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Abstract
Introduction: The Mayo Clinic Endoscopic Subscore is a commonly used grading system  
to assess the severity of ulcerative colitis. Correctly grading colonoscopies using the  
Mayo Clinic Endoscopic Subscore is a challenging task, with suboptimal rates of interrater 
and intrarater variability observed even among experienced and sufficiently trained experts. In 
recent years, several machine learning algorithms have been proposed in an effort to improve 
the standardization and reproducibility of Mayo Clinic Endoscopic Subscore grading.
Methods: Here we propose an end-to-end fully automated system based on deep learning to 
predict a binary version of the Mayo Clinic Endoscopic Subscore directly from raw colonoscopy 
videos. Differently from previous studies, the proposed method mimics the assessment done 
in practice by a gastroenterologist, that is, traversing the whole colonoscopy video, identifying 
visually informative regions and computing an overall Mayo Clinic Endoscopic Subscore. The 
proposed deep learning–based system has been trained and deployed on raw colonoscopies 
using Mayo Clinic Endoscopic Subscore ground truth provided only at the colon section level, 
without manually selecting frames driving the severity scoring of ulcerative colitis.
Results and Conclusion: Our evaluation on 1672 endoscopic videos obtained from a multisite 
data set obtained from the etrolizumab Phase II Eucalyptus and Phase III Hickory and Laurel 
clinical trials, show that our proposed methodology can grade endoscopic videos with a 
high degree of accuracy and robustness (Area Under the Receiver Operating Characteristic 
Curve = 0.84 for Mayo Clinic Endoscopic Subscore ⩾ 1, 0.85 for Mayo Clinic Endoscopic 
Subscore ⩾ 2 and 0.85 for Mayo Clinic Endoscopic Subscore ⩾ 3) and reduced amounts of 
manual annotation.

Plain language summary
Patient, caregiver and provider thoughts on educational materials about prescribing and 
medication safety

Artificial intelligence can be used to automatically assess full endoscopic videos and estimate 
the severity of ulcerative colitis. In this work, we present an artificial intelligence algorithm for 
the automatic grading of ulcerative colitis in full endoscopic videos. Our artificial intelligence 
models were trained and evaluated on a large and diverse set of colonoscopy videos obtained 
from concluded clinical trials. We demonstrate not only that artificial intelligence is able to 
accurately grade full endoscopic videos, but also that using diverse data sets obtained from 
multiple sites is critical to train robust AI models that could potentially be deployed on real-
world data.
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Introduction
Ulcerative colitis (UC) is an inflammatory bowel 
disease (IBD) that affects the colon mucosa and 
characterized by inflammation and the presence 
of ulcers in the large intestine and in the rectum.1 
One of the essential components to assess the sta-
tus of UC patients as well as their response to 
therapy is the endoscopic assessment of mucosal 
healing. Endoscopic healing has shown to predict 
steroid-free and sustained clinical remission, 
making it a pivotal endpoint in clinical trials.2,3

Several scoring systems have been developed to 
capture the multiple findings of endoscopic  
examinations.4–13 Among them, the Mayo Clinic 
Endoscopic Subscore (MCES),14 a component of 
the overall Mayo Score15 is the most commonly 
used. The MCES classifies the severity of mucosal 
damage in four different categories: normal or 
inactive, mild, moderate or severe disease. Scoring 
an endoscopic video using the MCES is labor 
intensive and is often time-critical in clinical trials. 
In addition, despite the widespread use of MCES 
in clinical trials to assess disease severity and thera-
peutic response in UC patients,16,17 the MCES still 
relies on the subjective interpretation of colonos-
copy videos and has not been fully validated.1

Reliable and reproducible MCES grading still 
represents a major limitation when monitoring 
UC patients as it poses a non-trivial challenge 
even to experienced and sufficiently trained 
experts.1,18 Artificial intelligence (AI) has the 
potential to circumvent these limitations by pro-
viding higher throughput, and more standardized 
and easy-to-access scoring systems. Independent 
studies have explored the feasibility of developing 
AI systems to assess the severity of UC from still 
images.19–21

The recent publication by Yao and colleagues22 
and the concurrent work to ours by Gottlieb and 
colleagues23 evaluated the use of an MCES scor-
ing system for unaltered endoscopic videos 
obtained from clinical trials. These studies dem-
onstrated not only that evaluating full videos 
poses a greater challenge when compared to the 
grading of still frames but also shown that a sig-
nificant drop in performance is to be expected 
when a model is evaluated on an external set of 

colonoscopies obtained from a multicenter study 
as part of a clinical trial.

In this work, we present an end-to-end computer-
assisted diagnosis (CAD) system based on deep 
learning (DL) for the automatic assessment of the 
MCES in high-definition white light endoscopy 
videos. However, previous approaches used time-
consuming labor-intensive per-frame annota-
tions, our system has been trained on colonoscopy 
videos with associated annotations at the level of 
colon sections. Despite the “weak” nature of the 
available ground truth—it is unknown which 
frame drives the score of the video—we show that 
it is possible to build reliable DL CAD systems 
able to automatically score frames in terms of the 
UC severity. Moreover, our model was able to 
perform automatic scoring of raw colonoscopy 
videos, without the need of pre-selecting clinically 
meaningful individual frames. In addition, we 
present the evaluation of our model in a multi-
center data set obtained from clinical trials.

Methods

Data set
Our models are trained and validated on sigmoi-
doscopy videos selected from the Eucalyptus 
(ClinicalTrials.gov, NCT01336465), Hickory 
(ClinicalTrials.gov, NCT02100696), and Laurel 
(ClinicalTrials.gov, NCT02165215) Genentech/
Roche clinical trial studies to test etrolizumab in 
patients with moderate to severe UC.

Etrolizumab is a dual-action anti-integrin anti-
body designed to selectively target a specific part 
(β7 subunit) of two key proteins, α4β7 and αEβ7 
integrins, found on cells that play a key role in 
inflammation in IBD.

Eucalyptus is a randomized, double-blind, placebo-
controlled, multicenter phase-II study involving 
124 participants, 24 sites, and concluded in 2012 
to evaluate the efficacy and safety of etrolizumab.24 
Hickory and Laurel are recently concluded rand-
omized, double-blind, placebo-controlled, phase-
III studies, involving 609 and 359 patients with 
UC, respectively. Hickory evaluated the safety, effi-
cacy, and tolerability of etrolizumab during 
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induction (week 14) and maintenance (week 66) 
compared with placebo in patients with moderate-
to-severe UC who have been previously exposed to 
anti-tumor necrosis factor α therapy. Laurel evalu-
ated the safety and efficacy of etrolizumab com-
pared with placebo during maintenance (week 62) 
among patients who were clinical responders to 
etrolizumab during induction (week 10), and who 
have moderate-to-severe UC and were anti-tumor 
necrosis factor α therapy naive.

Patients in Eucalyptus, Laurel, and Hickory all 
had moderate to severe UC. For Eucalyptus, this 
was defined as a Mayo Clinic Score of 5–12 (6–12 
in the United States), stool frequency subscore 
⩾1, and centrally read Mayo endoscopy subscore 
of 2–3. In Laurel and Hickory, moderate to severe 
disease was defined by a Mayo Clinic Score of 
6–12, centrally read Mayo endoscopy subscore of 
2–3, rectal bleeding subscore ⩾1, and stool fre-
quency subscore ⩾1. In addition, documentation 
of colonic involvement of UC extending a mini-
mum of 20 cm (Laurel, Hickory) or 25 cm 
(Eucalpytus) from the anal verge was required. 
Patients in Laurel were naive to TNF inhibitors 
but must have had an inadequate response, loss 
of response, or intolerance to prior immunosup-
pressant and/or corticosteroid treatment within 5 
years of study entry. Patients in Hickory had a 
history of exposure to at least one TNF inhibitor 
within 5 years of study entry.

The colonoscopies of Hickory and Laurel are 
equipped with manual annotations of the colon 
subsection (rectum, sigmoid colon, descending 
colon) and the associated MCES, as assessed by the 
onsite investigator and reviewed by central readers.

The videos used for the training and validation of 
MCES prediction models (obtained from the 
Hickory and Laurel clinical trials) correspond to 
286 different sites distributed across 28 countries.

In addition to the data obtained from the clinical 
trials, we externally validated the performance of 
our models using still frames obtained from the 
publicly available Hyperkvasir data set,25 which 
are equipped with an MCES score assigned by 
the authors of the data set.

Overview of the end-to-end UC scoring model 
on raw colonoscopy videos
Most of the previous approaches deploying DL 
models for the automatic assessment of UC21,20 

involve following the procedure shown in the flow 
diagram in Figure 1.

1. Colonoscopy videos are obtained from a 
single site, and are assessed by gastroenter-
ologists who identify frames driving the 
MCES score and assigns a MCES to them. 
This is an intensive and repetitive task that 
can be performed only by a trained gastro-
enterologist with expertise on UC.

2. A DL model is trained using these manu-
ally extracted frames together with their 
corresponding MCES. The trained DL 
model is deployed to perform predictions 
on still images obtained from colonoscopy 
videos previously unseen by the model. The 
DL model requires the manual selection of 
frames to perform the prediction. This 
selection has to mimic the one performed 
during training, and therefore involves the 
supervision of a trained gastroenterologist.

3. The manually selected frames are fed into the 
DL model, and a predicted score indicating 
the UC severity is obtained for each frame.

One of the most labor-intensive and difficult tasks 
of this approach is the manual selection of frames 
for the training and deployment of the DL model. 
Our proposed approach aims at overcoming this 
limitation by performing an automatic selection 
of readable frames, which can in turn be used to 
train a DL model for the automatic assessment of 
UC severity. Our proposed approach, summa-
rized in the flow diagram is shown in Figure 2.

1. Colonoscopy videos are assessed by gastro-
enterologists, who assign a severity score to 
each colon subsection. This assessment is 
performed as part of the clinical trials used 
in this study; therefore, it does not involve a 
tailor-made annotation procedure for the 
training of a DL model.

2. We extracted frames at random from colo-
noscopy videos and classified them as either 
readable or non-readable. These annota-
tions do not involve a clinical assessment of 
the frames, and therefore were performed 
by non-gastroenterologists.

3. A quality control (QC) model is trained 
using these frames. The purpose of this 
model is to discriminate between readable 
and non-readable frames. From here on, we 
will refer to this model as the QC model.

4. We used the QC model to automatically 
extract readable frames from colonoscopy 
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videos. Each readable frame was assigned an 
MCES score obtained as part of the central 
reading of the clinical trial. Notice that this 
MCES score correspond to the whole colon 
section, and not to a specific frame.

5. The extracted readable frames, paired with 
their corresponding MCES score, are used 
to train a second DL model. This model, 
which we refer as the Ulcerative Colitis 
Scoring (UCS) model was used to auto-
matically predict the severity of UC from 
still frames. The MCES score is obtained 
from the central readings of the clinical trial 
and are assigned to the correct frame 
through the automatic text detection 
described in the pre-processing section.

6. Finally, the two trained models: QC and 
UCS, were deployed to perform predic-
tions on previously unseen videos. These 
predictions were performed in a fully auto-
matic fashion on raw colonoscopy videos. 
Raw colonoscopy videos were fed to the 
QC model, which automatically extracts 
readable frames; the UCS model is then 
used to obtain a severity score for each 
readable frame. A final score for an entire 
colon section is obtained by aggregating the 
individual scores of each frame.

QC model for the automatic extraction of 
readable frames
One of the major challenges when developing AI 
systems operating directly on full colonoscopy 
videos is that a large proportion of the frames 
within the video do not allow for an appropriate 
visual assessment of the mucosa. Several factors 
can contribute to render a frame non-readable 
such as: presence of water and bubbles, blurri-
ness, presence of stool, pixel saturation, the cam-
era being too close to the mucosa, or a combination 
of these factors.26 Identifying and extracting read-
able frames is key to construct a meaningful train-
ing set for the DL model targeting the prediction 
of the MCES score.

The first stage of our system for MCES predic-
tion was a QC model. This model summarizes an 
entire endoscopic video into a limited subset of 
readable frames.

Training of the QC model. The main component 
of the developed QC model is a Convolutional 
Neural Network (CNN) trained to categorize 
frames in a video between two classes: readable 
and unreadable frames. We trained the network 
using 5000 still images extracted randomly from 
351 videos from the Eucalyptus clinical trial. It is 

Figure 1. Flow diagram showing the standard method to perform automatic grading of ulcerative colitis on 
endoscopy videos.
A critical component of this approach is the careful selection of clinically relevant frames by an experienced 
gastroenterologist, not only during the development of the model but also during deployment.
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important to mention that the videos from the 
Eucalyptus trial were used only to train and vali-
date the informative frame extraction algorithm. 
These frames were not used in the development 
of the MCES scoring system itself.

Two annotators labeled manually each frame in 
one of the two classes: readable or unreadable. 
The following set of rules was used to determine 
when a video frame should be considered 
informative: (1) the colon walls are in the Field 
of View (FOV), (2) contrast and sharpness of 

the frame are sufficient to visually inspect, at 
least partially, the mucosa and its vascular pat-
tern, (3) there is no presence of artifacts 
obstructing completely the visibility of the 
mucosa within the FOV (stool, water, bubbles, 
reflections, etc.). If a frame fulfilled all these cri-
teria, it was considered readable; otherwise the 
frame was deemed unreadable.

The two annotators achieved a very high inter-
rater agreement (Cohen’s kappa = 0.91) in this 
task. Since the aforementioned criteria are based 

Figure 2. Flow diagram showing the procedure for the development and the deployment of the proposed model.
Different to previous approaches, our model is based on readings performed as part of the clinical trials, and on quality 
annotations performed by non-expert. Therefore, our proposed methodology does not require ad hoc annotations by expert 
gastroenterologists neither during training nor on the deployment of the model.
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only on the overall visual quality of the frames 
and they do not involve any clinical evaluation, 
none of the annotators was a gastroenterologist. 
This means that we were able to train the QC 
model (Figure 3) without the need of supervision 
by expert gastroenterologists.

Frame sampling algorithm. The second element 
of the QC model is a frame-sampling algorithm. 
This algorithm uses the QC scores provided by 
the CNN to automatically extract readable frames 
from a complete colonoscopy video. The pro-
posed frame extraction algorithm consists of the 
following steps: (1) the full colonoscopy video is 
divided into non-overlapping windows of 5 s 
duration; (2) all frames within a selected window 
are equipped with a quality score provided by the 
QC model. The frame with the highest quality 
score in the window is selected; (3) if the quality 
score of the selected frame is above a predeter-
mined threshold (0.99 in our experiments), the 
frame is kept. Otherwise, the frame and the entire 
corresponding window are discarded. This sam-
pling algorithm described above allowed us to 
summarize the complete endoscopic video into a 
small subset of high visual quality frames covering 
the entire length of the videos.

UCS model for the automatic grading of still 
frames
The next component of our system is a model 
developed to automatically grade UC on colonos-
copy videos. This model consisted of two compo-
nents: a CNN trained to automatically score the 
severity of UC on still frames, given their visual 
appearance, and an aggregation algorithm, which 
allowed our model to summarize the individual 
predictions of each individual frame into a single 
score for an entire colon section.

Training of the CNN for automatic scoring of UC.  
We trained a model for the automatic estimation 
of UC. This model was trained in a similar fash-
ion to previous approaches that model automatic 
scoring of UC as a binary classification task.21,20 
The fundamental difference between our model 
and previous efforts is that our model was not 
trained using frames that were carefully selected 
and graded by an expert gastroenterologists. 
Instead, we used frames that were automatically 
extracted using the QC model described above, 
and we assigned an MCES weak label to them. 
These labels are obtained automatically by get-
ting a hold of the colon section associated with 
each frame using a text detection algorithm and 
by pairing it with the MCES grade obtained 
from the clinical trials (see Apendix A for a 
detailed description of the pre-processing stage). 
These readings are not associated with a specific 
frame driving the MCES diagnosis, but rather to 
the subset of the video covering a colon segment, 
thus they represent weak labels. The scoring 
model is trained as a binary classifier with the 
task to discriminate between frames correspond-
ing to an MCES below or above a pre-specified 
threshold.

Deployment of the end-to-end scoring system 
on full endoscopic videos
After training the individual components of the 
end-to-end scoring system (the QC model and 
the UCS model), we evaluated the MCES in a 
set of videos that were not used for training the 
system. The scoring of an endoscopic video 
(Figure 4) is performed as follows: (1) a subset of 
informative frames is sampled from the video 
using the QC model, (2) the estimated UC sever-
ity for each frame is assessed using the UCS 
model, (3) the full MCES of a colon subsection 

Figure 3. Overview of the training of the Quality Control (QC) model.
The QC model is trained using still frames obtained from the Eucalyptus clinical trial. Frames are manually annotated as 
readable or non-readable by two annotators. The output of the model is a quality score reflecting how readable a frame is.
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is obtained by aggregating the individual scores 
of each frame. This aggregation is performed by 
averaging the scores of all frames belonging to a 
colon subsection.

Results

Performance of the QC model
We evaluated the performance of the proposed 
QC model on the task of discriminating between 
readable and non-readable frames. This evalua-
tion was performed using a total of 5000 frames 
obtained from Eucalyptus that were manually 
labeled by two non-expert readers. Those frames 
for which the readers did not agree were removed 
from the analysis, leaving 4371 frames to train 
and evaluate the QC model. The remaining 
frames were split in 5 folds, each one with its own 
training, tuning, and external validation sets 
(70%/20%/10%, see Appendix 2 for a full descrip-
tion of the splitting strategy). Our proposed QC 
model shows an excellent performance as demon-
strated by the receiver operating characteristic 
(ROC) curve in Figure 5 with an AUROC of 
0.98 ± 0.0022.

Evaluation of the UCS prediction algorithm on 
raw videos
Evaluation of the MCES prediction algorithm was 
performed on raw colonoscopy videos obtained 
from the Hickory and Laurel clinical trials. A total 
of 1672 sigmoidoscopy videos obtained from 286 
different sites and corresponding to 1105 patients 
were selected for analysis. Data were split in 5-folds 
following the strategy described in Appendix 3. The 
UCS model was trained on multiple binary tasks, 
each one discriminating above a determined thresh-
old (MCES ⩾ 1, MCES ⩾ 2 or MCES ⩾ 3). The 
models we trained obtained an AUROC of 
0.84 ± 0.0237 for MCES ⩾ 1 with a (precision 
0.92 ± 0.021, recall 0.79 ± 0.060), an AUROC of 
0.85 ± 0.0222 for MCES ⩾ 2 (precision 0.85 ±  
0.048, recall 0.81 ± 0.070) and 0.85 ± 0.0099 for 
MCES ⩾ 3 (precision 0.81 ± 0.075, recall 0.77 ±  
0.050). The ROC curves for these experiments are 
presented in Figure 6.

Evaluation of the UCS model on still frames 
obtained from an external data set
We also evaluated the performance of our UCS 
model on the task of scoring individual still 

Figure 4. Overview of the end-to-end MCES scoring on full endoscopic videos.
First, readable frames are extracted from the video using the QC model. Each individual frame is passed through the UCS model 
to obtain an MCES score per-frame. The individual scores are aggregated and summarized into a single MCES per colon section.
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frames. The evaluation of our models on still 
frames was performed using the publicly available 
HyperKvasir data set. The HyperKvasir data set 
contains a set of labeled still frames correspond-
ing to MCES scores of 1 (201 frames), 2 (444 
frames), and 3 (133 frames). For the evaluation 
on individual still frames, we used the UCS model 
trained using raw endoscopic videos from clinical 
trials, but since the frames of the HyperKvasir 
data set already contains carefully selected endo-
scopic frames the QC component of our model 
was not used for this experiment. Our UCS model 
trained on raw colonoscopy videos obtained 
AUROCs of 0.82 ± 0.0212 for MCES ⩾ 2 (pre-
cision 0.92 ± 0.024, recall 0.73 ± 0.78) and 
0.83 ± 0.0395 (precision 0.39 ± 0.061, recall 
0.84 ± 0.060) for MCES ⩾ 3. As a comparison, 
we trained and evaluated CNN models using the 
official splits of the HyperKvasir data set. These 
models are trained and evaluated only on the 
HyperKvasir data set and did not include the data 
obtained from the clinical trials. These models 
were trained using a standard CNN architecture 
(Resnet50) in a similar fashion as previous 
approaches operating on single frames.20,21 The 
models trained and evaluated on HyperKvasir 
obtained an AUROC of 0.85 ± 0.0273 and 
0.91 ± 0.0398 for MCES ⩾ 2 and MCES ⩾ 3, 
respectively. The ROC curves for these experi-
ments are plotted on Figure 7.

Finally, the models trained on single frames 
obtained from HyperKvasir were evaluated on 
the full raw endoscopic videos obtained from the 
clinical trials. The HyperKvasir models obtained 

an AUROC of 0.72 ± 0.0253 for MCES ⩾ 2 
and 0.77 ± 0.0208 for MCES ⩾ 3.

Discussion
In this work, we have presented an end-to-end 
DL-based system to automatically assess the 
severity of UC from endoscopic videos. Differently 
from previous efforts using AI to grade MCES, 
our approach does not leverage high-quality clini-
cally meaningful frames, carefully extracted and 
annotated by medical experts. Instead, it directly 
operates on raw endoscopic videos, which are 
automatically pre-processed, screened for visual 
quality, and finally fed to a CNN for training. 
The proposed methodology is characterized by its 
accurate and robust performance, as shown in the 
presented experiments. Our study was evaluated 
on a large and diverse data set that was collected 

Figure 5. Receiver operating curve (ROC) showing 
the performance obtained on the binary task of 
discriminating between readable and non-readable 
frames obtained from videos of the Eucalyptus 
clinical trial.

Figure 6. Receiver operating curve (ROC) obtained 
for the evaluation of models trained for the automatic 
scoring of MCES of full videos obtained from the 
Hickory and Laurel clinical trials. Top: performance of 
the models trained on the Hickory and Laurel clinical 
trials. Bottom: performance of the models trained 
using frames obtained from the HyperKvasir data set.
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and annotated at multiple sites and obtained from 
different countries.

Availability of large databases of annotated images 
is a major bottleneck when engineering AI-based 
diagnostic tools for medical imaging. This challenge 
is particularly evident when developing end-to-end 
systems for endoscopic image analysis: finding 
informative and clinically significant frames is a 
challenging problem by itself and incredibly time-
consuming. Our study shows that devising an end-
to-end approach operating on full videos is a feasible 
alternative solution that does not require the strenu-
ous, tedious, and time-consuming task of manually 
selecting and scoring individual frames, which can 
only be performed by expert gastroenterologists.

Developing end-to-end systems operating directly 
on endoscopic videos is a substantially more chal-
lenging task compared to performing predictions 

on single images or still frames. The main chal-
lenge when operating directly on raw videos is to 
pinpoint the clinically informative frames within 
each video, as it has been reported by multiple 
previous works in the field.27–29

In Figure 8, we present a comparison between 
our approach and the previously published stud-
ies on automatic MCES prediction by Ozawa and 
colleagues,21 Stidham and colleagues,20 Yao and 
colleagues,22 and the concurrent work of Gottlieb 
and colleagues.23 Our motivation is to enable a 
fair assessment of our approach in comparison to 
previous efforts, but it is important to note that 
the experimental conditions between these stud-
ies are remarkably different.

The first major difference between our work and 
the aforementioned models for automatic MCES 
prediction is the nature of the training data sets. 
Previous models were trained using carefully 
curated data sets, where clinically representative 
frames of each MCES score were extracted and 
annotated by experts. These frames are manually 
selected as representative examples of each 
MCES grade, a tedious time-consuming annota-
tion task performed by experienced gastroenter-
ologists. We have proposed instead to use weak 
labels automatically obtained from a clinical trial. 
Our experiments show that this is a reasonable 
alternative to train an AI-based system for MCES 
grading. Weak labels contain extremely valuable 
information that can be leveraged when training 
AI models and although weak labels cannot be as 
informative as carefully curated and annotated 
still frames, our experiments suggest that this lim-
itation is compensated by the amount of images 
and the diversity in appearance that can be lever-
aged when using a weakly supervised approach.

The second important difference highlighted in 
Figure 8 between our work and previous efforts is 
the fact that our study was conducted on a highly 
heterogeneous set of endoscopic videos, collected 
from hundreds of different sites with various 
devices and assessed by hundreds of investigators. 
Conducting our experiments in such a diverse 
setting, allows us to test our models in a setting 
closer to the real-world application. In Figure 8, 
we can observe that the diversity of the data set 
used for the training and evaluation of MCES 
prediction models has a remarkable impact in the 
final performance of this models. Each of the 
models trained using our weak labeling strategy 
were trained using an average of ~200,000 frames 

Figure 7. Receiver operating curve (ROC) obtained 
for the evaluation of models trained for the automatic 
scoring of MCES on individual frames obtained from 
the HyperKvasir data set. Top: performance of the 
models trained on the Hickory and Laurel clinical 
trials. Bottom: performance of the models trained 
using frames obtained from the HyperKvasir data set.
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which contrasts with the 778 frames used to train 
the models using the HyperKvasir data set.

AI-based systems for diagnosis are prone to be 
biased, and to exploit confounding factors when 
trained on data sets obtained from a limited 
number of sites.30 Training and evaluating an 
AI-model on heterogeneous clinical trial data, 
makes a successful translation to daily practice 

more likely compared to models trained on data 
collected at a single site. The difference on per-
formance between the models trained on high-
resolution data obtained from single-center data 
sets (Stidham and colleagues, Ozawa and col-
leagues) versus those evaluated on clinical trials 
(Gottlieb and colleagues, Yao and colleagues, 
Gutierrez and colleagues), suggest that single-
center studies might be over optimistic in their 

Figure 8. Graphical summary of the data set characteristics and the experimental results reported by Gottlieb 
and colleagues,23 Ozawa and colleagues,21 Stidham and colleagues,20 Yao and colleagues,22 and by this study.
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results and that those models might suffer from 
drops in performance when deployed on real-
world data. This hypothesis is supported by our 
own experiments summarized in Figures 6 and 7 
where models trained and evaluated on the 
HyperKvasir data set have a high performance in 
terms of their AUROC (0.85 for MCES ⩾ 2, 
0.91 of MCES ⩾ 3). However, the exact same 
models resulted in considerably lower AUROCs 
when deployed on clinical trial data (0.72 for 
MCES ⩾ 2, 0.77 for MCES ⩾ 3). These results 
suggest that the acquisition and annotation of 
diverse and large data sets of colonoscopy videos 
is a requirement for the deployment of AI mod-
els which can be robustly applied in standard 
clinical settings where the appearance of endo-
scopic videos is diverse. Our models and evalua-
tions were limited to the binary case, where the 
prediction performed by the AI model is the 
probability of a video being above a certain 
MCES score. These models could potentially be 
useful as a prescreening tool to identify patients 
above certain MCES; however, methods that 
provide a full ordinal score would be more useful 
for clinical applications.

In this work, we have focused on the problem of 
automated grading of endoscopic videos. Our 
results encourage us to believe that AI-based sys-
tems have potential to expand our capabilities to 
analyze endoscopic videos. AI allows a frame-by-
frame analysis of videos, which can in turn lead to a 
more accurate assessment of disease burden. 
Presumably, disease burden is important for UC 
patients, as demonstrated by recent scoring systems 
for UC which aim at including information regard-
ing the location and extent of the disease.30,31. 
Although this study focused on UC, a similar 
framework might be extended to Crohn’s disease, 
whose disease burden is still evaluated in a subopti-
mal way by means of either the Simple Endoscopic 
Score for Crohn’s disease (SES-CD) or the Crohn’s 
Disease Index of Severity (CDEIS).32

Automation through AI can bring great benefits 
in terms of standardization of complex diagno-
sis such as UC and CD, but the vision inspiring 
this work goes beyond automation. AI-based 
diagnostic tools could greatly facilitate the early 
identification of IBD patients as well as speed-
ing-up patient recruitment for clinical trials, 
which is key to enable shorter and cost-effective 
trials. Moreover, we believe that leveraging AI 
to extract insights from endoscopic data as well 

as from other data sources like histology, spatial 
transcriptomic, stool proteomics, etc, could 
substantially help to improve our understand-
ing of the pathogenesis of UC and CD, which is 
still very limited and will require to combine 
bits of information from all these different types 
of data.

Conclusion
We have developed an end-to-end AI CAD sys-
tem for the automatic assessment of MCES from 
endoscopic videos collected by multiple sites in 
the context of clinical trials targeting UC. The 
high agreement between the proposed end-to-end 
CAD system for MCES prediction and human 
reviewers show that such a tool for automatic 
grading can be trained without having to create 
time-consuming and expensive data sets consist-
ing of frames handpicked from each video by 
expert gastroenterologists.

A full automation of endoscopic grading system 
assisted by AI has the potential to lead to faster, 
more repeatable and objective endoscopic assess-
ments, which in turn can lead to more efficient and 
standardized diagnosis of UC in the clinical setting.

Future work will focus on further developing the 
models presented here by leveraging larger 
cohorts of endoscopy videos from UC patients. 
Moreover, we plan to extend the proposed 
approach to target the identification of the MCES 
components such as erythema, friability, ulcers, 
and spontaneous bleeding, that would pave the 
way for a more granular automated perspective of 
the UC status of a patient compared to a single 
number such as the MCES.
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Appendix 1

Video pre-processing and weak label extraction
As a first step, a suite of pre-processing algorithms 
(Figure 9) was applied to the entire colonoscopy 
data set obtained from the Eucalyptus, Hickory, 
and Laurel clinical trials.

1. The FOV and imprinted text within each 
frame were identified. Each frame was sub-
sequently processed to mask out the text in 
the image. An FOV mask was created by 
applying minimum thresholding to the 
average frame per video and its standard 
deviation, followed by the union of both 
obtained masks. Undesired imprinted text 
on frames was masked out, after identifica-
tion with the Efficient and Accurate Scene 
Text Detector (EAST) CNN.33

2. Images were cropped to remove regions 
outside the FOV. The cropped image was 
resized to the standard size expected by the 
architecture of the CNNs (224 × 224 × 3 
pixels).

3. Each video belonging to the Hickory and 
Laurel trials contained time stamps corre-
sponding to the start and end point of each 
colon section within the video. This infor-
mation was encoded in the form of text 
appearing within the frame. We used these 
time stamps to automatically extract the cor-
responding colon section for each frame of 
the video and to establish a link to the colon-
section-wise MCES provided by the central 
readers. These assignments of MCES scores 
to larger video segments (one per colon sec-
tion) constitute weak labels that are further 
used to train the UC grading algorithm.
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Appendix 2

Implementation details
The framework was implemented using Python 
3.6, Pytorch 1.16, OpenCV 4.01, and Pytorch 
Lightning 0.9.1. All DL models were trained 
for using a ResNet50 architecture,34 by transfer 
learning35 from ImageNet36 weights with fine 
tuning. The Adam optimizer37 with a learning 
rate of 1e–7 was employed. Data augmentation 
was performed, comprising transformations 
such as scaling, translations, flipping, transla-
tions, contrast normalization, rotations, and 
brightness alterations. The loss function used 
for training is binary cross-entropy. Training 
was stopped when no increase in the area under 
the receiver operating characteristic curve 
(AUROC) computed at the frame-level on the 
tuning set was observed after 10 consecutive 
epochs.

Appendix 3

Model evaluation
A 5-fold cross-validation scheme (Figure 10) was 
used to train and evaluate the QC and UCS models. 
The splitting of the data set is performed as follows:

1. We split the full data set in 5 randomly selected 
subsets by applying a site-level constraint. 
This constraint ensures that data from a single 
site does not feature in multiple subsets.

2. We divided the 5 random subsets into three 
groups: training (3 subsets), tuning (1 sub-
set), and testing (1 subset). The model is 
trained using the training group, the tuning 
subset is used to select an optimal set of 
hyperparameters and the final evaluation is 
performed on the testing set.

3. We repeat the step 2 keeping the testing group 
fixed, and using a different validation group.

4. We repeat the whole procedure 5 times. 
Every time a different proportion of the data 
set is used as either the development or test-
ing data set.

Figure 9. A set of pre-processing steps are applied to each video in the dataset: (a) field of view (FOV) and text 
masks are obtained for each frame, (b) each frame is cropped to remove areas outside the FOV, and undesired 
imprinted text is masked out, and (c) the text identifying the current colon section is identified, and extracted to 
obtain a weak label associated to the frame.
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Figure 10. Schematic representation of the splitting strategy used to train and evaluate all the models 
presented in this work. Five different splits of the full data set are created. For each split we conduct 4 
experiments, each one using a different part of the data set as the tuning data set. For each experiment, we 
train and evaluate 20 models in total, each one with its own training and validation set. For each experiment, 
the testing set is used only for the final evaluation and not for the selection of the optimal model or 
hyperparameter tuning.

Following the procedure described above, we 
perform 20 independent runs for each one of 
our experiments, and we report mean and 
standard deviation values. We assessed the per-
formance of the models by computing the 
AUROC over the testing sets. The QC model 

was trained and evaluated using only data from 
the Eucalyptus clinical trial, whereas the end-
to-end UC prediction model was trained on 
data from Hickory and Laurel. AUROC scores 
were computed using Python and the scikit-
learn library.
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