
Erk1/2 Mediates Leptin Receptor Signaling in the Ventral
Tegmental Area
Richard Trinko1, Geliang Gan2, Xiao-Bing Gao2, Robert M. Sears1, Douglas J. Guarnieri1, Ralph J.

DiLeone1*

1 Division of Molecular Psychiatry, Ribicoff Research Facilities, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of

America, 2 Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut, United States of America

Abstract

Leptin acts on the ventral tegmental area (VTA) to modulate neuronal function and feeding behavior in rats and mice. To
identify the intracellular effectors of the leptin receptor (Lepr), downstream signal transduction events were assessed for
regulation by direct leptin infusion. Phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and
phosphorylated extracellular signal-regulated kinase-1 and -2 (pERK1/2) were increased in the VTA while phospho-AKT
(pAKT) was unaffected. Pretreatment of brain slices with the mitogen-activated protein kinase kinase -1 and -2 (MEK1/2)
inhibitor U0126 blocked the leptin-mediated decrease in firing frequency of VTA dopamine neurons. The anorexigenic
effects of VTA-administered leptin were also blocked by pretreatment with U0126, which effectively blocked
phosphorylation of ERK1/2 but not STAT3. These data demonstrate that pERK1/2 may have a critical role in mediating
both the electrophysiogical and behavioral effects of leptin receptor signaling in the VTA.
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Introduction

Leptin is a protein hormone produced by adipocytes that serves

to communicate fat levels to the brain. Within the central nervous

system (CNS), leptin acts on multiple brain regions including the

brainstem, hypothalamus, hippocampus, and ventral tegmental

area (VTA) by activating the cytokine type I leptin receptor

[1,2,3,4,5]. Work on the hypothalamus has shown that Lepr

signaling regulates multiple downstream pathways to modulate

neuronal function, food intake, and body weight homeostasis. Lepr

is coupled to Janus Kinase 2 (JAK2), which is required for all

leptin-mediated signaling, including recruitment and subsequent

activation of STAT3, ERK1/2, and phosphatidylinositol-3-kinase

(PI3-K) [6]. Conditional mutant mice lacking either neural

STAT3 expression, or STAT3 activation, have recapitulated the

obese phenotypes observed in leptin deficient (ob/ob) and the Lepr

deficient (db/db) mice [7,8,9]. While these mutant models suggest

that STAT3 is clearly an important mediator of leptin signaling,

the rapid regulation of neuronal firing in the hypothalamus [10],

and in the VTA [4], is not likely to be mediated by STAT3-

dependent transcriptional events.

In the hypothalamus, Lepr signaling can also activate ERK1/2

and PI3-K [11,12,13,14]. Pretreatment of rats with MEK1/2

inhibitors blocked leptin-induced ERK1/2 phosphorylation in the

hypothalamus, as well as attenuating the homeostatic feeding

effects of Lepr [15]. It has been demonstrated that PI3-K is also

required for the anorexic effects of insulin as well as leptin in the

CNS, thus illustrating potential cross-talk between leptin and

insulin signaling [14,16]. Moreover, in the hypothalamus, it has

been suggested that the ERK1/2 pathway mediates leptin-induced

reduction of firing rates, while PI3-kinase is responsible for the

leptin’s disinhibitory effects on firing [17].

In the VTA, Lepr signaling reduces dopamine neuron firing

and food intake, while RNAi-mediated knockdown of Lepr in the

VTA results in a chronic increase in food intake without an

associated weight gain [4]. These data, complemented with studies

by others [5], supports a physiologic role of leptin signaling to this

brain region. Like the hypothalamus, leptin signaling results in

STAT3 phosphorylation at residue Tyr-705 in the VTA [4]. In

contrast to the hypothalamus however, PI3-kinase appears not to

be a mediator of leptin’s effects in the VTA [18]. This represents

the first observed difference in leptin signaling pathways between

these brain regions, thus highlighting the need for additional

characterization. In the VTA, it remains unclear whether the

ERK1/2 pathway: 1) is regulated by leptin, 2) contributes to

dopamine neuron firing, and 3) has a role in mediating leptin

feeding responses specific to this brain region. Here, we evaluate

potentially important Lepr signaling events using western blotting,

electrophysiology and behavioral pharmacology to identify the

contributions of the ERK1/2 pathway in the VTA.

Results

Direct leptin infusion to the VTA of rats results in multiple
phosphorylation events

To assess Lepr signaling pathways in the VTA, leptin or vehicle

was directly infused to the VTA of rats, which were sacrificed

45 minutes later. Western blot analysis of dissected VTA tissue
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revealed phosphorylation events within two canonical leptin

signaling pathways. Consistent with our prior study, leptin induced

the phosphorylation of STAT3 (Tyr-705), as well as pERK1/2

(Thr-202, Tyr-204) (Fig. 1A, B). The PI3-K pathway was

evaluated indirectly by measuring a downstream target, AKT.

In contrast with pSTAT3 and pERK1/2, neither of the two

residues known to be involved in regulating AKT activity (Thr-

308, Ser-473) were affected by leptin at this time point (Fig. 1C,

D).

U0126 abolishes the firing response of dopamine
neurons to leptin in the VTA of mice

The role of ERK1/2 in mediating the electrophysiological

response of dopamine neurons to leptin was assessed by blocking

the MEK1/2 kinase needed for phosphorylation and activation of

ERK1/2. Coronal mouse slices containing the VTA were

incubated with or without the MEK1/2 inhibitor U0126 prior

to application of leptin. Spontaneous firing events of dopamine

cells were observed by whole-cell current clamp. Consistent with

our prior study [4], application of leptin to the bath resulted in

decreased frequency of action potentials (48.5627.3% of control,

n = 3) throughout the duration of application and returned to

baseline level (102.768.6% of control, n = 3) after the removal of

leptin. Representative traces are shown in Fig. 2A (right panel),

and a representative timeline in Fig. 2B. This effect was completely

attenuated when U0126 was applied for 20 minutes prior to leptin

administration (Fig. 2A, left panel; Fig. 2B). The action potential

frequency was 100.166.2% of control (P.0.05, n = 6, t-test) in the

presence of leptin and U0126, and 104.263.4% of control (n = 6)

after the removal of leptin, as summarized in Fig. 2C. Notably,

there was no change in action potential frequency as a result of

U0126 during pretreatment (Fig. 2C).

U0126 abolishes the feeding effects of leptin signaling in
the VTA of rats

We have previously demonstrated that leptin infusions to the

VTA results in consistent and robust reductions in intake [4]. To

investigate the role of the ERK1/2 pathway in mediating the

behavioral effects of leptin, U0126 was infused intracerebroven-

tricular (ICV) 1.5–2 hours before leptin infusion in the VTA, and

food intake was assessed. Rats in the U0126ICV/vehicleVTA group

exhibited no change in basal feeding over a 23 hour period when

compared to the vehicleICV/vehicleVTA group (Fig. 3). Rats in the

vehicleICV/leptinVTA group exhibited a significant decrease in

food intake over 23 hours. Finally, rats in the U0126ICV/

leptinVTA group exhibited no changes in feeding, suggesting that

ERK1/2 signaling is required for leptin’s effects on feeding in the

VTA.

U0126 blocks leptin-induced phosphorylation of ERK1/2,
but not STAT3 (Tyr-705) in the VTA of rats

It is possible that the U0126 compound was interfering with

leptin receptor activation of STAT3 in response to leptin. To test

this, pSTAT3 (Tyr-705) was assessed in the presence of the Mek

inhibitor. U0126 was infused 1.5–2 hours before leptin infusion

into the VTA, and the VTA was dissected 45 minutes later to

evaluate pSTAT3. VTA pSTAT3 (Tyr-705) levels in U0126ICV/

vehicleVTA rats remained unchanged relative to vehicleICV/

vehicleVTA animals, while pSTAT3 (Tyr-705) in both vehi-

cleICV/leptinVTA and U0126ICV/leptinVTA rats showed a signif-

icant increase (Fig. 4A). This demonstrates that the behavioral and

electrophysiological effects of U0126 are not due to indirect effects

via STAT3 phosphorylation. In contrast with pSTAT3, VTA

pERK1/2 (Thr-202, Tyr-204) levels were found to be unchanged

in U0126ICV/leptinVTA rats (Fig. 4B), indicating effective blockade

of the MEK-ERK pathway.

Discussion

Lepr signaling studies in the hypothalamus have identified key

components needed for leptin signaling [19,20,21,22,23]. Our

previous work identified a physiologic role for Lepr expression in

the VTA [4]. Direct infusion of leptin to the VTA of naı̈ve rats

resulted in hypophagia, while local knockdown of Lepr resulted in

hyperphagia, thereby demonstrating responses to localized

exogenous, as well as endogenous leptin [4]. The identification

of insulin and leptin receptor coexpression on dopamine neurons

in the VTA [13], and preliminary signaling studies [4,5] suggest

similarities in pathway activities between the VTA and hypothal-

amus. Here, we initially examined these signaling events by

evaluating protein phosphorylation in the VTA after direct leptin

infusion. ERK1/2 is regulated by leptin, and blockade of this

pathway eliminated leptin’s effects on both neuronal firing and

feeding behavior.

Consistent with published data, pSTAT3 (Tyr-705) was

increased in the VTA after direct leptin infusion [4,5]. ERK1/2

also exhibited increased phosphorylation in the VTA after direct

leptin. These findings highlight a similarity in leptin signaling

between the hypothalamus and the VTA. In contrast, both

regulatory residues on AKT, a known downstream target of

insulin-induced PI3-K activity [24], showed no significant change

after direct leptin. The lack of PI3-K regulation is consistent with

work showing no role of this pathway in mediating the effects of

leptin in the VTA [18]. This illustrates a potential divergence in

Figure 1. Direct leptin to the rat VTA induced phosphorylation
events. Regulation of various Lepr pathways was evaluated 45 minutes
after direct leptin infusion to the VTA of cannulated awake adult male
rats. Ratios of phospho-/total signal were used to calculate the percent
change from control tissue. Blots shown are representative. Open bars
represent vehicle while black bars represent leptin treatment. A.
pSTAT3 (Tyr-705) (n = 4) *, (P = 0.0077). B. pERK1/2 (Thr-202, Tyr-204)
(n = 4) *, (P = 0.0252). C. pAKT (Ser-473) (n = 4). D. pAKT (Thr-308) (n = 4).
doi:10.1371/journal.pone.0027180.g001
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leptin signaling between brain regions, as it has been previously

suggested that hypothalamic Lepr activation of PI3-K is crucial for

mediating the feeding effects of leptin [16,18,25,26].

To date, there is little research evaluating the role of ERK1/2 in

mediating the electrophysiological effects of leptin. It has been

demonstrated that leptin can regulate calcium concentrations in

isolated hypothalamic neuropeptide Y (NPY) and proopiomela-

nocortin (POMC) neurons in an opposing manner [27]. More

recently, Wang and colleagues suggested a role for hypothalamic

ERK1/2 in mediating leptin’s effect on calcium regulation in NPY

neurons, but not POMC neurons [17]. In the VTA, leptin reduces

dopamine firing frequency [4] and data presented here suggests

that ERK1/2 mediates this effect in the VTA dopamine neurons,

as with NPY neurons in the hypothalamus [17].

Figure 2. U0126 abolished the firing response of dopamine neurons to leptin in mice. See results section for statistical information. A.
Representative traces of action potentials recorded before, during, and after the application of leptin to mouse VTA DA neurons in slices with (left
panel) or without (right panel) U0126 (10 mM). Box, H-current recorded in VTA DA neurons. Hyperpolarizing voltage steps from 250 to 2120 mV for
2 s generates a large/h current (.100 pA), the presence of which identifies dopamine neurons. B. A representative time course of the response of
action potential frequency to leptin in the presence (open symbol) or absence (solid symbol) of U0126 in VTA DA neurons. The solid horizontal black
line indicates the duration of leptin application. C. A summary of normalized frequency of action potentials before, during, and after the application
of leptin in DA neurons in VTA slices pre-treated with U0126.
doi:10.1371/journal.pone.0027180.g002
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To evaluate the behavioral relevance of the biochemical and

electrophysiological findings, ERK1/2 was tested for its role in

mediating leptin’s anorectic effects. Rats treated with leptin to the

VTA exhibited a reduction in food intake, consistent with our

previous data. Pretreating rats with U0126 attenuated this effect,

thus suggesting a role for ERK1/2 as a critical component of Lepr

signaling in the VTA. The similarity with our findings and those of

Rahmouni and colleagues, with the hypothalamus, is notable. In

both cases, treatment with inhibitors alone did not alter basal

feeding, however, they did attenuate effects of leptin. Additionally,

both studies demonstrate successful pharmacological blocking of

ERK1/2 phosphorylation, while pSTAT3 (Tyr-705) levels

remained high. It is important to note that a major difference

between our feeding study and the Rahmouni study involves site-

specific delivery of leptin. Rahmouni and colleagues delivered

both the inhibitors and leptin ICV, thus potentially affecting

multiple feeding circuits in the CNS, including the VTA, which

could theoretically contribute to their behavioral findings. In our

study, we delivered leptin directly to the VTA, thus attempting to

localize its effects and to identify the importance of ERK1/2

signaling within this region.

The observation that leptin increased pSTAT3 (Tyr-705)

despite pretreatment with U0126 suggests that STAT3 may not

be sufficient for the cellular and behavioral effects of leptin in the

VTA. It is important to emphasize that pTyr-705 assessment may

not always reflect STAT3 activity [28]. Moreover, even if STAT3

activation is not sufficient for the rapid effects of leptin, it is still

possible that long-term modulation of neuronal function is

mediated by transcriptional changes downstream of STAT3.

Conversely, other transcription factors may be regulated by

ERK1/2 to mediate leptin signaling in the VTA. It remains

unknown if the rapid change in dopamine firing caused by leptin is

responsible for the long-term feeding changes, or whether these

are dissociable. However, it is notable that the data presented here

suggest that ERK1/2 is important for the observed neuronal and

behavioral effects. These findings have a potential impact on

future research on behaviors regulated by leptin activity in the

VTA. Further studies are required to determine any potential role

of VTA STAT3, and to further characterize the downstream

effectors that respond to ERK1/2 activation in dopamine neurons

of the VTA.

Materials and Methods

Antibodies
The following antibodies were purchased from Cell Signaling

Technology (Beverly, Ma.): phospho-STAT3 (Tyr-705), STAT3,

phospho-ERK1/2 (Thr-202, Tyr203), phospho-AKT (Ser-473),

phospho-AKT (Thr-308), and AKT. Pan ERK antibody was

purchased from BD Biosciences (San Jose, Ca.).

Animals
Animal experiments were done in accordance with Yale

University School of Medicine and IACUC animal care

guidelines. Sprague Dawley rats were purchased from Charles

River Laboratories, and given access to ad libitum chow and

water. Standard rat chow used was RMH-3000 from Lab Diet

(Richmond, In.). Rats were housed in multiples prior to surgeries,

after which they were singly housed. Mice used for electrophys-

iology were C57BL/6J (Jackson Labs, Bar Harbor, Maine). The

environment was a controlled 12 hr light, 12 hr dark cycle.

Figure 3. ERK1/2 mediates the anorexigenic effect of leptin in
the VTA of rats. Direct leptin infusion to the VTA of rats caused a
significant decrease in food intake, while pretreatment with U0126 ICV
blocked this effect. Treatment groups include: vehicleICV/vehicleVTA

(open bars; n = 13), U0126ICV/vehicleVTA (open-striped bars; n = 11),
vehicleICV/LeptinVTA (gray bars; n = 12), U0126ICV/LeptinVTA (gray-striped
bars; n = 13). * Represents significant effect of leptin (F(1, 45) = 7.78,
P,0.008). # Represents significant Leptin-U0126 interaction (F(1, 45) = 4.17,
P,0.047).
doi:10.1371/journal.pone.0027180.g003

Figure 4. U0126 selectively blocks phosphorylation of the ERK1/2 pathway in the VTA of rats. Pretreatment of rats with U0126 prevented
leptin-induced phosphorylation of ERK1/2 without affecting STAT3 phosphorylation. Treatment groups include: vehicleICV/vehicleVTA (open bars;
n = 5), U0126ICV/vehicleVTA (open-striped bars; n = 4), vehicleICV/LeptinVTA (gray bars; n = 4), U0126ICV/LeptinVTA (gray-striped bars; n = 4). Ratios of
phospho-/total signal were used to calculate the percent change from control tissue. A. Evaluation of pSTAT3 (Tyr-705) phosphorylation across
groups. * Represents significant main effect of leptin (F(1, 15) = 41.9, P,0.001). B. Evaluation of ERK1/2 (Thr-202, Tyr-204) phosphorylation across
groups. # Represents significant interaction of Leptin-U0126 (F(1, 15) = 14.4, P,0.002); significant leptin effect (F(1, 15) = 7.9, P,0.013); significant U0126
effect (F(1, 15) = 9.3, P,0.008).
doi:10.1371/journal.pone.0027180.g004
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Rat Cannulation Surgery
Rat VTA cannulations consisted of double-barreled cannulae,

while intracerebral ventricular (ICV) cannulations consisted of

single barrel cannulae. All cannulae were purchased from Plastics1

(Roanoke, Va.). All stereotaxic coordinates are based on the

standard rat atlas [29]. All animals weighed at least 300 g at the

time of surgeries, and were anesthetized with Nembutal. The

following coordinates were used: 1) VTA: anterior-posterior (A/P)

from bregma 25.8 mm; dorsal-ventral (D/V) from skull surface

27.8 mm, 2) ICV: A/P from bregma 20.8 mm; D/V from dura

23.4 mm; and medial-lateral from midline 21.5 mm. All animals

were single housed for the remainder of the experiment, and were

allowed 1 week of recovery prior to subsequent manipulations.

Infusions for Leptin Biochemistry
All infusions were carried out in cannulated animals, and

occurred just prior to or shortly after the onset of the dark period.

Mouse recombinant leptin (498-OB) was purchased from R&D

Systems (Minneapolis, Mn). For direct administration to the VTA,

1.0 mg (0.5 mg on each side) of leptin or vehicle (16PBS) in 0.5 ml,

was infused over 2 minutes, after which the injectors remained in

the cannulae for an additional minute before removal. Sacrifice by

rapid decapitation occurred 45 minutes after infusion. For ICV/

VTA infusions, ICV preceded VTA by 1.5 to 2 hours. 2.0 mg

U0126 (Promega, Madison, Wi.) or vehicle (DMSO) in 3.0 ml was

infused over 2 minutes ICV. VTA infusions were as described

above, and animals were sacrificed by rapid decapitation

45 minutes afterward.

Infusions for Ad Libitum Feeding Behavior
All infusions were to cannulated awake rats, and occurred just

prior to or shortly after the onset of the dark period. Food was

removed from each cage immediately before infusions. All

volumes and concentrations for vehicles, U0126, and leptin were

as described above. All ICV infusions preceded the VTA infusions

by 1.5 to 2 hrs. After VTA infusions, animals were exposed to

food, and intake was assessed.

Brain Extraction Dissection
After decapitation, brains were quickly extracted and frozen on

dry ice. Frozen 300 mm coronal sections were taken by cryostat and

mounted on slides for storage at 280 C. All dissections were

accomplished with the aid of a dissecting scope while maintaining

freezing conditions. Only those sections exhibiting visual landmarks

for VTA, as based on stereotaxic coordinates [29], were used. For

the VTA, these coordinates ranged from 24.92 to 26.72 from

bregma, resulting in approximately 6 sections per animal. The VTA

dissections included a small portion of medial substantia nigra, and

care was taken to exclude the medial interpeduncular nucleus (IPN)

and any dorsal regions. All dissections per animal were pooled, and

stored frozen for future use.

Protein Processing
Samples were lysed by sonication in hot 1% SDS with

phosphatase and protease inhibitors (Sigma P5725, P2850,

P8340), subsequently boiled for 10 minutes, cooled, and then

centrifuged at 10,000 g for 5 minutes to remove insoluble

material. Supernatants were quantified for protein (DC Assay,

Biorad) and frozen for future use.

Western Blotting and Quantification
30 mg of protein lysate was loaded onto 4–12% gradient gels

(NuPage, Invitrogen), separated by SDS-PAGE, transferred to

nitrocellulose, and blocked with 5% non-fat milk prior to antibody

incubation. Alexa Fluor 680 (Molecular Probes) and IRDye 800

(Rockland) Fluorescent secondary antibodies were detected by LI-

COR OdysseyH Infrared Imaging System. Fluorescent densities

were determined using Odyssey Software. Both phospho- and total

signals were determined within the same band. Ratios of

phosphorylated to non-phosphorylated proteins were calculated.

Electrophysiology
Electrophysiology methods for dopamine whole-cell patch

clamp recording, dopamine neuron identification, and leptin

application were as previously described [4,30,31]. Male C57BL/

6 mice aged 3 weeks were used. U0126, a specific MEK1/2

inhibitor [32] (10 mM), or vehicle (DMSO) was bath applied to the

slices at least 20 minutes before the application of leptin, and

remained present during and after leptin. All data were sampled at

3–10 kHz and filtered at 1–3 kHz with an Apple Macintosh

computer using Axograph 4.9 (Axon Instruments). Electrophysi-

ological data were analyzed with Axograph 4.9 (Axon Instruments)

and plotted with Igor Pro software (WaveMetrics, Lake Oswego,

Oregon).

Statistical Analysis
Graphs shown are means of the grouped percentages 6 SEM.

Two-tailed unpaired Student’s t-test was used to compare leptin

and vehicle groups (for individual proteins), using GraphPad

Prism. Two-way ANOVA was used to compare inhibitor versus

leptin groups using the statistical package SPSS (SPSS Inc.,

Chicago, Il.).
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