝑓 (𝑇 )(𝜃0)∕𝑑𝜃 = 0, and is one that 

contains as one of its positions 𝜃 = 0. There are two superstable families of 

trajectories, the first at control parameter values Ω𝑛, 𝑛 = 1, 2, … with winding 

numbers 𝜔𝑛 = 𝐹𝑛−1∕𝐹𝑛 and accumulation point at Ω∞ ≃ 0.606661 which 

corresponds to 𝜔gm. The second family with winding numbers 𝜔′
𝑛
= 𝐹𝑛−2∕𝐹𝑛, with 

Ω′
𝑛
, 𝑛 = 1, 2, … and accumulation point at Ω′

∞ = 1 − Ω∞ ≃ 0.393339 which 

corresponds to 𝜔2
gm ≃ 0.381966 [9].

As with the period-doubling route, the quasiperiodic route to chaos displays 

universal scaling properties. And an RG approach, analogous to that for the tangent 

bifurcation and the period doubling cascade, has been carried out for the critical 

circle map [3]. The fixed-point map 𝑓 ∗(𝜃) of an RG transformation that consists of 

functional composition and rescaling appropriate for maps with a zero-slope cubic 

inflection point (like the critical circle map) satisfies

𝑓 ∗(𝜃) = 𝜆gm𝑓
∗(𝜆gm𝑓 ∗(𝜃∕𝜆2gm)), (16)

where (for the golden mean route) 𝜆gm ≃ −1.288575 is a universal constant [3]. 

(We denote below its absolute value with the same symbol.) This constant 

describes the scaling of the distance 𝑑𝑛,0 from 𝜃 = 0 to the nearest element of the 

orbit with 𝜔𝑛. These are the distances analogous to the principal diameters in the 

previous section [3].

For our purposes we refer only to one family of winding numbers, 𝜔′
𝑛
=

𝐹𝑛−2∕𝐹𝑛. Fig. 3a shows the trajectory at Ω = Ω′
∞ starting at 𝜃0 = 0 in logarithmic 

scales where the labels indicate iteration times 𝑡. Similarly to Fig. 2a, 

a conspicuous feature in Fig. 3a is that positions fall along straight diagonal lines, 

again, a signal of multiple power law behavior. Notice that the positions of the 

main diagonal in Fig. 3a correspond to the times 𝐹2𝑛, 𝑛 = 1, 2, 3, … . The

succeeding diagonals above it appear grouped together (see Ref. [9] for a 

description). Also similarly to Fig. 2a, in Fig. 3a we show the positions for the 

main subsequence that constitutes the lower bound of the entire trajectory. These 

positions are identified to be 𝜃𝐹2𝑛 ≃ 𝑑2𝑛,0 = Ω′
∞𝜆−2𝑛gm , where 𝑑2𝑛,0 is the ‘2𝑛-th 

principal diameter’ defined at the 𝐹2𝑛-supercycle, the distance of the orbit position 

nearest to 𝜃 = 0 [3, 9]. With use of 𝜆−2𝑛gm ≡ (1 + 𝑡)2 ln 𝜆gm∕ ln 𝜔gm , 𝑡 = 𝐹2𝑛 − 1, the 

main subsequence 𝜃𝐹2𝑛 can be expressed as

𝜃𝑡 = Ω′
∞ exp𝛼(−Λ𝛼𝑡), (17)

with 𝛼 = 1 − (1∕2) ln𝜔gm∕ ln 𝜆gm ≃ 1.948997 and Λ𝛼 = −2 ln 𝜆gm∕ ln𝜔gm. 

See [5, 9].
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Figure 3. (a) Iteration time dependence of positions 𝜃𝑡 in logarithmic scales for the orbit with initial 
condition 𝜃0 = 0 at Ω′

∞ of the critical circle map 𝐾 = 1. The labels indicate iteration time 𝑡, the blue line 
goes through positions at times of the form 𝐹2𝑛, while the dotted and dashed lines do similarly at times of 
the form 2𝐹2𝑛 and 𝐹2𝑛 +𝐹2𝑛−2, respectively. The arrows indicate the distances equivalent to the principal 
diameters 𝑑2𝑛,0. (b) The positions 𝜃𝑡 of the trajectory in (a) at selected iteration times 𝑡 = 𝐹2𝑛 − 1 (black 
dots) reproduced by Eq. (17) with 𝛼 = 1.948997 (red). The inset shows the same data plotted in ln𝛼′ scale, 
𝑝𝑘 = 1∕𝜃𝑘, 𝑝min = 1 and 𝛼′ = 0.051003. The straight line evidences the (time) extensivity of the entropy 
in Eq. (13). See text for description.

As in the case of period doublings, the dynamics towards the attractor at Ω′
∞ of 

an ensemble of trajectories (with say, uniformly distributed initial conditions in 0 ≤

𝜃 ≤ 1) successively forms gaps of decreasing lengths in phase space (the interval 

0 ≤ 𝜃 ≤ 1). The gaps have a hierarchical structure that ends up at the multifractal 

set of the attractor positions partially shown in Fig. 3a. A fragment of this process 

can be observed through the decreasing lengths of the diameters 𝑑2𝑛,0 described 

above and expressed as the deformed exponential in Eq. (17). The locations of this 

specific family of consecutive gaps advance monotonically toward the sparsest 

region of the multifractal attractor located at 𝜃 = 0 [9]. As in the previous section, 

the decreasing lengths of the principal diameters 𝑑2𝑛,0 with increasing 𝑛, equal to 

the values of ||𝜃𝑡||, 𝑡 = 𝐹2𝑛 − 1, in Eq. (17), describe phase-space contraction via 

formation of successive gaps. Similarly other families of diameters represent 

widths of gaps leading to the multifractal attractor. In Fig. 3b we plot Eq. (17) with 

𝛼 ≃ 1.948997 that reproduces the positions 𝜃𝑡 of the trajectory initiated at 𝜃0 for 

iteration times 𝑡 = 𝐹2𝑛 − 1, 𝑛 = 0, 1, 2, … . In the inset we plot 𝑝𝑘 in ln𝛼′ scale, 𝑝𝑘 =
1∕𝜃𝑘 with 𝛼′ = 2 − 𝛼 = 0.051003. The straight line corresponds to Eq. (13) (with 

𝑝min = 1∕Ω′
∞ and  = −Ω′

∞
1−𝛼′ ln𝜔gm∕2 ln 𝜆gm) in Eq. (12), and corroborates 

the (time) extensivity of entropy.

The interpretation of phase space contraction is that as iteration time advances 

when Ω = Ω′
∞ the trajectory positions in the interval 0 < 𝜃𝑡 < 𝜃𝐹2𝑛

approach but 

fail to attain mode-locking for dressed winding number 𝜔′
𝑛
= 𝐹2𝑛−2∕𝐹2𝑛 at 𝑡 =

𝐹2(𝑛+1) − 1, 𝑛 = 0, 1, 2, … . These intervals shrink according to Eq. (17) as 𝑛 → ∞
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and in this limit there is no mode-locking, only quasi periodic motion with 

𝜔 = 𝜔2
gm.

5. Phase space contraction and maximum entropy

As we have seen in the previous sections the contraction of phase space guided 

by the attractors at the three types of transitions to chaos is described quantitatively 

by the time evolution of trajectory positions. The expressions for these trajectory 

positions are conveniently obtained from the RG fixed-point maps at the transitions 

to chaos, and in all cases are exactly given by 𝑞-exponential functions. See 

Eqs. (10), (14) and (17). These functions replace the ordinary Boltzmann weights 

in generalized statistical–mechanical expressions associated with entropies of the 

Tsallis type that are written in terms of the inverse function, the 𝑞-logarithm. See 

Eqs. (1) and (2). We show now that these expressions can be obtained also from a 

Maximum Entropy Principle (MEP) and discuss further the occurrence of the dual 

indexes 𝛼 and 𝛼′ = 2 − 𝛼 < 1 in relation to phase-space contraction.

Consider the entropy functional Φ1[𝑝𝑘] of the probabilities 𝑝𝑘, 𝑘 =
0, 1, 2, … , 𝑘max with Lagrange multipliers 𝑎 and 𝑏,

Φ1[𝑝𝑘] = 𝑆1[𝑝𝑘] + 𝑎

[
𝑘max∑
𝑘=0

𝑝𝑘 − 

]
+ 𝑏

[
𝑘max∑
𝑘=0

𝑘𝑝𝑘 −

]
, (18)

where the entropy expression 𝑆1[𝑝𝑘] has the trace form

𝑆1[𝑝𝑘] =
𝑘max∑
𝑘=0

𝑠1(𝑝𝑘). (19)

Optimization via 𝜕Φ1[𝑝𝑘]∕𝜕𝑝𝑘 = 0, 𝑘 = 0, 1, 2, … , 𝑘max, gives 𝑠′1(𝑝𝑘) = −𝑎 − 𝑏𝑘. 

Now, the choices 𝑠′1(𝑝𝑘) = ln𝛼 𝑝−1𝑘 − 𝑝
−(1−𝛼)
min + (1 − 𝛼)−1𝑘, 𝑎 = − ln𝛼 𝑝−1min +

𝑝
−(1−𝛼)
min , 𝑏 = 𝛼−1, lead to

ln𝛼 𝑝−1𝑘 = ln𝛼 𝑝−1min −−1𝑘 (20)

or

𝑝−1
𝑘

= 𝑝−1min exp𝛼(−𝑝
1−𝛼
min

−1𝑘) (21)

from which we immediately recover Eq. (11). But also, importantly, 𝑆1[𝑝𝑘] in 

Eq. (19) becomes Eq. (1).

Consider next the same functional as above but with the probabilities 𝑝𝑘
replaced now by the new set 𝜋𝑘, 𝑘 = 0, 1, 2, … , 𝑘max. We write

Φ2[𝜋𝑘] = 𝑆2[𝜋𝑘] + 𝑐

[
𝑘max∑

𝜋𝑘 −  ′

]
+ 𝑑

[
𝑘max∑

𝑘𝜋𝑘 −′

]
. (22)
𝑘=0 𝑘=0
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So that 𝑠′2(𝜋𝑘) = −𝑐 − 𝑑𝑘, with the choices 𝑠′2(𝜋𝑘) = − ln𝛼′ 𝜋𝑘 − 𝜋1−𝛼′
min − (1 −

𝛼′)−1𝑘, 𝑐 = 𝜋1−𝛼′
min + ln𝛼′ 𝜋min, 𝑑 = (2 − 𝛼′)−1, lead to

ln𝛼′ 𝜋𝑘 = ln𝛼′ 𝜋min +−1𝑘 (23)

or

𝜋𝑘 = 𝜋min exp𝛼′ (𝜋𝛼′−1
min −1𝑘), (24)

which, also importantly, when used to evaluate 𝑆2[𝜋𝑘] leads to Eq. (2).

If the probabilities 𝑝𝑘 and 𝜋𝑘 correspond, respectively, to the initial and the 

contracted sets of configurations, and if they are both normalizable in their own 

spaces, then to recover one from the other we require a relationship such as

𝜋𝑘 = 𝑝𝛼
′

𝑘
, (25)

with 𝛼′ < 1 when the contracted set has a vanishing measure with respect to the 

initial one. Therefore we note that in the MEP procedure it is not necessary to make 

use of the constraint

𝑘max∑
𝑘=0

𝑘𝑝𝛼
′

𝑘
= constant, (26)

commonly used in the derivation of generalized entropies [6], including Ref. [14]

(where there appears some non-consequential faux pas). Instead, the distinction 

between the initial and contracted space of configurations indicates the introduction 

of a contraction dimension 𝛼′ via Eqs. (3) or (25).

6. Discussion

We have discussed the association of dual entropy expressions of the Tsallis 

type with the dynamical properties of attractors in low-dimensional iterated maps 

along the three routes to chaos: intermittency, period doublings and 

quasi-periodicity. The attractors at the transitions to chaos provide a natural 

mechanism by means of which ensembles of trajectories are forced out of almost 

all phase space positions and become confined into a finite or (multi)fractal set of 

permissible positions. Such drastic contraction of phase space leads to nonergodic 

and nonmixing dynamics that is described by the dual entropic indexes 𝛼 > 1 and 

𝛼′ = 2 − 𝛼 < 1. The first fixes the deformation of the exponential that measures the 

degree of contraction along (iteration) time evolution, and the second defines a 

contraction dimension, cf. Eq. (3), such that extensivity of entropy is restored. The 

dual entropy expressions are compatible with the same maximum entropy 

principle. When the contraction of phase space leads to a set of configurations of 

the same measure as the original phase space, e.g., an interval or finite collection of 
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lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2015.e00045
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article No~e00045

12 http://dx.doi.org/10.1016/j.he

2405-8440/© 2015 The Authors. Pub

(http://creativecommons.org/licenses/
intervals of real numbers, one has 𝛼 = 𝛼′ = 1, the entropy expressions are the same 

and maintain the usual BG expression.

We chose to examine the statistical–mechanical effect of configuration space 

contraction at the renowned transitions to chaos in low-dimensional nonlinear 

maps, as these are perhaps the simplest situations where ergodicity and mixing 

properties breakdown. But in their own, the properties of these model systems 

manifest in natural phenomena. There are abundant examples of ranked data that 

obey (approximately) the empirical Zipf power law and these have been shown to 

comply with the tangent bifurcation property [14]. The period doubling cascade to 

chaos has been considered recently in many model systems ranging from fluid 

convection [17] to urbanization processes [18]. The basic features of the quasi 

periodic route to chaos have been famously measured in forced Rayleigh–Benard 

convection [19] and in periodically perturbed cardiac cells [20].
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