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Abstract
Background: Skeletal muscle segmentation is an important procedure for
assessing sarcopenia, an emerging imaging biomarker of patient frailty. Data
annotation remains the bottleneck for training deep learning auto-segmentation
models.
Purpose: There is a need to define methodologies for applying models to dif-
ferent domains (e.g., anatomical regions or imaging modalities) without dramat-
ically increasing data annotation.
Methods: To address this problem, we empirically evaluate the generalizability
of various source tasks for transfer learning:natural image classification,natural
image segmentation, unsupervised image reconstruction, and self -supervised
jigsaw solving. Axial CT slices at L3 were extracted from PET-CT scans for
204 oesophago-gastric cancer patients and the skeletal muscle manually delin-
eated by an expert.Features were transferred and segmentation models trained
on subsets (n = 5, 10, 25, 50, 75, 100, 125) of the manually annotated training
set. Four-fold cross-validation was performed to evaluate model generalizabil-
ity. Human-level performance was established by performing an inter-observer
study consisting of ten trained radiographers.
Results: We find that accurate segmentation models can be trained on a frac-
tion of the data required by current approaches. The Dice similarity coefficient
and root mean square distance-to-agreement were calculated for each predic-
tion and used to assess model performance.Models pre-trained on a segmenta-
tion task and fine-tuned on 10 images produce delineations that are comparable
to those from trained observers and extract reliable measures of muscle health.
Conclusions: Appropriate transfer learning can generate convolutional neural
networks for abdominal muscle segmentation that achieve human-level perfor-
mance while decreasing the required data by an order of magnitude, compared
to previous methods (n = 160 → 10). This work enables the development of
future models for assessing skeletal muscle at other anatomical sites where
large annotated data sets are scarce and clinical needs are yet to be addressed.
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1 INTRODUCTION

Segmentation of medical images is a central procedure
in extracting imaging biomarkers. In the last decade,
assessment of muscle characteristics, by way of mus-
cle segmentation on computed tomography (CT) scans,
has enabled further insight into sarcopenia, the degen-
erative loss of muscle mass and quality associated
with aging.1 In the context of medical imaging, sar-
copenia is assessed via the skeletal muscle index:
skeletal muscle area at the L3 vertebral level normal-
ized by patient height.2 However, recent studies sug-
gest that skeletal muscle attenuation may be used as
an alternative,3,4 bypassing the need for patient height,
which is often unavailable in anonymized medical data.
In oncology, sarcopenia has emerged as an important
prognostic factor when treating with chemotherapy,5–8

radiotherapy9,10 or surgery,11–13 where sarcopenia is
associated with shorter overall survival and increased
toxicity across a variety of disease sites and stages.14–16

Current methods of sarcopenia assessment are lim-
ited as they require time-consuming manual anno-
tation by a clinician, and automated template-based
approaches, such as the ABACS (Automatic Body
Composition Analyzer using Computed tomography
image Segmentation) module in SliceOMatic (Tomovi-
sion) have been shown to perform poorly when the char-
acteristic shape of the muscle compartment is altered,
either by anatomical abnormalities or muscle wasting.17

Reliance on a statistical shape prior also limits the
use of ABACS to CT slices at L3, preventing extrac-
tion of skeletal muscle characteristics from scans where
the lumbar spine is not imaged (e.g., head and neck
cancer radiotherapy planning scans). These limitations
have hindered sarcopenia evaluation in clinical prac-
tice, especially in radiotherapy patients. Consequently,
there has been growing interest in developing fully auto-
mated alternatives.

Convolutional neural networks (CNNs) have become
the centerpiece of modern segmentation tools.10,18–21

Such models lead to impressive results whilst limit-
ing human intervention (following annotation of train-
ing data) by removing the need for feature engineering.
Features are learned entirely via the optimization pro-
cess. Although this facilitates model development, the
result is a black-box that requires large amounts of train-
ing data to ensure generalizability, from which insight is
hard to gain. In the context of skeletal muscle segmen-
tation, Park et al.18 developed a fully convolutional net-
work (FCN) trained on 883 CT scans. Weston et al.20

and Edwards et al. 21 trained a U-Net22 with 2430 and
682 images, respectively. The quantity of training data
required prohibits wide application of these methods.As
skeletal muscle delineations are not a routine by-product
of treatment planning, large annotated data sets are
time-consuming to curate and become a limiting factor

for models that need to be retrained on different cohorts
or anatomical sites.

A number of approaches have been taken to allow
CNN training on limited data. These fall under two
categories: augmenting the data set or altering the
training dynamics. The former involves generating syn-
thetic data by randomly applying transformations (e.g.
rotations, elastic deformations, and random erasing)
under the assumption that more information can be
extracted from the augmented data set.23 The latter
encompasses a number of techniques that seek to
modify the network architecture or the learning proce-
dure to enable improved performance on small data
sets.

Transfer learning alters the training dynamics by
using a sequence of tasks to produce a final model.
In network-based transfer learning,24 an initial network
is trained on a pretext task with large amounts of
data. The learned features are then transferred to a
target model, where they serve to initialize network
layers, for training on a target task where few anno-
tated data are available. The central assumption being
that the features learned on the pretext task are also
useful for the target task. Indeed, it has been shown
that early layers learn low-level features such as color
blobs and Gabor filters, regardless of the data set or
training objective.25,26 This dictionary of fundamental
features can therefore be used across domains and
tasks.

To the best of our knowledge, only two publications
have applied transfer learning to skeletal muscle seg-
mentation. Lee et al.19 and Green et al.10 both used a
VGG-1627 pre-trained on ImageNet, a large-scale nat-
ural image data set comprising over 14 million images
belonging to 1000 categories,28 to initialize the encoder
in an FCN or U-Net architecture, respectively. Although
the authors train their models on much smaller data sets
(250 and 160 axial CT slices, respectively) compared to
those discussed previously,18,20,21 we believe that fur-
ther research surrounding optimization of the transfer
learning procedure will allow much smaller training set
sizes and in consequence, more adaptable models.

We seek to decrease the time and cost required to
develop accurate muscle segmentation models, to facili-
tate adaptation to different anatomical regions or patient
cohorts. To this end, we investigate optimal transfer
learning practices in segmenting medical images via the
use case of skeletal muscle delineation at the L3 verte-
bral level. We examine the relationship between train-
ing set size and segmentation accuracy for a number
of pretext tasks. Our results are compared to our base-
line, an inter-observer study performed by 10 trained
radiographers.Finally,we compare measures of muscle
area and attenuation with those from our gold-standard
delineations to emphasize the clinical viability of our
method.
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2 METHODOLOGY

2.1 Data Preparation

The analysis was performed on an oesophago-gastric
cancer cohort (n = 204) where single PET-CT slices
were manually extracted at the L3 vertebral level. Delin-
eations of skeletal muscle were completed by a clini-
cal expert (JW) with 6 years of expertise. A hold-out
test set (n = 37) was formed and annotated by trained
observers (see 2.4). The remaining data (n = 167) were
separated into four folds.

During training, one of the folds was used for valida-
tion while the remaining folds were combined to form a
parent training set.The parent training set was randomly
subsampled to produce independent training subsets
of varying sizes (n = 5, 10, 25, 50, 75, 100, 125). Larger
subsets were generated by incrementally expanding the
smaller subsets. For example, subsets with ten images
were produced by adding five new samples to the exist-
ing subset of five images. We elected to generate two
subsampled data sets per size. For each subset, two
models were trained to account for the stochasticity of
the optimization/initialization procedure. An illustration
of the experimental workflow is shown in Figure 1.

2.2 Pre-Training

We tested four pre-training methods:

(1) Image classification on natural images.
(2) Image segmentation on natural images.
(3) Unsupervised image reconstruction of the training

data.
(4) Self -supervised approach using jigsaw (puzzle)

solving on the training data.

A number of large, publicly available data sets are
commonly used for developing and testing image classi-
fication models. ImageNet is one such data set consist-
ing of over 14 million natural images belonging to 1000
different classes.28 In this work, we used a ResNet101
pre-trained on ImageNet, available through the PyTorch
framework1.

In PyTorch, image segmentation models are pre-
trained on Microsoft’s Common Objects in Context
(COCO) natural image data set, widely used for
object detection, image captioning, and semantic image
segmentation.29 We opted to use the fully convolutional
ResNet101 (FCN-ResNet1012) due to its similarity to
the classification model pre-trained on ImageNet.

1 https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.
resnet101
2 https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.
segmentation.fcn_resnet101

Convolutional autoencoders were used for unsuper-
vised image reconstruction, a task with the aim of
extracting high-level features from an input CT slice and
reconstructing the initial image from the extracted fea-
tures.We trained a randomly initialised FCN-ResNet101
to reconstruct the CT slices in the original training
set (N = 167) by minimizing the mean-squared error
between the input image and the reconstructed slice.
As the target network expects three channel inputs, we
converted the initial single-channel image by copying
the input across three-channels and applied channel-
wise normalization according to the ImageNet mean and
standard deviation for each channel.

Finally, a self -supervised approach to solving jigsaw
puzzles was used to extract features from CT slices.30

We use the full training set (N = 167) for training. Input
slices were divided into 3x3 grids from which nine
patches (per image) were extracted. A set of all pos-
sible permutations was filtered such that the top 50 with
the greatest Hamming distance were used. The Ham-
ming distance is defined as the number of differing ele-
ments between sets. In other words, we selected the top
50 most different permutations of the input patches.The
patches were then shuffled according to one of these
permutations and a Siamese CNN (nine ResNet101
CNNs with shared weights) was then trained to predict
the input permutation by minimizing the cross-entropy
loss across all predictions. As with the auto-encoder, we
converted the single-channel images to three-channel
CT slices and applied channel-wise normalization.Train-
ing and validation curves for auto-encoder and jigsaw
pre-training are presented in Appendix A.

2.3 Experiments

Due to the nature of the aforementioned tasks, differ-
ent CNN model architectures were used. To account
for this, weights from layers of the pre-trained models
were directly transferred to the target network (FCN-
ResNet101) if they were also present in the latter. Con-
sequently, layers of the target model that did not appear
in the pre-trained architecture were randomly initialized.

Target models were independently trained on each
training set by minimizing a combined binary cross-
entropy (LBCE) and Dice loss (LDSC),31,32 until both the
training and validation losses had saturated. Loss func-
tions were defined as follows:

LBCE = −
1

HW

∑
i,j

[
Yij ⋅ log(Ŷij) + (1 − Yij)

⋅ log
(

1 − Ŷij

)]
, 0 ≤ i, j ≤ H, W (1)

LDSC = 1 −
2|Ŷ ∩ Y |
|Ŷ | + |Y | (2)

https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.resnet101
https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.resnet101
https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.segmentation.fcn_resnet101
https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.segmentation.fcn_resnet101
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F IGURE 1 Experimental workflow. Fourfold cross-validation was performed. (a) Training sets of varying sizes were sub-sampled from the
resulting training & validation split. During training, the excluded fold was used as validation data. Images used for our observer study were kept
independent and formed the test set. (b) Four pretext tasks were used for pre-training: image classification, image segmentation, unsupervised
image reconstruction, and self -supervised jigsaws. (c) Weights from pre-trained models were transferred to a FCN-ResNet101 trained to
segment skeletal muscle on each subset until convergence. Randomly initialized models were also trained on each subset for comparison. (d)
Model predictions and observer masks were evaluated on the same test set (n = 37) with expert gold-standard delineations

Loss =
1
N

∑N

n

(
LBCE

(n)
+ LDSC

(n)
)

(3)

where H, W are the height and width of the input image
and N is the number of samples in a batch. The gold-
standard and predicted masks are denoted Y and Ŷ ,
respectively (where Y, Ŷ ∈ ℝH×W ). Training and valida-
tion curves can be found in Appendix B.

The Adam optimizer33 was used for optimization with
an initial learning rate of 3 × 10−3 in models without pre-
training. This was decreased to 3 × 10−4 when transfer-

ring weights from a previously trained model, to fine-
tune the learned features. The training procedure was
repeated to account for stochastic optimization and
weight initialization in randomly initialized layers.

Data augmentation was applied in an identical man-
ner for all models and consisted of randomly applying
a combination of horizontal flipping, rotations (±20◦),
elastic deformations, and scaling. Inputs were clipped
according to a window and level of 400 Hounsfield
units (HU) and 50 HU, respectively. Single-channel
CT slices were converted to three-channel images by
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repeating the image three times along the channel
axis (as expected by the FCN-ResNet101 architecture)
and each channel was then normalized according to
the ImageNet mean and standard deviation for that
channel. Model weights were saved at the minimum
of the validation loss and were subsequently used for
analysis.

Our analysis consisted of performing a single forward
pass of the test data through each model and record-
ing the predictions. The result is a single-channel image
of the per-voxel class predictions (foreground or back-
ground). Finally, a sigmoid function was applied for con-
version to a binary mask (a process which was handled
by the loss function at training).

To quantify the accuracy of the output segmen-
tations, the Dice similarity coefficient (DSC)32 and
root mean square distance-to-agreement (RMS-DTA)
between each prediction and its corresponding gold-
standard annotation were calculated. The former pro-
vides a measure of overlap between predicted masks
and the gold-standard,while the latter is a distance met-
ric between predicted and gold-standard boundaries.
They are defined as follows:

DSC =
2|Ŷ ∩ Y |
|Ŷ | + |Y |

RMS-DTA =

√√√√ 1
K

K∑
k

[
d(Ŷk, Yk) − d(Yk, Ŷk)

]2
(4)

where K is the total number of points on the predicted
boundary and d is the signed distance from a point on
the predicted boundary (Ŷk) and the nearest point on the
reference boundary (Yk).

Finally, we compared extracted measures of muscle
quality, skeletal muscle density (mean HU within the
mask, SMD), and skeletal muscle area (Number of fore-
ground pixels × pixel area (in cm2), SMA), with those
from our gold-standard delineations. To mitigate the
impact of partial volume effect on measures of muscle
density, post-processing was applied to model predic-
tions. This consisted in applying a threshold of 175 HU
to the original CT volumes to produce a binary mask of
high density regions such as bones. The mask was then
isotropically expanded by 2 mm. Bone masks were then
removed from model predictions. This served to dimin-
ish the effect of neighboring bony anatomy on extracted
measures of muscle density.

2.4 Inter-observer variation

To establish a reliable estimate of human-level per-
formance, we investigated inter-observer variation. Ten
radiographers were given access to an in-house seg-
mentation tool (MvH). Although the observers had

F IGURE 2 An example CT slice from our inter-observer study,
with multiple observer delineations in different colors

expertise in analyzing routine medical images (Median
= 10 years, Range = 3–25 years), they had no prior
training for the task. Initially, the participants undertook a
training protocol consisting of contouring skeletal mus-
cle in three training images (CT slices at L3). Subse-
quently, feedback was provided by a clinical expert (JW),
the radiographers were split into two groups, and were
each assigned 20 images from the test set. As a result,
six segmentations (five from observers and one expert)
were available for each test image—three images only
had four observer segmentations due to technical diffi-
culties (Figure 2).

Observer variability was then quantified by calculating
mean DSC and mean RMS-DTA for every image,provid-
ing a target for model performance. Finally, to determine
the role of observer variation on muscle characteristics
(SMD, SMA), we calculated the mean difference against
our expert contours.

Dunnett’s tests were performed to identify significant
differences in segmentation accuracy (DSC & RMS-
DTA) between model predictions and observer delin-
eations; and were used to identify significant differ-
ences in extracted muscle characteristics (SMD & SMA)
between expert delineations and model predictions.

3 RESULTS

From our observer study, we determined that trained
observers achieved a mean DSC of 0.901 ± 0.003 and
a mean RMS-DTA of 0.318 ± 0.029 cm,when evaluated
against expert delineations. These measures of seg-
mentation accuracy were associated with the following
mean differences (observer-expert) in extracted muscle
characteristics: SMD Variability = −6.045 ± 5.529 HU
and SMA Variability = −5.135 ± 10.303 cm2.

DSC, between CNN predictions and expert gold-
standard, as a function of training set size are shown in
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F IGURE 3 Mean DSC, of CNN predictions evaluated against expert gold-standard, as a function of training set size. Error bars represent
95% confidence intervals. Mean observer variation (𝜇;± standard error (SE)) was found by calculating mean DSC for all observer
segmentations against the clinical expert’s

F IGURE 4 Mean RMS-DTA (in cm), of CNN predictions evaluated against expert gold-standard, as a function of training set size. Error
bars represent 95% confidence intervals. Note, results from the sixteen randomly initialized models at n = 5 have been omitted as the mean
RMS-DTA was 1.72 ± 0.10 cm. Mean observer variation (𝜇;± standard error (SE)) was found by calculating mean RMS-DTA for all observer
segmentations against the clinical expert’s

Figure 3 where different colors represent different pre-
text tasks. RMS-DTA results are displayed in Figure 4.
In these figures, each point represents the mean and
95% confidence interval for all predictions from 16 mod-
els. Dotted lines indicate mean score and the associ-
ated standard error for all observers across the test
set.

From Figure 3 and Table 1, all models trained on n ≥

50 patients produce segmentations with a DSC that is
better than trained observers, regardless of pre-training
strategy (p < 0.001). In the case of RMS-DTA, all mod-

els trained on n ≥ 25 produce delineations that are not
significantly different to those manually generated by
observers (p > 0.001, see Table 1 and Figure 4). As
training set sizes increase, differences between pre-
text tasks decrease: all models converge toward a com-
mon value (DSC ≈ 0.94). Regardless of source task,
model performance plateaus as n exceeds 100 (see
Appendix D). Beyond n ≥ 25, there is no significant dif-
ference between models pre-trained on image segmen-
tation and those pre-trained on image classification or
jigsaw solving (see Appendix C).
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TABLE 1 Resulting p-values from performing Dunnett’s tests to identify significant differences in DSC (Top) & RMS-DTA (Bottom) between
model predictions and observer delineations (control=observer delineations). Models that outperformed observers are indicated in bold and
models that were significantly worse are underlined

Source Task n = 5 n = 10 n = 25 n = 50 n = 75 n = 100 n = 125

Rand. Init. p < 0.001 p < 0.001 0.038 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Classification p < 0.001 0.777 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Segmentation 0.999 0.036 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Jigsaw p < 0.001 0.885 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Reconstruction p < 0.001 p < 0.001 0.746 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Rand. Init. p < 0.001 p < 0.001 0.999 1.000 1.000 0.971 0.833

Classification p < 0.001 0.077 0.999 0.864 0.785 0.714 0.482

Segmentation p < 0.001 0.395 0.992 0.826 0.644 0.550 0.440

Jigsaw p < 0.001 0.245 0.999 0.864 0.785 0.714 0.482

Reconstruction p < 0.001 p < 0.001 0.983 1.000 1.000 0.996 0.892

At the smallest training set sizes (n = 5, 10), the
choice of pretext task becomes more important. Natural
image segmentation is the optimal choice. At n = 5, this
is the only approach that leads to DSC scores that are
not significantly different to trained observers. At train-
ing set size n = 10, pre-training on image segmentation,
image classification or jigsaw solving all lead to models
that are not significantly different to trained observers,
both in terms of DSC and RMS-DTA (Table 1). Never-
theless, image segmentation still outperforms the other
methods at n = 10 (see Figures 3 and 4; Appendix C).
In addition to improved performance, increasing train-
ing set size leads to improved model generalizabil-
ity as highlighted by narrowing confidence intervals in
Figures 3 and 4.

Differences in muscle features (SMD & SMA)
between CNN predictions and expert gold-standard
values are displayed in Figure 5. As expected, as
n increases, the values extracted from our models
approach those of our gold-standard delineations.When
comparing segmentation metrics, the choice of source
task plays an important role, especially at the small-
est training set sizes. When comparing extracted mea-
sures of muscle quality, however, the choice of source
task is not as important. Table 2 shows that all mod-
els can extract muscle characteristics comparable to our
gold-standard, with the exception of SMD for the set of
randomly initialized models trained on n = 5. Note, that
these models have been omitted from Figure 5 (top)
as the mean difference was −47.02 ± 10.48 HU. These
results support our hypothesis that accurate and clin-
ically useful segmentation models can be trained on
much smaller data sets than currently used.

4 DISCUSSION

We present an investigation into the optimal method-
ology for developing data-efficient skeletal muscle

segmentation models. We compare four pretext
tasks: image classification, semantic image seg-
mentation, unsupervised image reconstruction, and
a self -supervised approach to solving jigsaws. We
transfer learned weights to target segmentation models,
which we then optimize on training sets of varying
sizes and compare to randomly initialized models.
Human-level performance was established via an
inter-observer study consisting of ten radiographers
and acted as a baseline against which models were
compared.

To the best of our knowledge, this work is the first
to empirically evaluate the generalizability of models
pre-trained on different tasks, where the target task is
medical image segmentation.Typically, image classifica-
tion on ImageNet is used as a pretext task.34 Our results
suggest that in the domain where n ≥ 50, all models
converge and significantly outperform trained observers
as measured by DSC (see Table 1 and Figure 3). In
terms of RMS-DTA, Table 1 and Figure 4 show that
models trained on n ≥ 25 lead to predictions that are not
significantly different to trained observers, independent
of source task. In this domain, there are no significant
differences between models pre-trained on image seg-
mentation, image classification, and jigsaw solving (see
Appendix C).As n increases beyond n = 100,model per-
formance begins to plateau, irrespective of source task
(p > 0.001, Appendix D). We also note that as training
set size increases, variability in segmentation accu-
racy decreases, probably highlighting a decrease in fit
failures.

At the smallest training set sizes (n = 5, 10), mod-
els pre-trained on image segmentation outperform other
methods (see Figures 3 and 4; Appendix C) and lead
to predictions that are not significantly different to
observers (see Table 1). The choice of pretext task is
most important when very few samples (n < 25) are
available for fine-tuning. We find that all models can
extract muscle characteristics comparable to those from
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F IGURE 5 (a) Difference in skeletal muscle density extracted from model predictions and expert gold-standard. Defined as
prediction—gold-standard. Note that results from the 16 randomly initialized models at n = 5 have been omitted as the mean difference was
−47.02 ± 10.48 HU. (b) Difference in skeletal muscle area between predictions and gold-standard, defined as above. Dotted lines indicate mean
observer difference and the associated standard error (𝜇 ± SE)

our expert delineations (see Table 2), except randomly
initialized models at n = 5.

Our results are limited in that we investigate model
performance on one target task and domain, namely
skeletal muscle segmentation at L3 on axial PET-CT
slices. Future work will seek to validate our results
across vertebral levels and imaging modalities. It should
be noted that data augmentation played an essential
role in preventing overfitting and may be responsible for
the good performance of our models at small training set
sizes.As such,transfer learning is not solely responsible.
Nevertheless, data augmentation techniques are widely
available and easily integrable into any segmentation
pipeline. As a single expert was available for data anno-

tation, we have assumed that their gold-standard anno-
tations are optimal. It may be interesting to investigate
how performance is affected when training on multiple
expert annotations, removing potential bias introduced
by using a single observer. Similarly, the relatively large
variability at the smallest training set sizes (n = 5, 10)
could be related to randomly sampling delineations of
different quality. It may be of interest to determine if
results can be improved by initially screening the parent
data set and removing lower quality annotations.

We build models trained on as few as 10 patients
that achieve human-level segmentation accuracy and
extract measures of muscle quality that are not signif-
icantly different to those from our expert gold-standard.
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TABLE 2 Resulting p-values from performing Dunnett’s tests to identify significant differences in SMD (Top) & SMA (Bottom) between
model predictions and expert delineations (control=expert delineations). Models that extracted significantly less accurate muscle characteristics
are underlined

Source Task n = 5 n = 10 n = 25 n = 50 n = 75 n = 100 n = 125

Rand. Init. p < 0.001 0.306 1.0 1.0 1.0 1.0 1.0

Classification 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Segmentation 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Jigsaw 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Reconstruction 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Rand. Init. 0.641 0.655 1.0 1.0 1.0 1.0 1.0

Classification 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Segmentation 0.999 1.0 1.0 1.0 1.0 1.0 1.0

Jigsaw 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Reconstruction 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Our approach thus reduces the cost and time needed
to curate training sets for skeletal muscle segmenta-
tion models.As a consequence, this facilitates extension
of these tools to other anatomical regions, where the
necessity for large data sets make current approaches
unfeasible. The ability to easily and cheaply adapt mus-
cle segmentation models to a variety of sites will enable
the integration of sarcopenia evaluation into routine
care and allow large-scale retrospective analyses of
(currently) under-studied patient groups.

5 CONCLUSION

We show that transfer learning, used precisely, can be
leveraged to produce data-efficient skeletal muscle seg-
mentation models—decreasing the required data by
an order of magnitude compared to previous methods.
Importantly, this enables extension of such models to
anatomical sites where large annotated data are scarce
but clinical needs are still unmet.

We find that models pre-trained on an image seg-
mentation task and fine-tuned on 10 patients lead to
measures of segmentation accuracy comparable to our
trained observers. They also extract measures of mus-
cle health comparable to those extracted by expert,
manual delineations.

ACKNOWLEDGMENTS
The authors would like to thank the team of radiog-
raphers at the Christie Hospital for taking part in our
observer study: Cynthia Eccles, Claire Nelder, Samuel
Johnson,Amerah Alshamrani,Abbie Clough,Julie Webb,
Lee Whiteside, Rosie Hales, Lisa McDaid, Jo Sanders,
Jacqui Parker, and Louise McHugh.

This work was supported by Cancer Research UK
via funding to the Cancer Research Manchester Centre
[C147/A25254]. MvH was supported by NIHR Manch-
ester Biomedical Research Centre. EH was funded via
a Cancer Research UK Manchester Institute PhD Stu-

dentship. DM was funded by a Research Training Sup-
port Grant (RTSG) via an EPSRC DTP studentship.

CONFL ICT OF INTEREST
The authors have no conflict to disclose.

REFERENCES
1. Rosenberg IH, Summary comments. Am J Clin Nutr.

1989;50:1231-1233.
2. Van Der Werf A, Langius JAE, de van der Schueren MAE, et al.

Percentiles for skeletal muscle index, area and radiation attenu-
ation based on computed tomography imaging in a healthy Cau-
casian population. Eur J Clin Nutr. 2018;72:288-296.

3. Ataseven B,Luengo TG,du Bois A,et al.Skeletal muscle attenua-
tion (sarcopenia) predicts reduced overall survival in patients with
advanced epithelial ovarian cancer undergoing primary debulk-
ing surgery. Ann Surg Oncol. 2018;25:3372-3379.

4. Derstine BA, Holcombe SA, Ross BE, Wang NC, Su GL, Wang
SC.Skeletal muscle cutoff values for sarcopenia diagnosis using
T10 to L5 measurements in a healthy US population. Sci Rep.
2018;8.

5. Prado CM,Lieffers JR,McCargar LJ,et al.Prevalence and clinical
implications of sarcopenic obesity in patients with solid tumours
of the respiratory and gastrointestinal tracts: a population-based
study. Lancet Oncol. 2008;9:629-635.

6. Prado CMM, Baracos VE, McCargar LJ, et al. Sarcopenia as a
determinant of chemotherapy toxicity and time to tumor progres-
sion in metastatic breast cancer patients receiving Capecitabine
treatment. Clin Cancer Res. 2009;15:2920-2926.

7. Shachar SS, Williams GR, Muss HB, Nishijima TF. Prognostic
value of sarcopenia in adults with solid tumours: a meta-analysis
and systematic review. Eur J Cancer. 2016;57:58-67.

8. Weaver JMJ, Cipriano C, McWilliam A, Kordatou Z, Abraham M,
Germetaki T,Papaxoinis G,Mansoor W 635P Association of sar-
copenia with dose-limiting toxicties and survival in oesophageal
adenocarcinoma treated with neoadjuvant chemotherapy. Ann
Oncol. 2018;29.

9. Van Rijn-Dekker I., et al. OC-0393 Impact of sarcopenia on sur-
vival and late toxicity in head and neck cancer patients treated
with RT. Radiother Oncol. 2019;133:S197-S198.

10. Green A,Cipriano C,Osorio EV,Weaver J,Van Herk M,McWilliam
A. PO-0960 automated sarcopenia assessment and its
predictive power in lung cancer radiotherapy patients. Radiother
Oncol. 2019;133:S521.

11. Psutka SP, Carrasco A, Schmi GD, et al. Sarcopenia in patients
with bladder cancer undergoing radical cystectomy: impact on



3116 TRANSFER LEARNING FOR MUSCLE CONTOURING

cancer-specific and all-cause mortality. Cancer. 2014;120:2910-
2918.

12. Hamaguchi Y, Kaido T, Okumura S, et al. Muscle steatosis is an
independent predictor of postoperative complications in patients
with hepatocellular carcinoma.World J Surg. 2016;40:1959-1968.

13. Hamaguchi Y,Kaido T,Okumura S,et al. Impact of quality as well
as quantity of skeletal muscle on outcomes after liver transplan-
tation. Liver Transplant. 2014;20:1413-1419.

14. Anandavadivelan P,et al.Sarcopenic obesity:a probable risk fac-
tor for dose limiting toxicity during neo-adjuvant chemotherapy in
oesophageal cancer patients. Clin Nutr. 2016;35:724-730.

15. Van Vledder MG, Levolger S, Ayez N, Verhoef C, Tran TC,
Ijzermans JN. Body composition and outcome in patients under-
going resection of colorectal liver metastases. Br J Surg.
2012;99:550-557.

16. Cho Y, et al. Prognostic significance of sarcopenia with inflam-
mation in patients with head and neck cancer who underwent
definitive chemoradiotherapy. Front Oncol. 2018;8.

17. Cespedes Feliciano EM, Popuri K, Cobzas D, et al. Evaluation
of automated computed tomography segmentation to assess
body composition and mortality associations in cancer patients.
J Cachexia, Sarcopenia Muscle. 2020;11:1258-1269.

18. Park HJ, Shin Y, Park J, et al. Development and validation of a
deep learning system for segmentation of abdominal muscle and
fat on computed tomography. Korean J Radiol. 2020;21:88-100.

19. Lee H,Troschel FM,Tajmir S,et al.Pixel-level deep segmentation:
artificial intelligence quantifies muscle on computed tomography
for body morphometric analysis. J Digital Imaging. 2017;30:487-
498.

20. Weston AD,Korfiatis P,Kline TL,et al.Automated abdominal seg-
mentation of CT scans for body composition analysis using deep
learning. Radiology. 2019;290:669-679.

21. Edwards K, Chhabra A, Dormer J, et al. Abdominal muscle seg-
mentation from CT using a convolutional neural network. In: Krol
A, Gimi BS, eds. Medical Imaging 2020: Biomedical Applications
in Molecular, Structural, and Functional Imaging. International
Society for Optics and Photonics; 2020:135-143.

22. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks
for biomedical image segmentation. In: Navab N, Hornegger J,
Wells W, Frangi A, Medical Image Computing and Computer-
Assisted Intervention (MICCAI). Springer; 2015:234-241.

23. Shorten C, Khoshgoftaar TM. A survey on image data augmen-
tation for deep learning. J Big Data. 2019;6.

24. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A survey on
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APPENDIX A: PRE-TRAIN ING CURVES

A.1 Unsupervised Image Reconstruction—
Convolutional Autoencoder

Training and validation loss for unsupervised image
reconstruction pretext task (Figure A1).

A.2 Self-Supervised Jigsaw Solving
Training and validation loss for self -supervised jigsaw
solving pretext task (Figure A2).

APPENDIX B: REPRESENTATIVE
TRAIN ING CURVES
Training and validation curves used to monitor model
training, described in Section 2.3. Combined loss
(Dice & binary cross-entropy loss) on the y-axis
and training epoch on the x-axis. We have pre-
sented a random subset (n = 50) of all trained
models (n = 560) to provide a clearer visualization
(Figure B1).

APPENDIX C: PER TRAIN ING SET
SIZE—INTER-MODEL MANN–WHITNEY
U-TEST
Inter-model Mann–Whitney U-tests were performed at
every training set size, resulting p-values are presented
below. RMS-DTA was used as metric as it is a more
robust estimate of segmentation accuracy compared to
DSC. ∗∗∗∗ indicates significance at p = 0.001

C.1 N=5

https://doi.org/10.1002/mp.15533
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F IGURE A1 Training and validation loss curves for autoencoder pre-training, demonstrating that the source model was trained to
convergence

F IGURE A2 Training and validation loss curves for jigsaw solving pretext task, demonstrating that the source model was trained to
convergence

Jigsaw Classification Rand. Init. Segmentation Reconstruction

Jigsaw 1.0 0.2694 **** **** ****

Classification 0.2694 1.0 **** **** ****

Rand. Init. **** **** 1.0 **** ****

Segmentation **** **** **** 1.0 ****

Reconstruction **** **** **** **** 1.0

C.2 N=10

Jigsaw Classification Rand. Init. Segmentation Reconstruction

Jigsaw 1.0 0.5638 ***** **** ****

Classification 0.5638 1.0 **** **** ****

Rand. Init. **** **** 1.0 **** 0.9588

Segmentation **** **** **** 1.0 ****

Reconstruction **** **** 0.9588 **** 1.0
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F IGURE B1 Training and validation losses versus epochs for 50 randomly sampled models
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C.3 N=25

Jigsaw Classification Rand. Init. Segmentation Reconstruction

Jigsaw 1.0 0.4806 *** 0.9723 ***

Classification 0.4806 1.0 *** 0.4553 ***

Rand. Init. *** *** 1.0 *** ***

Segmentation 0.9723 0.4553 *** 1.0 ***

Reconstruction *** *** *** *** 1.0

C.4 N=50

Jigsaw Classification Rand. Init. Segmentation Reconstruction

Jigsaw 1.0 0.7182 *** 0.1848 ***

Classification 0.7182 1.0 *** 0.3653 ***

Rand. Init. *** *** 1.0 *** ***

Segmentation 0.1848 0.3653 *** 1.0 ***

Reconstruction *** *** *** *** 1.0

C.5 N=75

Jigsaw Classification Rand. Init. Segmentation Reconstruction

Jigsaw 1.0 0.5641 **** 0.9997 ****

Classification 0.5641 1.0 **** 0.5645 ****

Rand. Init. **** **** 1.0 **** 0.1332

Segmentation 0.9997 0.5645 **** 1.0 ****

Reconstruction **** **** 0.1332 **** 1.0

C.6 N=100

Jigsaw Classification Rand. Init. Segmentation Reconstruction

Jigsaw 1.0 0.7497 0.0521 0.1863 ****

Classification 0.7497 1.0 0.0184 0.3398 ****

Rand. Init. 0.0521 0.0184 1.0 **** 0.0100

Segmentation 0.1863 0.3398 **** 1.0 ****

Reconstruction **** **** 0.0100 **** 1.0

C.7 N=125

Jigsaw Classification Rand. Init. Segmentation Reconstruction

Jigsaw 1.0 0.7402 0.0191 0.4232 ****

Classification 0.7402 1.0 0.0392 0.2392 ****

Rand. Init. 0.0191 0.0392 1.0 0.0012 0.0958

Segmentation 0.4232 0.2392 **** 1.0 ****

Reconstruction **** **** 0.0958 **** 1.0
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APPENDIX D: I NTRA-MODEL
MANN–WHITNEY U-TEST
Intra-model Mann–Whitney U-tests were performed at
every training set size less than 125 using the equiv-
alent model at n = 125 as the other sample. Resulting
p-values are presented below. RMS-DTA was used as
metric as it is a more robust estimate of segmentation
accuracy compared to DSC.∗∗∗∗ indicates significance
at p = 0.001.

n = 5 n = 10 n = 25 n = 50 n = 75 n = 100

Jigsaw **** **** **** **** 0.0234 0.0805

Classification **** **** **** **** 0.0111 0.2547

Rand. Init. **** **** **** **** **** 0.2187

Segmentation **** **** **** **** **** 0.1606

Reconstruction **** **** **** **** **** 0.0312
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