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Abstract
Patients with chronic lymphocytic leukemia (CLL) exhibit diverse clinical outcomes. An expanding array of genetic tests is now

employed to facilitate the identification of patients with high‐risk disease and inform treatment decisions. These tests

encompass molecular cytogenetic analysis, focusing on recurrent chromosomal alterations, particularly del(17p). Additionally,

sequencing is utilized to identify TP53 mutations and to determine the somatic hypermutation status of the immunoglobulin

heavy variable gene. Concurrently, a swift advancement of targeted treatment has led to the implementation of novel strategies

for patients with CLL, including kinase and BCL2 inhibitors. This review explores both current and emerging diagnostic tests

aimed at identifying high‐risk patients who should benefit from targeted therapies. We outline existing treatment paradigms,

emphasizing the importance of matching the right treatment to the right patient beyond genetic stratification, considering the

crucial balance between safety and efficacy. We also take into consideration the practical and logistical issues when choosing a

management strategy for each individual patient. Furthermore, we delve into the mechanisms underlying therapy resistance and

stress the relevance of monitoring measurable residual disease to guide treatment decisions. Finally, we underscore the necessity

of aggregating real‐world data, adopting a global perspective, and ensuring patient engagement. Taken together, we argue that

precision medicine is not the mere application of precision diagnostics and accessibility of precision therapies in CLL but

encompasses various aspects of the patient journey (e.g., lifestyle exposures and comorbidities) and their preferences toward

achieving true personalized medicine for patients with CLL.
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INTRODUCTION

In recent years, chronic lymphocytic leukemia (CLL) has emerged as a
paradigmatic disease where both patients and doctors entered the
era of precision medicine (PM).1 In this review, we first emphasize the
essential role of precision diagnostics and prognostic/predictive tests
and highlight how treatment can be tailored and monitored based on
biomarkers (Figure 1). More importantly, we extend our concept of
PM into broader terms, arguing that to achieve a personalized ap-
proach we need to include a thorough medical assessment to balance
safety with efficacy and consider all practical and logistical issues,
including patient's preferences and adherence. Finally, we conclude
by highlighting the importance of generating real‐world data (RWD)
to advance the concept of PM and offer perspectives about the global
dimensions of PM in CLL.

PRECISION DIAGNOSTICS AND
PROGNOSTICATION

Diagnostic considerations

The diagnosis of CLL is usually straightforward, using immunophenotyp-
ing by flow cytometry to demonstrate the expression of CD5 and CD23
on a CD19+ B‐cell population with low levels of CD20 and monoclonal
kappa or lambda light‐chain expression. Expression of CD79B and surface
immunoglobulin is characteristically weak.2 All efforts should be made
to rule out any other differential diagnosis when facing an atypical
phenotype on a CD5+ B‐cell population, including additional phenotyping
(CD43, CD200, and ROR1) or molecular work‐up (CCND1 or
BCL2 rearrangement), as a precise diagnosis is a prerequisite for the
implementation of a PM approach.

Biomarker assessment before treatment initiation

After diagnosis, most patients will experience a treatment‐free
watch‐and‐wait period, ranging from a few months to decades.3

If and when a patient meets the criteria for progressive disease
according to the iwCLL guidelines, specific genetic biomarkers
need to be assessed before starting treatment in order to inform
treatment choice (Figure 1).3 Among others, TP53 aberrations and
immunoglobulin heavy variable (IGHV) gene mutation status are the
cornerstones and considered mandatory in both general practice and
clinical trials.

TP53 aberrations

Evidence indicating shorter overall survival (OS) and poor therapy
response in patients with TP53 mutations and/or del(17p) has ac-
cumulated since the early 1990s, finally leading to the incorporation
of their detection before each line of therapy in international
guidelines.3–5 Earlier studies employing Sanger sequencing and
fluorescent in situ hybridization (FISH) identified TP53 aberrations in
5%–10% of patients with CLL at diagnosis and 10%–15% at front-
line treatment. While del(17p) typically co‐occurs with TP53 muta-
tion on the other allele, they may also be present independently,
with a sole TP53 mutation being more common than a sole
del(17p).6

Next‐generation sequencing (NGS) uncovered TP53 mutations
below the detection limit of Sanger sequencing, corresponding to a
variant allele frequency (VAF) of ~10%.7,8 Such TP53 micro‐clones
often expand during the disease course, positively selected by che-
moimmunotherapy (CIT).9 Responding to the need for method vali-
dation, the European Research Initiative on CLL (ERIC) has invested in

F IGURE 1 Core concepts of precision medicine in patients with chronic lymphocytic leukemia (CLL) involve precision diagnostics and prognostication as a basis

for selecting targeted agents (precision therapy) and following treatment response at the individual patient level (precision monitoring).
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offering guidance on TP53 mutation screening, including by NGS,10

while also running an external quality assessment scheme for
laboratories performing the test and holding dedicated educational
workshops.

The negative impact of TP53 aberrations manifests mainly in
limited sensitivity and consequent clonal expansion upon CIT, thus
worsening patient prognosis. In contrast, both Bruton's tyrosine
kinase inhibitors (BTKi) and BCL2 inhibitors (BCL2i) are effective in
patients with TP53 aberrations.11 This fact challenged TP53 altera-
tions as independent prognostic and predictive markers, at least for
patients receiving frontline treatment with kinase inhibitors. Never-
theless, they retain prognostic relevance in relapsed and refractory
(R/R) patients even when treated with novel agents as well as when
using fixed‐duration regimens as frontline treatment.12–14

In terms of PM, not all TP53 aberrations are functionally equal15

and targeted therapies do not appear to favor clonal expansion as
compared to CIT.16 Hence, the challenge ahead involves defining
which types and combinations of TP53 alterations (e.g., mono‐allelic
versus bi‐allelic versus multiple subclones) are predictive for tailoring
targeted treatment and what is the relevance of TP53 micro‐clones.
Evidently, this will require large‐scale collaborative studies and har-
monization of relevant methodologies, already pioneered by ERIC,
combined with functional assays to better characterize the prevised
functional impact of TP53 aberrations, especially concerning the (rare)
variants that are difficult to interpret.

IGHV gene analysis

In CLL, the somatic hypermutation (SHM) status of the IGHV gene
can directly predict patient survival.17,18 In more detail, patients with
CLL cells carrying mutated IGHV genes (M‐CLL, <98% identity to
germline) generally follow a more indolent course than those with
unmutated IGHV genes (U‐CLL, ≥98% identity), who tend to show
advanced disease, adverse cytogenetic features, and less favorable
outcome, although the latter has changed dramatically, thanks to the
advent of targeted therapies. Of note, IGHV gene SHM status
remains stable during the clinical course, thus contrasting genomic
aberrations which may change over time.19 It is, therefore,
unsurprising that current recommendations mandate that IG gene
analysis is performed in all patients with CLL prior to frontline
treatment, as the results from this test may have a profound impact
on clinical decision‐making.3,20 In fact, in recent prospective clinical
studies, chemo‐free approaches proved to benefit U‐CLL patients
significantly more compared to CIT.20–28

The IG gene repertoire of CLL is nonrandom, culminating in the
existence of subsets of cases with (quasi)identical or stereotyped
B‐cell receptor IG (BcR IG).29–31 Accumulating evidence supports that
major stereotyped subsets likely represent distinct molecular and
clinical variants of CLL.32,33 A prime example is stereotyped subset
#2, expressing restricted IGHV3‐21/IGLV3‐21 BcR IG.34 Subset #2
represents almost 8% of M‐CLL requiring treatment and, in contrast
to the remaining M‐CLL cases, does not benefit from CIT,35,36 that is
still considered as a valid treatment option for M‐CLL.37

IGHV gene analysis has traditionally been performed by com-
bining PCR amplification and Sanger sequencing, but more recently
started to be replaced by NGS‐based assays.38 ERIC has put effort
into harmonizing IGHV gene analysis, ensuring that methodological
recommendations by experts are regularly updated,20,39,40 interested
laboratories have access to an external quality assessment scheme,
scientists involved in CLL diagnostics receive hands‐on training in
dedicated workshops, and an expert panel is available for online
troubleshooting (www.ericll.org/ignetwork/).

In terms of PM, the forthcoming challenge involves defining
whether other stereotypes might be predictive of differential re-
sponses to current or future treatments and, as highlighted by the
case of subset #2, which other features may account for the het-
erogeneous outcomes of M‐CLL patients.37 As a concrete measure to
address these issues, ERIC has recently launched two relevant stu-
dies, of which the first focuses on stereotyped subsets that are clo-
sely similar (satellites) to major subsets #1, #2, and #8, while the
second aims to address the heterogeneity of M‐CLL by detailed
genomic and immunogenetic characterization.

Complex karyotype (CK)

FISH‐detected recurrent chromosomal abnormalities, that is, deletion
of 13q, 11q, 17p, and trisomy 12, are associated with different clinical
outcomes, contributing to risk stratification and treatment decision‐
making.4,41 More recently, accumulating evidence supports that kar-
yotypic complexity, as measured either by chromosome banding
analysis (CBA) or microarray analysis, is associated with worse out-
comes in CLL.42,43 A large study by ERIC found that a highly CK,
defined as ≥5 abnormalities, was predictive of poor prognosis in pa-
tients with CLL treated with CIT.42 A caveat is that CK‐related studies
were mostly retrospective and heterogeneous in methodologies.
Moreover, it remains uncertain whether CK has an independent
prognostic value as CK and TP53 aberrations most often coexist.44

That said, high CK has been associated with inferior outcomes both
using BTKi and BCL2i treatment.45,46 For instance, data obtained
from the randomized GAIA/CLL13 study (NCT02950051), which
excluded patients with TP53 aberrations, confirmed an adverse
impact of CK defined as ≥3 abnormalities with CIT, while only high CK
(≥5 abnormalities) appeared to be a negative prognostic marker in
case of time‐limited BCL2i treatment.22

Key outstanding questions are whether CBA or array analysis
holds similar prognostic power and the exact relevance of major
structural chromosome abnormalities, such as translocations, but also
certain numerical aberrations (e.g., multiple trisomies), in particular in
relation to targeted drugs. To address these challenges, ERIC has
recently launched a study to evaluate the predictive impact of CKs in
patients undergoing targeted therapies. We therefore recommend
only assessing CK in clinical trials but, for now, refrain from guiding
treatment decisions based on CK in the real‐world setting.44

Clinical impact of other genomic aberrations

Genome sequencing in CLL has unveiled numerous recurrent genetic
aberrations, currently impacting >2000 genes.47,48 There are a few
more frequently mutated genes (ATM, NOTCH1, SF3B1, and TP53)
followed by a long list of less commonly mutated genes, often
occurring in <1%–5% of patients.49,50 Recently, a large‐scale se-
quencing study identified 202 drivers, including 109 new ones, en-
compassing point mutations, indels, and copy‐number variants
(CNVs).51 Another recent investigation employing whole‐genome
sequencing (WGS) revealed 56 recurrent driver alterations, of which
33 were affected by CNVs and noncoding mutations in regulatory
elements.52

Today, more than 50 genetic aberrations have been linked to
disease outcomes in CLL.19,53 The great majority have been asso-
ciated with shorter time‐to‐first‐treatment (TTFT) and OS. Interest-
ingly, the genomic landscapes seem to differ in M‐CLL and U‐CLL.51

While SF3B1 and XPO1 mutations appear to be strong independent
prognostic factors in both U‐CLL and M‐CLL, alterations of TP53,

HemaSphere | 3 of 12

http://www.ericll.org/ignetwork/


BIRC3, and EGR2 only impact U‐CLL patients, and NOTCH1 and
NFKBIE mutations predominantly affect M‐CLL patients.53 These
findings emphasize the need for a compartmentalized approach,
considering genetic aberrations in the context of IGHV mutation
status to identify high‐risk patients.

Today, besides TP53, no other gene mutation is recommended
for routine diagnostics. More research needs to be performed, and,
particularly, patients with the more common mutations should start
being stratified in the context of prospective clinical trials to answer
this important aspect of PM in CLL.

Beyond genomics

In recent years, genomic analysis has emerged as key to under-
standing CLL pathogenesis and stratifying patients. That said, geno-
mics represents only one layer of the multilayer biology of CLL cells.
Evidently, therefore, much remains to be revealed from the deeper
investigation of other layers, for example, the epigenome and the
proteome. Particularly regarding the former, ample evidence supports
that key epigenetic features such as the DNA methylation profile can
discriminate patients with CLL with markedly different prognoses and
outcomes.54–58 As for the latter, pioneering proteogenomic studies
have offered relevant proof‐of‐principle, for example, by identifying a
novel subtype of patients with poor prognosis associated with
aberrant BcR signaling.59

Despite the undisputed biological and prognostic significance of
the novel information acquired through the aforementioned studies,
translation to the clinic is yet to be achieved. Hence, the challenge
ahead lies in developing and validating laboratory protocols ready for
routine clinical application as well as dedicated software that would
allow integrative multiomics analysis toward refining patient stratifi-
cation and advancing the prospects of PM in CLL.

PRECISION THERAPY AND CLINICAL
DECISION‐MAKING IN CLL

Tailoring treatment based on biomarkers

In CLL, the need exists for biomarkers that can help discriminate
between patients who will experience a stable disease with no
treatment requirement during their lifetime from those who will
eventually progress and need to be treated (Figure 1). This would
allow tailoring the management of patients at the time of diagnosis,
sparing unnecessary visits and tests let alone the psychological bur-
den for them and their carers. However, the possibility of applying
biomarker‐based information to the individual patient is hampered by
the fact that the association, for example, between IGHV gene SHM
status and clinical outcome, only reaches 80% concordance.

In contrast, one of the main successes of PM in CLL is the pos-
sibility to utilize distinct disease features (predictive biomarkers) that
indicate how likely a patient is to benefit from a specific treatment,
thus providing valuable information for patient stratification
(Figure 1), as exemplified by TP53 aberrations and the IGHV gene
SHM status, both of which should be assessed before the start of
treatment3,60,61 Finally, on‐ and posttreatment biomarkers, in parti-
cular measurable residual disease (MRD) status, allows a refined
prediction of the outcome but only after treatment and beyond
known pretreatment characteristics.62,63

Nowadays, the treatment of CLL can be tailored in two ways: (i)
choice of treatment, for example, selecting whether to use CIT versus
targeted therapy (i.e., BTKi and venetoclax containing regimens;

Table 1) or continuous versus time‐limited targeted therapy: this
should be based on combining tumor‐ and host‐related features, such
as comorbidities and polypharmacy, availability of treatment options,
as well as patients' preferences; and (ii) the duration (fixed versus
response‐adapted) of a chosen treatment regimen, for example,
based on depth of MRD levels, to further improve treatment out-
comes. While the former is already part of routine CLL management,
the latter is still under exploration in clinical trials and has yet to enter
routine healthcare.

Tailoring treatment decisions by balancing safety and
efficacy

Indications for treatment in patients with CLL continue to rely ex-
clusively on the occurrence of active and/or symptomatic disease.3 In
the past, no clear benefit for early initiation in asymptomatic patients
was demonstrated with CIT.64–66 More recent attempts to improve
the outcome of patients deemed at higher risk of CLL progression by
starting treatment with targeted agents earlier have not produced a
tangible OS benefit either.67

Once the need for treatment is established, surveys have shown
that patients with CLL pay more attention to the occurrence of ad-
verse events rather than to survival advantages when discussing
therapy initiation.68 Efficacy and safety are strongly dependent upon
patients' situation at the time of treatment decision, and their balance
should be a priority for personalized approaches, especially since
patients with CLL are elderly with a life expectancy that might be
dependent on other concomitant diseases rather than CLL itself.

When balancing efficacy and safety between BTKi and BCL2i,
both the clinical presentation and the biological background must be
considered. Long‐term BTKis are often preferred in the presence of
TP53 alterations (often associated with CK),69 but the possibility of
cardiac toxicity (arrhythmias, hypertension, and heart failure) sug-
gests caution in patients with a history of cardiovascular disease or
ill‐controlled hypertension.70 Second‐generation BTKis are better
tolerated,71 but cardiac toxicity (particularly hypertension) is not
erased, and rare cases of unexplained sudden deaths still occur.
Bleeding risk precludes the use of BTKis with concomitant double
antiplatelet therapy, and careful follow‐up is mandatory in case of
concomitant administration of one antiplatelet or anticoagulant.72

There are other milder adverse events, such as cutaneous, muscu-
loskeletal, or digestive, that might lead to discontinuation if not
taken care of.73 Hence, adherence becomes crucial, particularly
considering oral targeted therapies where patients are more in-
dependent in taking the drug. Even time‐limited treatments span
over a year or even longer, thus personalization of therapy entails
providing accurate information to each patient according to their
expectations and their way of living.

The combination of the BCL2i venetoclax and the anti‐CD20
antibody obinutuzumab is also highly effective and well tolerated,
even in unfit patients with comorbidities, but should be used with
caution in case of compromised renal function considering the risk of

TABLE 1 Approved targeted agent‐based first‐line treatments in chronic

lymphocytic leukemia (CLL).

Continuous Fixed‐duration

Ibrutinib ± anti‐CD20 monoclonal antibody Venetoclax + obinutuzumab

Acalabrutinib ± obinutuzumab Ibrutinib + venetoclax

Zanubrutinib
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tumor lysis syndrome for both agents.74 The risk of tumor lysis syn-
drome is limited if the well‐established rules of administration, dose
adaptation, and biological surveillance are followed. Its efficacy is
optimal in M‐CLL cases.21 It is also preferred in rapidly progressive,
nonbulky CLL, and its tolerance and time‐limited administration are
favorable for patients with comorbidities.75 Neutropenia is frequent
in the first months of treatment but does not lead to an elevated risk
of severe infections.76

The combination of venetoclax and BTKi combines the toxicity of
each agent which appears to be counterbalanced by an enhanced ef-
ficacy and a time limited dosing.77 However, it is still too early for the
evaluation of long‐term toxicity. “Triplet” therapy (BCL2i, BTKi, anti‐
CD20) is effective but leads to excess toxicity in unfit patients.22,78

PRECISION MONITORING IN CLL

Development of therapy resistance

In a significant fraction of patients treated with pathway inhibitors,
therapy resistance may be acquired by the emergence of mutations in
genes that are directly targeted by the drugs or belong to the targeted
pathway. Resistance to covalent BTKi is associated with point mu-
tations targeting the BTK gene in the cysteine residue (C481) of the
kinase domain, thus preventing the drug from binding covalently to
BTK.79,80 Importantly, noncovalent BTK inhibitors can overcome the
resistance conferred by C481 mutations.81 While mutations at other
sites of the BTK gene have also been reported,82,83 the predictive
value of low‐VAF BTK mutations in patients clinically responding to
BTKi is still a matter of research.84 In addition, resistance can be
caused by gain‐of‐function PLCG2 mutations that lead to constitutive
activation of BcR signaling downstream to BTK.80,85 Nonetheless,
BTK and PLCG2 gene mutations do not explain resistance to BTKi in
all cases.16,86 In fact, ~30% of patients with CLL relapsing on ibrutinib
do not carry such mutations even when investigated with droplet
digital PCR (ddPCR).16 Alternative mechanisms, including EGR2,
BIRC3 and NFKBIE mutations as well as del(8p), might cooperate in
promoting BTKi resistance.16

The molecular mechanisms of venetoclax resistance include
mutations of the BCL2 gene.87–89 The most common mutation is
G101V, which falls in the BH3‐binding groove and causes a marked
reduction in the BCL2 affinity for venetoclax, preventing the drug
from displacing proapoptotic BH‐3 only proteins (e.g., BIM). The
novel BCL2i sonrotoclax appears to have the potential to overcome
venetoclax resistance in preclinical models and is currently being
tested in clinical trials.90 Because BCL2 mutations are restricted to a
subset of venetoclax‐refractory patients, the involvement of other
molecular mechanisms of resistance is a matter of active research.91

Importantly, BCL2 mutations (as well as BTK and PLCG2) are absent in
CLL relapsing after first‐line treatment with fixed‐duration ibrutinib
plus venetoclax, suggesting that treatment duration has an impact on
the acquisition of these mutations, although limited numbers of pa-
tients have been evaluated to date.92

Current guidelines do not recommend regular monitoring of re-
sistance mutations during treatment with pathway inhibitors or the
use of mutation testing for making decisions in clinical practice out-
side of clinical trials. Considering the expanding therapeutic landscape
of CLL, however, resistance mutations may eventually become an
important set of biomarkers for PM management of the disease.
Toward this aim, a more precise definition of resistance along with
standardization of testing technologies (e.g., gene panel deep‐
sequencing or ddPCR analysis) as well as harmonization of inter-
pretation of the results across laboratories will be a prerequisite. In

parallel, the inclusion of resistance mutation testing in clinical trials
with pathway inhibitors is highly desirable.

MRD detection

MRD is an essential tool for determining treatment response in clinical
trials and is often a primary endpoint in hypothesis‐generating trials
and a secondary endpoint in registration trials (Figure 1). MRD
assessment is not yet applied in routine practice but may be used to
provide supportive information for monitoring patients in remission
after treatment. The iwCLL guidelines have established 0.01%/10−4,
that is, 1 CLL cell in 10.000 leukocytes, as an appropriate threshold for
the assessment of MRD in CLL.3 However, other thresholds may hold
significance in specific contexts. For instance, a threshold of >1%/10−2

is important for identifying individuals at risk of early relapse or
progression, while thresholds of <0.001%/10−5 or <0.0001%/10−6 are
relevant for evaluating disease eradication.13,62,93

Flow cytometry can be used to identify CLL cells using a core set
of 6 markers, as proposed by ERIC,94 in a single tube, to enable a
detection limit of 0.001%/10−5. Flow cytometry MRD is relatively
quick, simple, cost‐effective, and reproducible but has the dis-
advantage of requiring a high number of cells (~7‐fold more than
molecular approaches for equivalent detection limit) that need to be
analyzed fresh (<48 h from collection).94–96

IG real‐time quantitative PCR (RQ‐PCR) or ddPCR are also sensitive
and well‐validated approaches suitable for identifying residual disease
to a limit of detection (LOD) of 0.001%/10−5. The assay requires design
of primers specific to the clonotypic IGH gene rearrangement in each
patient, thus pretreatment disease material is required for assay design,
and the detection limit can vary between patients. NGS approaches for
MRD detection in CLL instead use approaches targeting rearranged
IGH (± immunoglobulin kappa [IGK]/immunoglobulin lambda [IGL])
sequences enabling to detect MRD at the 0.0001%/10−6 level.97–99

To date, only one commercial approach incorporating such calibration
has been authorized by the Food and Drug Administration (FDA),100

while more recently, an academic assay has been published using
primers targeting the IGHV‐leader sequence, which allows complete
characterization of the IGHV sequence.97

MRD‐guided therapy

MRD is affected both by the type (CIT vs. targeted therapy) and duration
(continuous vs. time‐limited) of treatment as well as by biological features
such as the presence of high‐risk genomic alterations. MRD status has
been found to correlate with PFS or even OS in most time‐limited
combination regimens, including CIT and targeted therapy.21,101,102 Based
on the strong prognostic impact of the MRD status, it can be a key
enabler of precision therapy in CLL (Figure 1). Several phase 2 studies
have demonstrated that treatment duration and intensity can be
modulated based on peripheral blood (PB) and/or bone marrow (BM)
assessments and most commonly with thresholds of 10−4 and with flow
cytometry.103–105 Additionally, some studies implement integrated as-
sessments of clinical response and MRD, for example, by requiring
reaching a complete remission as per iwCLL in addition to BM and PB
MRD<10−4.106,107 However, this plethora of phase 2 studies can
only serve as a proof‐of‐principle and is insufficient to change current
practice. Several key uncertainties need to be overcome to establish the
clinical benefit of MRD guidance. First, the method of measuring MRD
requires standardization. While the international efforts by ERIC have led
to standardized analysis of MRD by flow cytometry, regulatory bodies
commonly also require standardization of each assay component, which
so far has not been achieved. Second, a consensus on the most
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appropriate MRD cutoff is required to establish safe MRD guidance;
currently, most studies have identified a threshold of 10−4 as the most
feasible and still highly prognostic cutoff. However, a fraction of patients
show MRD<10−4 and still detectable disease in BM, which can poten-
tially be overcome by an MRD cutoff of 10−5 in PB.108 Importantly, while
highly sensitive NGS‐based assays can call levels down to 10−6, the added
prognostic information of these very deep responses is not yet clear.62,109

Finally, to definitively establish the clinical benefit of MRD‐guided pre-
cision treatment of CLL, prospective randomized comparisons are war-
ranted. So far, only the FLAIR study has compared an MRD‐guided
treatment to a fixed‐duration treatment, but since MRD‐guided targeted
treatment with ibrutinib plus venetoclax was compared to fixed‐duration
FCR, the contribution of the MRD‐guidance is difficult to isolate.24

Hence, the comparison to the continuous ibrutinib arm in the FLAIR
protocol (NCT00614315) as well as ongoing or planned studies like
CLL18 (venetoclax‐obinutuzumab vs. pirtobrutinib‐venetoclax vs. MRD‐
guided pirtorutinib‐venetoclax) or RESOLVE (MRD‐guided shortening vs.
standard venetoclax‐obinutuzumab or venetoclax‐ibrutinib) will likely
pave the way toward understanding the clinical benefit of MRD‐guided
treatment of CLL.

RWD AGGREGATION

While randomized controlled trials (RCT) remain the cornerstone of
generating evidence in medicine, real‐world evidence (RWE) can com-
plement RCTs and provide profound insights into improving the quality
and delivery of services in medical care, becoming crucial to evaluate
personalized approaches in diseases like CLL (Figure 2). Although
lacking key attributes of RCTs, real‐world studies can include large
cohorts of patients with long follow‐ups and better portray the reality
of everyday clinical practice. To this point, real‐world studies
have revealed the clinical importance of several biomarkers in CLL
(e.g., CK and BcR stereotypy), helped us understand the adherence to

guidelines in terms of biomarker testing, and gave insights into
long‐term complications.42,110–112 In the era of targeted agents, RWE
gave us insights into the tolerability and effectiveness of these
drugs while also revealing the unmet need for effective treatments in
patients relapsing after receiving both BTKi and venetoclax‐based
treatments.113,114

Another advantage of RWE is the faster preparatory phase.
Swiftly conducted real‐world studies by ERIC and others during the
COVID‐19 pandemic exemplify this potential, providing useful in-
formation on the outcomes of patients with CLL infected with SARS‐
COV‐2 and their responses to COVID‐19 vaccines.115–121 Last but
not least, RWD has also been used in more elaborate approaches
involving artificial intelligence (AI). Indicatively, Agius et al. have re-
ported a machine‐learning approach for identifying patients with a
high risk of infection, underlining the myriad possibilities of utilizing
RWD toward the realization of PM.122 AI and machine learning ap-
proaches are the way forward in incorporating a large amount of
complex RWD data to make more refined predictions for our pa-
tients. However, data quality and methodology of real‐world studies
remain the cornerstone even in the presence of these powerful tools.

ERIC has recognized the importance of RWD in CLL and designed
the ERIC CLL database, which represents an ongoing effort to answer
relevant clinical questions through the collection of RWD on a project
basis.123 ERIC has also provided solutions for RWD collection, man-
agement, and analysis, ranging from offering technical support to
working toward a common data model in CLL and exploring analyses
using federated learning approaches.

WHAT DOES PM MEAN TO PATIENTS?

Although the goal of PM can be easily explained in layman's terms:
“Provide the right treatment in the right dose to the right patient at the
right time,” the complexity of what patients and carers need to be able

F IGURE 2 Key areas to improve patient outcomes and ensure equal and resource‐efficient implementation of PM in CLL. CLL, chronic lymphocytic leukemia;

PM, precision medicine.
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to know and understand can be confusing and often overwhelming.
PM introduces highly specialized concepts, such as genes, genomic
testing, and targeted therapy, that are unknown to the general public.
With this in mind, ERIC has produced printed/online material to allow
easy access to this information to the large public, including affected
individuals (https://ericll.org/for-patients/people-with-cll/).

Even after understanding the basic concepts of PM, patients and
their carers will have to deal in practice with the various tests, pro-
cedures, and decisions that it entails. They need to be able to navigate
through this experience by being empowered to ask questions and
make informed decisions within the context of a specialized care team.
Managing expectations and the various emotions that may arise during
this time is also important and can affect decision‐making and overall
outcomes. Research implemented by ERIC confirms that coping with
feelings of sadness, grief, anxiety, but also hope, determination and
resolve, needs to be supported through discussions with the healthcare
team, support groups and patient advocacy groups.124,125 Moreover,
ERIC has developed multimedia content on various complex medical
topics for various audiences (cllempowerment.com).

Patients and their families may have concerns regarding PM in terms
of privacy, security, availability, equity, and ethics. Since targeted thera-
pies are generally more costly than traditional treatment options, issues
over insurance coverage and socioeconomic inequalities need to be
addressed. Patients may also worry about genetic discrimination based
on the genomic testing results, spanning from long‐term care provision to
insurance and employment discriminatory measures from companies and
employers in the future. The perceived lack of privacy can be alleviated
by communicating the strict regulatory framework, robust privacy pre-
serving, and security measures encompassing genetic testing.

The CLL scientific community needs to concentrate efforts on the
following: (i) the education of patients and carers about PM and their
empowerment with regards to rights and benefits as well as their fa-
miliarization of the regulatory framework around PM (Figure 2), (ii)
support to patients and carers in coping and resilience before, during
and after their involvement in PM experiences, and (iii) education of
healthcare professionals (HCP) on the introduction of targeted treat-
ment approaches and how to convey the information to patients. An
important aspect of this could be the development and consensus of a
clear and consistent vocabulary for PM to allow oncology specialists,
HCPs, patients, and carers to speak a common language.

FINAL CONSIDERATIONS

Some of the promise of PM for CLL has already been realized. Indeed,
PM concepts are routinely applied to establish a correct diagnosis
(precision diagnostics), decide about the treatment among different
therapeutic options (precision therapy), and assess response (precision
monitoring) (Figure 1). At the same time, basic and translational
research is gradually identifying new potential biomarkers and drug-
gable targets to further improve and differentiate PM approaches. In
fact, the emerging concept of functional PM, where genomics data is
combined with ex vivo drug sensitivity testing to identify treatment
targets and guide treatment decisions, has been applied in a few clinical
trials in acute leukemia with promising results126,127 and more recently
in a drug repurposing study including CLL (NCT04817956). Against this
progress, however, major challenges remain to be addressed.

First, considering the immense clinicobiological heterogeneity of
CLL, global efforts are warranted toward amassing huge and long-
itudinal cohorts. ERIC contributes to this endeavor in tangible ways:
a prime example is the ERIC ImMunoGeneTics (IMGT)/CLL‐DB
database,128 a joint initiative between ERIC and IMGT currently in-
cluding immunogenetic information from ~70,000 patients with CLL

attended in 51 different institutions from 27 different countries in
four different continents. In a similar vein, related ERIC initiatives are
underway (e.g., the ERIC TP53 database).

An even bigger challenge concerns the lack of diversity in po-
pulations involved in CLL research. Indicatively, ~90% of cases in the
ERIC IMGT/CLL‐DB originate from Europe and the United States,
meaning that Caucasians represent the overwhelming majority. This
may reflect the lower incidence and prevalence of CLL in certain parts
of the world (most notably the Far East) but also less access to testing
both between high versus middle/low‐income countries and within
high‐income countries.129 This is just one of the many factors ex-
acerbating health inequity for patients with CLL throughout the world
(Figure 2). Even more important is the limited or no access to in-
novative medicines in many geographic areas, preventing the appli-
cation of PM and still forcing the use of CIT for many patients.130 This
fact should prompt an intense discussion into the causes of inequity
in the care of CLL. Unless this happens, PM would regrettably come
to represent an option for a small proportion of patients with CLL
living in a few wealthy nations while remaining a dream for the great
majority of those with fewer resources.

In conclusion, as for any disease, PM for CLL should rely not only
on biological information but also on clinical phenotypes, exposures,
and lifestyle data. Currently, this is largely overlooked in CLL, where
(multi)omics are commonly misunderstood as the key to realizing PM
whereas it is simply one piece of the puzzle of PM for CLL. Integration
of various data sources, however, represents another major challenge
as electronic health records are still largely unavailable, databases and
registries are not always interoperable, and the use of wearables
varies considerably. Hence, there is an urgent need to reappraise how
we conceptualize and practice PM in CLL, including how we strive for
inclusivity in research and equity in access to testing and medications.
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