

Supporting Information

for Adv. Healthcare Mater., DOI 10.1002/adhm.202300319

A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles

Timea B. Gandek, Luke van der Koog and Anika Nagelkerke*

Supplementary Table 2. Uptake of liposomes and EVs via clathrin-mediated endocytosis in various recipient cells.

Inhibitors	Targets	Drug delivery systems	Recipient cells	Inhibitor concentratio ns	Incubatio n times of drug delivery systems with cells	Serum suppleme n- tation	Inhibition efficiencie s	Intracellular fate of drug delivery systems	Key results	Re f
		Gold-encapsulated liposomes (lipid composition not mentioned)	UROtsa cells	14-28 μΜ	1 h	n.r.	~30-95% inhibition	n.r.	Gold-encapsulated liposomes entered UROtsa cells predominantly in a clathrin- dependent manner.	[1]
Chlorpromazi ne Of clathrin and adaptor protein AP2 complex by their assembly at the site of endosomal compartments thus hindering internalization via clathrin-mediated endocytosis.	DOPE:DC-Cholesterol lipoplexes	A549 cells	20 μg mL ⁻¹	4 h	+	34% inhibition 95% silencing	Endosomes	Clathrin-mediated endocytosis was one of the main internalization mechanisms of DOPE:DC-Cholesterol lipoplexes, along with macropinocytosis. The transfection efficiency of lipoplexes was almost completely abolished following inhibition of clathrin-dependent endocytosis.	[2]	
	DOPE:CHEMS liposomes	COS-7 cells	28 μΜ	15 minutes	n.r.	30% inhibition	Endosomes	DOPE:CHEMS liposomes were partly internalized through clathrin-mediated endocytosis in both HUVECs and COS-7 cells.	[3]	
	DOTAP:DOPC:Cholesterol lipoplexes	A549 cells	10 μg mL ⁻¹	4 h	n.r.	~35% inhibition	n.r.	Cationic lipoplex formulations, DOTAP:DOPC:Cholesterol and Lipofectamine 2000, were partly	[4]	

Lipofectamine 2000 lipoplexes DOPC:SM:Cholesterol:DOPS:D OPE EV-mimicking lipoplexes					~45% inhibition - (based on transfection) ~25% inhibition		internalized through clathrin- associated pathways in HUVECs and A549 cells • Uptake of the negatively charged DOPC:SM:Cholesterol:DOPS:D OPE EV-mimicking lipoplexes was not clathrin-mediated. • DOTAP:DOPC:Cholesterol and Lipofectamine 2000 lipoplexes had a greater transfection efficiency than those of EV- mimicking lipoplexes.
	HUVECs				~30% inhibition - (based on transfection)		
PC-98T:Cholesterol-enveloped plasmid-laden chitosan nanoparticles	Human conjunctival epithelial cells	5 μg mL ⁻¹	2 h	n.r.	~63% inhibition ~58% inhibition	Endo- lysosomal compartments	Both plasmid-laden chitosan nanoparticle formulations were predominantly taken up via clathrin-mediated internalization in conjunctival epithelial cells. The DOTAP based formulation had a slightly higher uptake than plasmid-laden chitosan nanoparticles and more than two-

PC-98T:Cholesterol:DOTAP- enveloped plasmid-laden chitosan nanoparticles							fold increase in internalization than those lacking DOTAP. • DOTAP insertion facilitated lysosomal escape, which in turn greatly enhanced their transfection ability both in vitro and in vivo.
DOTAP:DOPE lipoplexes DOPE:Cholesterol lipoplexes	COS-7 cells	8 μg mL ⁻¹	1 h	-	~60% uptake inhibition ~95% silencing ~60% uptake and silencing	n.r. Early endosomes and lysosomes	Both DOTAP:DOPE and DOPE:Cholesterol lipoplexes were internalized predominantly via clathrin-mediated endocytosis in COS-7 cells. [6]
	HeLa cells				55% inhibition	Lysosomes	Clathrin-mediated endocytosis was one of the two prevailing internalization mechanisms for DOPG:Cholesterol liposomes in
DOPC:Cholesterol liposomes	A549 cells	10 µg mL-1	5 h	+	~100% increase ~85% increase	n.r.	HeLa and TRP3 cells, but not in A549 cells. Meanwhile, clathrin-mediated endocytosis had no contribution in the internalization of DOPC:Cholesterol liposomes in
DOPG:Cholesterol liposomes	TRP3 cells				- ~65% inhibition	n.r.	 any of the recipient cell types tested. The effect of the anionic surface charge of DOPG:Cholesterol liposomes and the resulting protein corona can be attributed to the emergence of the

							additional clathrin-mediated endocytosis mechanism in cells.	
Amide:DOPE lipoplexes Amide:Cholesterol lipoplexes	SK-HEP1 cells	2.5 μg mL ⁻¹	48 h	n.r.	~40% inhibition 20% inhibition (based on transfection)	n.r.	Clathrin-mediated internalization was one of the two prevailing uptake mechanisms in the uptake of Amide:DOPE lipoplexes in SK-HEP1 cells. Meanwhile, clathrin-associated pathways had a minor role in the uptake of Amide:Cholesterol lipoplexes. Amide:DOPE lipoplexes were superior to those of Amide:Cholesterol in terms of transfection efficiency.	[8]
PE:PC:PI:PS liposomes	Huh7.5 cells	25 μΜ	1 h	-	13% inhibition	Endoplasmic reticulum	A minor fraction of liposomes may have been internalized through clathrin-mediated endocytosis in Huh7.5 cells. Uptake was mediated by scavenger and low density lipoprotein receptors. The lipid composition of PE:PC:PI:PS liposomes actively targeted and fused with endoplasmic reticulum.	[9]
Charge-reversal amphiphile lipoplexes	CHO-K1 cells	10 μΜ	3 h	-	~30-35% uptake inhibition and silencing	n.r.	CHO-K1 cells internalized charge-reversal amphiphile lipoplexes containing GFP or β-galactosidase-encoding DNA partially through clathrindependent endocytosis.	[10]

							Lipoplexes did not accumulate inside lysosomes.
DOTAP:DOPC liposomes DOTAP:Cholesterol liposomes	HeLa cells	50 μM	2 h	n.r.	~65% inhibition	Lysosomes, mitochondria, endoplasmic reticulum, trans-Golgi complex	Both DOTAP:DOPC and DOTAP:Cholesterol liposomes were internalized through clathrin-dependent endocytosis in HeLa cells. Both lipid-based nanocarriers were transported to lysosomes, followed by their accumulation in mitochondria, endoplasmic reticulum, and trans-Golgi complex.
DPPC liposomes Hybrid DPPC:EVs-derived from Sk-hep1 cells	Sk-hep1 cells	30 μΜ	4 h	n.r.	- ~25% inhibition	Lysosomes and endoplasmic reticulum Trans-Golgi complex and endoplasmic reticulum	 Clathrin-mediated endocytosis was partly responsible for the internalization of DPPC:EVs in parental cell lines, whereas it did not play a role in the internalization of DPPC liposomes. DPPC:EVs circumvented lysosomal accumulation, in contrast to DPPC liposomes, and accumulated mainly in the endoplasmic reticulum and trans-Golgi complex. DPPC:EVs showed 1.7-fold increased siRNA transfection efficiency than DPPC liposomes. DPPC:EVs demonstrated enhanced antitumor efficacy in

							HCC bearing mice, compared to DPPC liposomes.	
Adipose-derived regenerative cell-derived EVs	Cardiomyocyt	10 μΜ	n.r.	n.r.	~50% inhibition (in both normoxia and hypoxia conditions)	n.r.	Clathrin-mediated endocytosis of EVs isolated from adiposederived regenerative cells played a critical role in suppressing damage induced by hypoxia conditions in cardiomyocytes through miR-214 delivery both in vivo and in vitro. Hypoxia conditions stimulated the uptake of EVs via clathrindependent endocytosis in cardiomyocytes, compared to normal oxygen conditions.	[13]
Normal syncytiotrophoblast-derived EVs Preeclamptic syncytiotrophoblast-derived EVs	HCAECs	10 μg mL ⁻¹	2 h	n.r.	98% inhibition 95% inhibition	n.r.	EVs were primarily taken up via clathrin-mediated endocytosis in a dynamin-dependent manner. The cellular internalization of vesicles was dependent on PI3K activity. Uptake of normal EVs downregulated ICAM-1 protein expression, compared with preeclamptic syncytiotrophoblast-derived EVs that had no effect.	[14]
MSC-derived EVs HSPC:Cholesterol liposomes	MSCs	5 μg mL ⁻¹	2 h	n.r.	38% inhibition	n.r.	HSPC:Cholesterol liposomes and MSC-derived EVs were taken up partly through clathrin-mediated endocytosis.	[15]

	NIH3T3 cells				35% inhibition (in MSCs, NIH3T3 reported to have similar values)		EVs exhibited a two-fold higher uptake than liposomes.	
PC12 cell-derived EVs	BMSCs	10 μΜ	3 h	n.r.	41% inhibition	n.r.	 Uptake of PC12 cell-derived EVs proceeded partly through clathrin-mediated endocytosis in BMSCs. EVs delivered microRNAs, i.e. miR-21, through which transforming growth factor β receptor II and tropomyosin-1 expression were downregulated in recipient cells. 	[16]
BMSC-derived EVs	Multiple myeloma 1S cells	5-10 μM 20 μM	4 h	n.r.	~25-30% inhibition	n.r.	Clathrin-mediated endocytosis may have contributed to the internalization of BMSC-derived EVs in multiple myeloma 1S cells, but not in others. Furthermore, the highest concentration of chlorpromazine did not inhibit uptake of these nanocarriers. Internalization was dependent on heparin, actin, dynamin, and PI3K activity. EV delivery promoted cell proliferation and facilitated chemotherapeutic resistance to bortezomib in multiple myeloma	[17]

									cell lines, namely MM1S, RPMI 8226, and U266.	
		K562 and MT4 cell-derived EVs	RAW264.7 macrophages	50 μΜ	2 h	n.r.	24% inhibition	Phago- lysosomes	A minor fraction of K562 and MT4-derived EVs was internalized in a clathrin- dependent manner. The majority was internalized via phagocytosis in various phagocytes, whilst in non-phagocytic cells they remained attached to the cell membrane.	[18]
Dynasore Inhibits the GTPase activity of dynamin, thereby halting plasma membrane	DLin-MC3- DMA:DSPC:Cholesterol:DMG- PEG lipoplexes	HeLa cells	80 μΜ	4 h	+	~75% inhibition	Endo- lysosomal compartments	 DLin-MC3- DMA:DSPC:Cholesterol:DMG- PEG lipoplexes were internalized via clathrin-mediated endocytosis, which further stimulated uptake via macropinocytosis. Only 1-2% of siRNAs were able to escape degradation, during lipoplex translocation from early to late endosomes. 	[19]	
		Adipose-derived regenerative cell-derived EVs	Cardiomyocyt	50-100 μΜ	n.r.	n.r.	~50% inhibition (in hypoxia conditions)	n.r.	 Clathrin-mediated endocytosis of EVs played a critical role in suppressing damage induced by hypoxia conditions in cardiomyocytes through miR-214 delivery both in vivo and in vitro. Hypoxia conditions stimulated the uptake of EVs via clathrin- dependent endocytosis in 	[13]

							(in normoxia conditions)		cardiomyocytes, compared to normal conditions.	
		Normal syncytiotrophoblast- derived EVs Preeclamptic syncytiotrophoblast- derived EVs	HCAECs	80 µМ	2 h	n.r.	86% inhibition 76% inhibition	n.r.	 EVs were primarily taken up via clathrin-mediated endocytosis in a dynamin-dependent manner. The cellular internalization of vesicles was dependent on PI3K activity. Uptake of normal EVs down-regulated ICAM-1 protein expression, compared with preeclamptic syncytiotrophoblast-derived EVs that had no effect. 	[14]
FK506	Interferes with calcineurin, subsequently affecting dynamin.			1 μΜ			¬95% inhibition	50% of lipids recycled back to the plasma	Following binding of DOPC:DOPG liposomes with low density lipoprotein receptors, the nanocarriers were taken up in a dynamin and PI3K activity- dependent manner, suggesting clathrin-mediated endocytosis.	
Wortmannin	Inhibits re- arrangement of actin filaments which regulate by the activity of	DOPC:DOPG liposomes	Hippocampal neurons	100 nM	i 30 minutes	n.r.	¬80% inhibition	membrane, oligo- nucleotides accumulated in nuclei	After internalization, the	[20]

	phosphatidylinosit ol 3-kinase.	Normal syncytiotrophoblast- derived EVs Preeclamptic syncytiotrophoblast- derived EVs	HCAECs	1 μΜ	2 h	n.r.	94% inhibition 89% inhibition	n.r.	 EVs were primarily taken up via clathrin-mediated endocytosis in a dynamin-dependent manner. The cellular internalization of EVs was dependent on PI3K activity. Uptake of normal EVs down-regulated ICAM-1 protein expression, compared with preeclamptic syncytiotrophoblast-derived EVs that had no effect. 	[14]
Amantadine	Prevents clathrin recycling to the plasma membrane.	DMPC:DMPG liposomes	HCAECs	1 mM	30 minutes	-	46% inhibition without TNF-α 77% inhibition with TNF-α	n.r.	 HCAECs internalized DMPC:DMPG liposomes via clathrin-associated pathways. Inflammatory conditions, such as TNF-α stimulation, induced overexpression of clathrin proteins and subsequently enhanced liposome internalization. 	[21]
Hyperosmolar ucrose	Prevents interaction between clathrin and adaptor proteins	DOPC:DOPG liposomes	Hippocampal neurons	0.45 M	30 minutes	n.r.	¬98% inhibition	50% of lipids recycled back to the plasma membrane, oligonucleotid es accumulated in nuclei	 Following binding of DOPC:DOPG liposomes with low density lipoprotein receptors, the nanocarriers were taken up dependent on dynamin and PI3K activity, suggesting clathrin- mediated endocytosis. After internalization, the encapsulated oligonucleotides were located in nuclei within 1-3 h post-incubation and 50% of liposomal phospholipids were 	[20]

							recycled back to the plasma membrane.	
0.86 mol% R8-EPC:Cholesterol or -DOPE:CHEMS lipoplexes	NIH3T3 cells	0.4 M	1 h	-	~80% inhibition	High lysosomal co- localization	 Low density (0.86 mol%) R8-lipoplexes internalized mainly via clathrin-mediated endocytosis in NIH3T3 cells, ultimately accumulating inside lysosomes. High density (5.2 mol%) R8- 	[22]
5.2 mol% R8-EPC:Cholesterol or -DOPE:CHEMS lipoplexes					~35% inhibition	Partial lysosomal co- localization	lipoplexes were taken up partly via clathrin-associated pathways, which led to partial accumulation inside lysosomes. Hence, high density R8-lipoplexes presented higher transfection efficiency.	
					~35% inhibition			
DOTAP:DOPE lipoplexes	COS-7 cells	800 μΜ	1 h	-	~50%	Early	Both DOTAP:DOPE and DOPE:Cholesterol lipoplexes were internalized predominantly via clathrin-mediated endocytosis	[6]
DOPE:Cholesterol lipoplexes					inhibition (based on transfection)	endosomes and lysosomes	in COS-7 cells.	

DLPC:Cholesterol:Cholesteryl:Pf G liposomes	Zebrafish hepatocytes Trout macrophages	300 mM 150 mM	15 minutes 30 minutes	n.r.	15% inhibition	Endo- lysosomal compartments	Hepatocytes internalized DLPC:Cholesterol:Cholesteryl:P EG liposomes partially in a clathrin-dependent manner, ultimately accumulating inside lysosomes. Lipopolysaccharide-dsRNA cocktails encapsulated in liposomes were able to stimulate both pro-inflammatory and antiviral responses in cells.	[23]
--	--	------------------	-----------------------	------	----------------	------------------------------------	---	------

n.r. = not reported

- = no inhibition

References

- [1] B. R. Rajaganapathy, M. B. Chancellor, J. Nirmal, L. Dang, P. Tyagi. PLoS One 2015, 10, e0122766.
- [2] A. Alshehri, A. Grabowska, S. Stolnik. Sci Rep 2018, 8, 3748.
- [3] U. S. Huth, R. Schubert, R. Peschka-Suss. J Control Release 2006, 110, 490-504.
- [4] M. Lu, X. Zhao, H. Xing, Z. Xun, S. Zhu, L. Lang, T. Yang, C. Cai, D. Wang, P. Ding. Int J Pharm 2018, 550, 100-113.
- [5] M. Jiang, L. Gan, C. Zhu, Y. Dong, J. Liu, Y. Gan. *Biomaterials* **2012**, *33*, 7621-7630.
- [6] Y. U. Bae, B. K. Kim, J. W. Park, Y. B. Seu, K. O. Doh. Mol Pharm 2012, 9, 3579-3585.
- [7] D. Montizaan, K. Yang, C. Reker-Smit, A. Salvati. Nanomedicine 2020, 30, 102300.
- [8] S. C. Maddila, C. Voshavar, P. Arjunan, R. P. Chowath, H. K. R. Rachamalla, B. Balakrishnan, P. Balasubramanian, R. Banerjee, S. Marepally. *Molecules* 2021, 26.
- [9] S. Pollock, R. Antrobus, L. Newton, B. Kampa, J. Rossa, S. Latham, N. B. Nichita, R. A. Dwek, N. Zitzmann. FASEB J 2010, 24, 1866-1878.
- [10] X. X. Zhang, P. G. Allen, M. Grinstaff. *Mol Pharm* **2011**, 8, 758-766.
- [11] K. Un, K. Sakai-Kato, Y. Goda. Die Pharmazie An International Journal of Pharmaceutical Sciences 2014, 69, 525-531.
- [12] X. Zhou, Y. Miao, Y. Wang, S. He, L. Guo, J. Mao, M. Chen, Y. Yang, X. Zhang, Y. Gan. J Extracell Vesicles 2022, 11, e12198.
- [13] S. Eguchi, M. Takefuji, T. Sakaguchi, S. Ishihama, Y. Mori, T. Tsuda, T. Takikawa, T. Yoshida, K. Ohashi, Y. Shimizu, R. Hayashida, K. Kondo, Y. K. Bando, N. Ouchi, T. Murohara. J Biol Chem 2019, 294, 11665-11674.
- [14] T. Cronqvist, L. Erlandsson, D. Tannetta, S. R. Hansson. Placenta 2020, 100, 133-141.
- [15] S. Le Saux, H. Aarrass, J. Lai-Kee-Him, P. Bron, J. Armengaud, G. Miotello, J. Bertrand-Michel, E. Dubois, S. George, O. Faklaris, J. M. Devoisselle, P. Legrand, J. Chopineau, M. Morille. *Biomaterials* 2020, 231, 119675.
- [16] T. Tian, Y. L. Zhu, Y. Y. Zhou, G. F. Liang, Y. Y. Wang, F. H. Hu, Z. D. Xiao. J Biol Chem 2014, 289, 22258-22267.
- [17] C. Tu, Z. Du, H. Zhang, Y. Feng, Y. Qi, Y. Zheng, J. Liu, J. Wang. Theranostics 2021, 11, 2364-2380.
- [18] D. Feng, W. L. Zhao, Y. Y. Ye, X. C. Bai, R. Q. Liu, L. F. Chang, Q. Zhou, S. F. Sui. *Traffic* 2010, 11, 675-687.
- [19] J. Gilleron, W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico, U. Schubert, K. Manygoats, S. Seifert, C. Andree, M. Stoter, H. Epstein-Barash, L. Zhang, V. Koteliansky, K. Fitzgerald, E. Fava, M. Bickle, Y. Kalaidzidis, A. Akinc, M. Maier, M. Zerial. *Nat Biotechnol* 2013, 31, 638-646.
- [20] A. Lakkaraju, Y. E. Rahman, J. M. Dubinsky. J Biol Chem 2002, 277, 15085-15092.
- [21] S. Zhaorigetu, C. Rodriguez-Aguayo, A. K. Sood, G. Lopez-Berestein, B. L. Walton. J Liposome Res 2014, 24, 182-190.
- [22] I. A. Khalil, K. Kogure, S. Futaki, H. Harashima. *J Biol Chem* **2006**, 281, 3544-3551.
- [23] A. Ruyra, M. Cano-Sarabia, S. A. Mackenzie, D. Maspoch, N. Roher. PLoS One 2013, 8, e76338.