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Abstract
In the application recommendation field, collaborative filtering (CF) method is often considered to be one of the most effective
methods. As the basis of CF-based recommendation methods, representation learning needs to learn two types of factors:
attribute factors revealed by independent individuals (e.g., user attributes, application types) and interaction factors contained
in collaborative signals (e.g., interactions influenced by others). However, existing CF-based methods fail to learn these two
factors separately; therefore, it is difficult to understand the deeper motivation behind user behaviors, resulting in suboptimal
performance. From this point of view, we propose a multi-granularity coupled graph neural network recommendation method
based on implicit relationships (IMGC-GNN). Specifically, we introduce contextual information (time and space) into user-
application interactions and construct a three-layer coupled graph. Then, the graph neural network approach is used to learn
the attribute and interaction factors separately. For attribute representation learning, we decompose the coupled graph into
three homogeneous graphs with users, applications, and contexts as nodes. Next, we use multilayer aggregation operations
to learn features between users, between contexts, and between applications. For interaction representation learning, we
construct a homogeneous graph with user-context-application interactions as nodes. Next, we use node similarity and
structural similarity to learn the deep interaction features. Finally, according to the learned representations, IMGC-GNN
makes accurate application recommendations to users in different contexts. To verify the validity of the proposed method, we
conduct experiments on real-world interaction data from three cities and compare our model with seven baseline methods.
The experimental results show that our method has the best performance in the top-k recommendation.
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1 Introduction

People’s reliance on the mobile internet has promoted the
rapid development of applications (apps). According to
statistics1, as of 2021, the number of apps on Google Play
and App Store had reached over 3.3 million and 2.1 million,
respectively. In addition, a large number of lightweight
applications, such as WeChat mini-programs, are active
on the mobile internet. However, the massive number
of mobile apps has caused the problem of information
overload while satisfying the needs of human production

1https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/
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and life [1–3]. Therefore, it is meaningful to make accurate
recommendations for users.

As the most effective recommendation method, collab-
orative filtering (CF) based method first constructs user
and item representations. Then, it predicts user preferences
by using historical interaction information (e.g., interaction
frequency, ratings), and gives the recommendation results.
Therefore, representation learning is the basis of CF-based
recommendation methods.

However, the motivation for user-app interaction is
usually obscure and complex in the real world. The
motivation may come from user or app attribute factors
(e.g., app type, user’s gender or age). For example, young
people like to play shooting games. The user’s age and
the category of the app are the motivations for this
interaction. In addition, motivation may also arise from
interaction factors in collaboration. For example, authors
often check their email, which is driven by the fact that
editors use email to communicate with other authors. To
better capture user preferences (interaction motivation), the
learned representations should reflect both attribute and
interaction factors.

In recommender systems, most of the information inher-
ently has graph structures, and graph neural network (GNN)
has excellent performance on graph-structured data. There-
fore, GNN has received considerable attention in recom-
mendation field in recent years [4]. According to the
kinds of relationships used in the recommendation models,
GNN-based recommendation models can be divided into
single-relationship and multi-relationship recommendation
models. For single-relationship recommendation models,
the mainstream approach is to embed the user or app
attributes into the corresponding nodes. Then, the model
aggregates the information according to the edges (interac-
tions) in the graph. This modeling, which draws directly
on historical interaction data, is coarse-grained. For multi-
relationship recommendation methods, the mainstream idea
is to add additional information by introducing other rela-
tionships. For example, Fan et al. [5] fused user-app inter-
action graph with social relationships, and the additional
information contained in social relationships is used to
improve the recommendation performance. However, both
approaches neglect to perform representation learning in
terms of both user/item attribute factors and interaction fac-
tors, respectively. Henceforth, it is difficult to determine
whether the motivation comes from attribute factors or inter-
action factors, resulting in a suboptimal solution for the
recommendation.

Considering the limitations of existing methods, we pro-
pose a multi-granularity coupled graph neural network

recommendation method, IMGC-GNN. IMGC-GNN intro-
duces contextual information into user-app interactions to
construct a three-layer heterogeneous graph. Then, IMGC-
GNN uses a two-tower network structure to perform rep-
resentation learning from the perspective of attribute and
interaction factors. Specifically, (1) for attribute repre-
sentation learning, IMGC-GNN constructs homogeneous
graphs with users, contexts or apps as nodes by iteratively
computating implicit relationships. Then, the model uses
aggregation operations to learn representations between
users, between contexts or between apps. (2) For interac-
tion representation learning, IMGC-GNN constructs inter-
action graphs with user-context-app interactions as nodes
using node similarity. Then, the model uses multi-layer
aggregation to mine interaction representations. (3) Finally,
according to the learned representations of attributes and
interaction, IMGC-GNN makes preference predictions for
users in different contexts and then completes app recom-
mendations. In summary, the main contributions of this
paper are as follows.

1. IMGC-GNN constructs a three-layer heterogeneous
graph (user-context-app) using historical interaction
information. The introduction of contextual information
adds a learning dimension to user-app interactions and
provides a strong support for exploring user preferences
in different contexts.

2. In attribute representation learning, IMGC-GNN con-
structs three homogeneous graphs, including a user
graph, a context graph and an app graph, with the help
of implicit relationships. By defining the iterative cal-
culation of implicit relationships, our model not only
effectively filters negative effects between nodes, but
alleviates data sparsity and cold start problems.

3. In interaction representation learning, IMGC-GNN
constructs an interaction graph taking user-context-
app interactions as nodes. By combining interaction
similarity and structural similarity, our model can learn
deep-level interaction features.

4. We apply IMGC-GNN to real-world datasets of three
cities and conduct a series of experiments. The results
show that our method outperforms other methods.

The remainder of this paper is structured as follows. We
provide a brief overview of the related work in Section 2. In
Section 3, we describe the motivation. Section 4 shows the
framework of the proposed method and then presents our
model in detail. Section 5 demonstrates the experimental
results, and finally, the conclusions and future work are
presented in Section 6.
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2 Related work

2.1 CF-based app recommendationmethods

App recommendation is an important branch of the
recommendation field, and the most commonly used
method is collaborative filtering [6, 7]. Since CF-based
methods are classical similarity-oriented recommendation
methods, the accuracy of similarity calculation is the key to
its performance. CF-based methods can be divided into two
categories: nearest neighbor-based collaborative filtering
and model-based collaborative filtering [8].

Nearest neighbor-based collaborative filtering uses the
historical interaction information of neighbors to make
recommendations [9, 10]. Therefore, the neighbors of
users/items determine the recommendation performance.
And the representation learning of user/item will directly
affect the discovery of optimal neighbors [8]. Lin et al.
[11] calculated the similarity between apps using their
description text. Then, they proposed a recommendation
method based on app similarities. This method taked
into account both the topic distributions of the apps and
user preferences, and then generated recommendation lists
for target users. Similar to Lin et al. [11], Liu et al.
[12] proposed a PERREC model by applying app text
descriptions to permission recommendations. This model
uses text mining and data fusion methods to recommend
appropriate permissions for users based on the relevant
description of the app. From the perspective of app function,
Xu et al. [13] utilized users’ functional requirements to
calculate the user similarity and then completed accurate
recommendations.

Unlike the nearest neighbor-based recommendation
approaches, model-based collaborative filtering maps user-
app interactions into vector spaces. User-app interactions
are modeled as inner products of potential vectors. It
is worth noting that the interaction data are extremely
sparse, which is not conducive to recommendations. To
solve this problem, some scholars used the similarities
between different users/items to complement the sparse
data. For example, Sun et al. [14] proposed the neighbor
interaction aware graph convolution networks (NIA-GCN)
by explicitly modeling the relationships between neighbors
to complement the sparse data. Huang et al. [15] proposed
a new algorithm called low-rank sparse cross-domain
(LSCD) by dividing features into domain features and
shared features. Then, LSCD used the shared features
across domains to supplement sparse data. Sun et al. [16]
defined the neighbors of users and apps using collaborative
relationships and supplemented the sparse interaction data
with neighbors.

It is not difficult to find that the above two meth-
ods require the use of similarities between apps, users

or interactions to achieve accurate recommendations. The
effectiveness of representation learning will directly affect
the similarity calculation. Therefore, accurate and effective
representation learning is beneficial to improve the rec-
ommendation performance. Recently, utilizing graph neural
network methods in recommender systems has become a hot
research topic because of its effective mining of interaction
data (graph-structured data).

2.2 Graph representation-based app
recommendationmethods

With the great achievements in graph neural networks
(GNN) [17, 18], recent works have attempted to apply
GNN in recommender systems to learn user and item
representations. Based on the types of relationships
involved in recommendations, graph representation-based
recommendations can be divided into single-relationship
recommendations and multi-relationship recommendations.

As a basic recommendation model, single-relationship
recommendation mainly uses user-app interactions for col-
laborative filtering. And the method performs user/app rep-
resentation learning with the help of embedding or deep
learning [19]. Wei et al. [20] treated the recommendation
problem as a link prediction task for a graph and proposed
a recommendation framework (GSL4Rec) that integrates
user-item interactions. Ying et al. [21] proposed an embed-
ding model based on random walk and graph convolutional
network. This model shows excellent performance in large-
scale network recommendation. Similar to GSL4Rec [20],
Wang et al. [22] used graph neural methods for recom-
mendations in user-item bipartite graphs and proposed the
NGCF recommendation method. Li et al. [23] used graph
data to explore implicit relationships and made accurate rec-
ommendations. The common point of the above methods is
that they only use one relationship for recommendation.

However, mining users’ preferences based on a single
relationship is crude. Moreover, it often leads to poor perfor-
mance due to the sparsity of interaction data. Therefore, many
scholars have introduced multiple relationships into recom-
mendation models. The multi-relationship recommendation
model not only effectively alleviates the data sparsity problem,
but also increases the dimensionality of interaction learning.
Furthermore, the introduction of the attention mechanism
[24, 25] can further improve the performance of multi-
relationship recommendations. Guo et al. [26] proposed a
trust-based recommendation system (T-MRGF). This model
learn feature vectors using user-item interaction graphs
and user-user trust relationship graphs. Then, the learned
feature vectors are fused to make recommendations. Ahma-
dian et al. [27] introduced trust relationships and label
information to recommenders and proposed a deep learning-
based recommendation method. Fan et al. [5] proposed a
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graphical neural network recommendation framework
(GraphRec) that incorporates social graphs and interaction
graphs. In contrast to Fan et al. [5], Xia et al. [28] defined
interaction relationships in different forms (browsing, pur-
chasing, etc.) and use graph neural networks to explore com-
plex multi-behavior patterns of users. However, the essence
of the method is still to introduce multiple interaction
relationships for improving recommendation performance.

In summary, introducing multiple relationships (addi-
tional information) can effectively improve recommenda-
tion performance. However, most approaches focus on
joint learning of multiple relationships, while neglecting
to explore user interaction motivation from attribute and
interaction perspectives. Therefore, this paper performs rep-
resentation learning in terms of attribute and interaction
factors to explore user interaction motivation.

3Motivation

In this section, we describe the motivation of the proposed
method in detail.

3.1 Interactionmotivation

Motivation is people’s desire to accomplish a particular
behavior (e.g., play a mobile game for 30 min tonight) or a
certain type of behavior (e.g., play a mobile game for 30 min
every night). This desire drives people toward their expected
goal. Professor Fogg, the founder of behavioral design,
divided the sources of motivation into 3 types: person (P),
action (A), and behavior circumstance (C), called the PAC
model [29]. Specifically, (1) motivation may stem from the
person themselves, which means that people do what they
want to do in their hearts. (2) Motivation may arise from
action, which refers to the user’s desire to act in order to
gain a benefit or avoid a penalty. (3) Motivation may also
originate from the circumstance. This refers to the behaviors
of users influenced by the environment they are in. Fogg
believes that PCA model is the basis for understanding
all human behaviors. Based on the above theories and
combined with our understanding of users’ motivation for
using apps, we consider that the motivation of users using
apps can be divided into two categories: attribute factors and
interaction factors.

Attribute factors are motivations that derive from the
users themselves (P in the PAC model), namely, the
motivation of the user’s behavior is influenced by certain
attributes of the user/app. This motivation reflects the user’s
preferences (i.e., matches the user’s interests), which is in
line with the user’s nature. For example, female users prefer
to shop at Vipshop. Attribute factor-driven behaviors that
can bring pleasure and fulfillment to users will more easily

lead to a flow state [30]. This is consistent with intrinsic
motivation in psychology [31].

Interaction factors are influenced by external stimuli and
consist of two main parts: the reward or punishment incentives
(A in the PAC model) and the user’s circumstance (C in
the PAC model). (1) Reward or punishment incentives:
users want to be rewarded or avoid penalties for taking
action, but do not necessarily enjoy the action, such as
exercising to lose weight. Rewards can be tangible (money,
prizes, certificates, etc.) or intangible (praise, support,
recognition, etc.). (2) User’s circumstance: users originally
have no or weak motivation but are stimulated by the
surrounding environment, thus triggering the obedience-
following effect, such as brushing hot spots and chasing
hot dramas. It is worth mentioning that these behaviors
are driven and pulled by the user’s need for social respect,
which is consistent with extrinsic motivation in psychology
[31].

Therefore, we hope to perform representation learning
from both attribute and interaction perspectives to better
explore the motivation of user behavior and improve
recommendation accuracy. Based on this motivation, we
design IMGC-GNN.

3.2 Context information

Our model introduces context information (time,
space/location) into user-app interactions. This is because
most of the existing app recommendation methods often
use the user and app attributes or the interactions between
them for modeling to explore user preferences. However,
by combing real-world datasets, we observe that user-app
interactions show highly aggregated characteristics in spa-
tiotemporal dimensions. In other words, the interaction
preferences between users and apps are not constant but are
influenced by context information. Therefore, we integrate
context information into IMGC-GNN to accurately mine
user preferences and thus improve the performance of rec-
ommendations. In our study, time and location (longitude
and latitude) are referred to as context information.

We present the temporal and spatial aggregation of user-
app interaction data in the real world, as shown in Figs. 1
and 2. Figure 1 illustrates the spatial characteristics of user-
app interactions by a heatmap. To be specific, Fig. 1(a)
shows the spatial characteristics of a user using different
apps. For example, a user always uses the Metro app in
subway stations and uses the WalMart app at WalMart
Stores. Figure 1(b) shows the spatial characteristics of an
app being used by different users. For instance, the Metro
app is always used by different users in subway stations, and
the WalMart app is always used at WalMart Stores. Figure 2
plots the temporal characteristics of user-app interactions
by a scatter plot. Specifically, Fig. 2(a) represents the time
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Fig. 1 Spatial aggregation of user-app interactions. (a) left: A user’s location when using various apps, from 13:00 p.m. to 15:00 p.m. (b) right:
The location of an app when being used, from 8:00 a.m. to 10:00 a.m

characteristics of a user using different apps. For instance,
a user always uses the Outlook app to check email at 9:00
a.m. and uses the Menulog app to order food at 12:00 p.m.
Figure 2(b) shows the time characteristics of an app being
used by different users. For example, the Outlook app is
always used by users at 9:00 a.m., and the Menulog app is
always used at 12:00 p.m.

In summary, for users, their daily lives always have a
certain regularity. Thus, user-app interactions often overlap
with the time and location of their activities, showing regu-
larity. For apps, they are always used in contexts appropriate
to their functions, which also shows regularity. Therefore,

introducing context information to app recommendation
modeling will help to accurately mine user preferences and
improve recommendation performance.

3.3 Iterative implicit relationships

When performing attribute representation learning, IMGC-
GNN defines a new iterative method of computing implicit
relationships to precisely mine the neighbors of users,
contexts, and apps. We hope that the introduction of implicit
relationships can complement sparse explicit relationships
and filter the noise from explicit relationships. In our

Fig. 2 Temporal aggregation of user-app interactions. The horizontal axis is the time (unit:10 min). The vertical axis is the number of interactions.
(a) left: Number of times the same user uses apps at different time intervals. (b) right: Number of times the same app is used by users at different
time intervals
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study, relationships with direct connections are defined as
explicit relationships, otherwise, they are defined as implicit
relationships. To better describe these two relationships, we
take Fig. 3 as an example. In this figure, u2 and u3 use
a3; u3, u4 and u5 use a4. Therefore, the explicit users of
u3 are u2, u4 and u5, that is, u3 is explicitly related to u2,
u4, and u5. Obviously, the explicit relationship is shallow,
as it ignores the frequency of user-app interactions and the
deeper level of excavation. Furthermore, u3 uses a4 more
frequently than u4, so using u4 to predict the preference of
u3 is inaccurate. However, the usage frequency of u2 and u3
on a3 is the same, that is, u2 and u3 have similar preferences.
u2 uses a1 and a2 more frequently, which is the same as u1.
Although there is no direct connection between u1 and u3,
through u2 we can infer that u1 has a high similarity with u3.
Relationships without direct connections are called implicit
relationships, i.e., there is an implicit relationship between
u1 and u3.

Based on the above analyses, we draw the following
conclusions. (1) Explicit relationships are not all positive,
such as u3 and u4. (2) Using all explicit relationships
directly will lead to noise, which is extremely unfavorable
to recommendations. (3) Implicit relationships can be used
as a complement to explicit relationships, such as u3
and u1. The correct introduction of implicit relationships
will help to improve recommendation accuracy. Therefore,
we define a newly iterative way of calculating implicit
relationships. In this way, the proposed model can
complement sparse interaction data and avoid the noise from
explicit relationships.

4Methodology

In this section, we first give the general definition and
notation description of our study, and then describe the
IMGC-GNN model in detail.

4.1 Problem definition and notations

4.1.1 Problem definition

The goal of our study is to recommend apps for a target
user who is in a specific context to meet his or her needs.
We give its mathematical description. For a given user set
U , an app set A and a context set C, our task is to make an
app recommendation list Ru for user u in context c, where
Ru = {a1, a2 · · · an|uc, aiεA, cεC, uεU}, n is the length
of recommendation list, and |uc indicates that user u is in
context c.

To achieve the above goal, IMGC-GNN constructs a
user-context-app graph by introducing context information.
Then, IMGC-GNN learns from attribute and interaction
perspectives to mine the needs and preferences of users in
different contexts. Finally, IMGC-GNN recommends top-k
apps to the target user according to the current context. The
recommendation is based on the probability that the target
user u prefers an app a in a specific context c and it is a
regression problem. Thus, it is crucial to accurately predict
a user’s preference in a certain context, which directly
determines app recommendation performance.

Fig. 3 User-app interaction: An interaction scenario in which users use apps. The weight of each edge is the number of times a user uses an app
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4.1.2 Notations

To clearly represent our model, we give the descriptions of
notations used in IMGC-GNN, as shown in Table 1.

4.2 Model

In this subsection, we describe the IMGC-GNN frame-
work, as shown in Fig. 4. Our model contains four parts:
context-based coupled graph construction, attribute repre-
sentation learning, interaction representation learning, and a
prediction layer.

(1) Context-based coupled graph construction. User-app
interaction data in specific contexts are modeled as a
three-layer heterogeneous graph Guca . The nodes in
three layers of this graph are users, contexts, and apps.

(2) Attribute representation learning. IMGC-GNN con-
verts the coupled graph Guca into three homogeneous
graphs (user graph, context graph and app graph)
by iteratively computing implicit relationships. Then,
IMGC-GNN performs representation learning for the
nodes in these three homogeneous graphs.

(3) Interaction representation learning. IMGC-GNN con-
structs an interaction graph Ginte with user-context-
app interactions as nodes. Then, it uses graph neural
network to mine interaction representations.

(4) Prediction layer. IMGC-GNN uses features obtained
from attribute and interaction representation learning
to complete recommendations.

Next, we will introduce each of the above four parts.

Table 1 The descriptions of symbols used in our study

Symbols Descriptions

U The set of users.

A The set of mobile applications.

C The set of contexts.

T The set of time slots.

u A target user, u ∈ U .

a A target app, a ∈ A.

c A context, c ∈ C.

Ru The app recommendation list for user u.

Guca Heterogeneous graph with users, contexts and

apps as nodes.

Ginte Interaction graph with user-context-app

interactions as nodes.

G∗
u Homogeneous graph with users as nodes.

G∗
a Homogeneous graph with apps as nodes.

G∗
c Homogeneous graph with contexts as nodes.

4.3 Context-based heterogeneous graph
construction

IMGC-GNN introduces context information into user-
app interactions and constructs the coupled graph
Guca=〈Vuca, Euca〉, as shown in Fig. 5. Vuca denotes the set
of vertices, and Euca represents the set of edges.

(1) The set of vertices Vuca . Vuca contains three types
of nodes: user u, context c and app a, Vuca =
{U ∪ C ∪ A}. We splice the embedding of the one-
hot code of the user’s gender, age and the device.
Then, we use the result as the user’s code. For the
app node, we select its relevant information, such
as attributes and developers, and perform the same
operations to generate the code of app. In our model,
context information refers to the location (latitude
and longitude) and time when a user u interacts with
an app a. Thus, context nodes contain location and
temporal information of the interaction. We first use
a grid to divide the latitude and longitude of the city.
The division interval of latitude and longitude is 0.005
degrees, that is, the true distance corresponding to the
latitude and longitude of each interval is approximately
0.555 km and 0.427 km, respectively. Then, we divide
each day into 8 time periods, T = {1:00-5:00, 5:00-
9:00, 9:00-11:00, 11:00-14:00, 14:00-17:00, 17:00-
19:00, 19:00-22:00, 22:00-1:00}. A context consists
of a location grid and a time period. We splice the
embedding of the one-hot code of the grid location and
the time period. Then, we use the result as the context
code. The length of the node code for users, contexts
and apps is 64 bits.

(2) The set of edgesEuca . If user ui uses app am in context
cj , the edge weight between ui , cj and am is added to
1. The edge weight is 0 indicates that there is no edge.

4.4 Attribute representation learning

4.4.1 Homogeneous graph construction

To better explore the attribute factors (intrinsic motivation)
of graph Guca , we decompose the coupled graph into
three homogeneous graphs using implicit relationships: user
graph G∗

u, context graph G∗
c , and app graph G∗

a . The
decomposition ofGuca consists of four main steps, as shown
in Fig. 6.

Step 1: We decompose the three-layer coupled graph
Guca into three two-layer heterogeneous graphs Guc, Gca ,
and Gua . As an example, Guc is generated by removing the
nodes of one layer (app) in Guca while keeping the nodes
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Fig. 4 Architecture of IMGC-GNN model

and edges of the other two layers (user and context). Gca

and Gua are generated in the same way.
Specifically, (1) Guc is a graph with users and contexts

as nodes. Users’ life activities are regular, i.e., users will

Fig. 5 Diagram of user-context-app coupled graph: users use different
apps in different contexts

always be in a fixed place at a fixed time. Similarly, a
context always appears regularly in the daily life of a user.
Therefore, we use Guc to explore the regularity between
users and contexts. (2)Gca is a graph with contexts and apps
as nodes. The functions provided by an app need to meet
the requirements of the context, and a particular context
requires the support of a certain type of app. Henceforth, we
use Gca to mine the adaptive relationships between contexts
and apps. (3) Gua is a graph with users and apps as nodes.
Users choose apps that match their preferences, and each
app has its potential users. Thus, we use Gua to learn the
selective preferences between users and apps.

Step 2: We decompose Guc, Gca and Gua into
six homogeneous weighted graphs to explore the node
relationships. Taking Guc as an example, we disassemble it
into two graphs, Gu and Gc. Gu is a graph with users as
nodes. If ui and uj appear in the same context, then there is
an edge eij ∈ Eu with a weight wij > 0. wij indicates the
relationship strength between ui and uj . Similarly, Gc is a
graph with contexts as nodes, and the edge weight denotes
the relationship strength between two contexts.

How to define the edge weights in the six homogeneous
graphs directly determines the mining of node relationships,
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Fig. 6 Details of homogeneous graph G∗
u, G

∗
c , G

∗
a construction

which is crucial. Taking Gu as an example, the edge weight
wij is calculated as follows.

wij =
Ymax − 1|Dij |

∑
cb∈Dij

∣
∣yib − yjb

∣
∣

Ymax
(1)

where Ymax is the maximum value of the edge weights in
Guc (e.g., Ymax=9 in Fig. 3). Dij is the set of nodes that are
connected with both ui and uj . |Dij | is the number of nodes
in Dij . yib is the number of times that ui appears in cb. wij

is the value of the explicit relationship between ui and uj .
Step 3: Iterative calculation of implicit relationships.

We iteratively compute the edge weights in each graph to
explore the implicit relationships between nodes, as shown
in (2)–(4).

wl
ij = (1 − θ) wl−1

ij (2)

θ = sigmoid

(
l

∣
∣Dij

∣
∣
ξ

)

(3)

w0
ij = wij (4)

where l is the number of iterations, θ is the loss factor, and
ξ is the penalty factor. θ and ξ are hyperparameters in our
model.

rl
ij denotes the final implicit relationship between ui and

uj , and it is calculated as (5).

rl
ij = δ0w

l
ij + δ1

ui

⊙
uj

∑
ux∈Ni

(
ui

⊙
ux

) (5)

where
⊙

denotes the elementwise product between two
vectors, and ui

⊙
uj is used to measure the feature

similarity between ui and uj . Ni denotes the set of ui’s
neighbors. δ0 and δ1 are hyperparameters, and δ0 + δ1 =
1. Obviously, rl

ij consists of two parts: wl
ij is used to

describe the differences in dependencies between ui and
uj ; (ui

⊙
uj )/

∑
ux∈Ni

(ui

⊙
ux) describes the normalized

similarity between ui and uj . It is worth mentioning that the
addition of the latter term makes the calculation of rl

ij not
entirely dependent on the intermediate node, which is useful
for solving the cold start problem.
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Step 4: We merge the six graphs into three homogeneous
graphs (G∗

u, G
∗
c and G∗

a) according to the node type.

4.4.2 Node aggregation

In this subsection, we aggregate G∗
u, G∗

c and G∗
a ,

respectively, to obtain the node representations. Taking G∗
u

as an example, the aggregation formula used in our model
is shown in (6).

ui = f hi
agg(ui, f

lo
agg(N n

i )) (6)

where ui is the target node and N n
i is the top-n neighbors

of ui calculated according to rl
ij . f

hi
agg and f lo

agg are globally

shared aggregation functions. f lo
agg is used to aggregate the

neighbors of ui , and f hi
agg is the last aggregation between ui

and f lo
agg(N n

i ).

To calculate f lo
agg

(
N n

i

)
, we introduce the attention

mechanism to precisely describe the relationship between
ui and uj , uj ∈ N n

i , which is shown in (7)–(8).

f lo
agg

(
N n

i

) =
∑

uj ∈N n
i

uj × exp
(
Aij

)

∑
um∈N n

i
exp (Aim)

(7)

Aij =
(
ui

⊙
uj

)T

tanh(wlo
u • [

ui || uj

] + blo
u ) (8)

where wlo
u and blo

u are hyperparameters, and || denotes a
concatenation operation between two vectors. tanh is a
nonlinear activation function. Aij describes the importance
of neighbor uj to the target user ui , as shown in (8). For the
high-level aggregation of ui and its neighbors, we use the
following formula.

f hi
agg(ui, f

lo
agg

(
N n

i

)
) = ∅(whi

u •
[
ui + f lo

agg

(
N n

i

)]+bhi
u ) (9)

where whi
u and bhi

u are hyperparameters, and ∅ is the
nonlinear activation function.

We can aggregate more neighbors by stacking more
aggregation layers to obtain a deeper representation. The
stacking formula is defined as (10).

ud
i = f hi

agg(u
d−1
i , (f lo

agg

(
N n

i

)
)d−1) (10)

For graphs G∗
c and G∗

a , we calculate cd
i and ad

i according to
the same steps as above.

The major steps of attribute representation learning are
shown in Algorithm 1. From the output of Algorithm 1, we
can obtain the representation vectors of each user, context,
and app.

Algorithm 1 Algorithm of the attribute representation learning.

4.5 Interaction representation learning

4.5.1 Interaction graph construction

To explore the interaction factors (extrinsic motivation) of
graph Guca , we transformed Guca into an interaction graph
Ginte= 〈Vinte, Einte〉.
1. The set of nodes Vinte. InGinte, we construct new nodes

according to user-context-app interactions. Each node
includes information of a user, a context, and an app.
The constructed node vx

inte is shown in (11).

vx
inte =<Ipqm,vu

p,vc
q,va

m,Nu
p,Nc

q ,Na
m,Dint

x > (11)

where Ipqm represents the number of times user up

uses app am in context cq . vu
p, vc

q and va
m represent

the vectors of up, cq and am, respectively. Nu
p , N

c
q and

Na
m denote the total number of occurrences of up, cq

and am, respectively. Dint
x is the degree of node vx

inte,
i.e., the number of first-order neighbors of vx

inte, and its
initial value is 0. The larger the value of Dint

x , the more
nodes are similar to node vx

inte; vice versa, the less. We
update the value of Dint

x , after computing the edge set
Einte.
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2. The set of edges Einte. We calculate the edge weights
for each pair of nodes in Ginte, as shown in (12).

qxz
v = ∅(Sim(vx

inte, v
z
inte)) (12)

where Sim(·) is the similarity calculation function and
∅ is the nonlinear activation function. Our model uses
Euclidean distance to calculate similarity, and other
methods can also be used. To simplify the interaction
graph, we remove some edges according to (13).

exz
v =

{
0 , if qxz

v ≤ η

1 , others
(13)

where η is the hyperparameter. Edge exz
v is removed

when exz
v = 0; otherwise, it is retained.

4.5.2 Node aggregation

For each node inGinte, we use node similarity and structural
similarity to find neighbors, and then perform interaction
representation learning [32]. The specific steps are as
follows.

Step 1: If exz
v = 1, we compute the similarity of

interacting nodes x and z by recursion, as shown in (14) and
(15).

f k(x, z) = f k−1(x, z)+g(s(Rk(v
x
inte),s(Rk(v

z
inte)))

k ≥ 0 and
∣
∣Rk

(
vx
inte

)∣
∣ ,

∣
∣Rk

(
vz
inte

)∣
∣ > 0 (14)

f −1(x, z) = −Sim(vx
inte, v

z
inte) (15)

where s
(
Rk

(
vx
inte

))
and s

(
Rk

(
vz
inte

))
denote the degree

sequences of k-order neighbors of vx
inte and vz

inte, respec-
tively, according to degree size. g(D1, D2) represents the
distance between two ordered sequences D1 and D2 and
is calculated by the dynamic time warping (DTW) method.
f k(x, z) denotes the structural similarity of the k-order
neighbors of vx

inte and vz
inte. f

−1(x, z) represents the simi-
larity between two interaction nodes, as shown in (15). We
use kmax to represent the maximum value of k, and kmax

is a model hyperparameter. To ensure that vx
inte and vz

inte

have some similarity (i.e., vx
inte and vz

inte have the same user,
context, or app), we only calculate the similarity f k(x, z)

between vx
inte and vz

inte (within 3 hops of vx
inte).

Step 2: We construct a multilayer weighted graph, as
shown in Fig. 7. In each layer, the weight ωk(x, z) between
nodes is calculated according to (16). It is worth mentioning
that the graph at each layer is not a complete graph because
there is a distance restriction between vx

inte and vz
inte, which

is different from struc2vec.

ωk(x, z) = e−f k(x,z), k = 0, 1, ... (16)

Nodes in different layers are connected by directed edges.
Specifically, for each node vx

inte in the kth layer, there are

Fig. 7 Details of multi-layer interaction graph

directed edges (xk, xk−1) and (xk, xk+1), with weights as
shown in (17) and (18), respectively.

ω(xk, xk+1)= log(�k(x) + e), k = 0, 1, ..., k−1 (17)

ω (xk, xk−1) = 1, k = 1, ..., k (18)

�k(x) =
∑

vz
int∈Vint

1(ωk(x, z) > ω̄k) (19)

where �k(x) is the number of edges pointing to vx
inte in the

kth layer whose weights are greater than the average weight
of that layer.

Step 3: For each node at the kth layer, we sample
its neighbors by random walk. The wandering probability
of the same layer is qk (see (20)), and the wandering
probability of adjacent layers is pk (see (21)).

qk(x, z) = e−f k(x,z)

∑
vz
int∈Vint ,z 
=x e−f k(x,z)

(20)

pk(xk, xk+1) = ω (xk, xk+1)

ω (xk, xk+1) + ω (xk, xk−1)
(21)

where qk(x, z) is the probability that node vx
inte at the kth

layer walks to node vz
inte at the same layer. pk(xk, xk+1) is

the probability of sampling at the (k + 1)th layer.
Step 4: We aggregate the information of the sampled

nodes using (22), and put them into the corresponding
feature vectors of users, contexts and apps. For each user,
we connect all its feature vectors, then use the embedding
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method to obtain a fixed-length vector. The same method is
adopted for each app and context.

vx
inte = vx

inte + 1

|N x |
∑

z∈N x

ωk(x, z) · vz
inte (22)

whereN x indicates the neighbor nodes of vz
inte. |N x | is the

number of nodes in N x .
Algorithm 2 shows the main steps of interaction

representation learning. Using this algorithm, we can learn
the representation vectors of users, contexts and apps from
the perspective of interactions.

Algorithm 2 Algorithm of interaction representation learning.

4.6 Prediction layer

For each user, app, and context, we first connect its
corresponding feature vectors obtained from attribute and
interaction representation learning. Then, we use the
embedding method to obtain fixed-length vectors, uL

i , cL
i

and aL
i .

Finally, we use uL
i , cL

i aL
i and function p to make

predictions. We implement the prediction function p as

the MLP component. The MLP component consists of two
hidden layers.

ŷi = p(uL
i , cL

i , aL
i ) (23)

4.7 Model learning

IMGC-GNN makes recommendations based on the proba-
bility that the target user u prefers an app a in a particular
context c, which is a regression problem. To better train the
model, the objective function was developed, as shown in
(24).

L = 1

|O|
∑

(a,i)∈O

(yai − ŷai)
2 + λI‖
I‖2 (24)

The loss function L consists of two parts, 1
|O|

∑
(a,i)∈O

(yai − ŷai)
2 is used to measure the loss in recommendations,

and λI‖
I‖2 is the L2 regularization term to control the
complexity of the model and to avoid overfitting. O means
the recommendation list. |O| denotes the length of O. θI

is the set of parameters in the framework. The IMGC-GNN
training process is shown in Algorithm 3.

Algorithm 3 Training algorithm of the IMGC-GNN model.

4.8 Complexity analysis

The time complexity of IMGC-GNN mainly consists of
two parts: attribute representation learning and interaction
representation learning.
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(1) In attribute representation learning, the time complex-
ity mainly arises from the construction of homoge-
neous graphs and aggregation operations. Taking user
as an example, the graph construction requires itera-
tively computating the distance between a node and
its l-order neighbors. Therefore, its time complexity is
O(Mu · Nu

ave · l · h2), where Mu denotes the number
of users, Nu

ave denotes the average number of explicit
neighbors of users, l indicates the order of the implicit
relationships and h is the embedding size. The time
complexity of user aggregation operations is O(Mu ·
Nu ·D ·h2), where Nu is the number of neighbors to be
aggregated and D denotes the number of aggregation
layers. Thus, the time complexity of user representa-
tion learning isO(Mu ·Nu

ave ·l ·h2) +O(Mu ·Nu ·D·h2).
Similarly, the time complexity of app representation
learning is O(Ma · Na

ave · l · h2) + O(Ma · Na · D · h2),
where Ma denotes the number of apps and Nu

ave is
the average number of explicit neighbors of apps. The
time complexity of context representation learning is
O(Mc · Nc

ave · l · h2) + O(Mc · Nc · D · h2), where
Mc is the number of contexts and Nc

ave is the average
number of explicit neighbors of contexts.

(2) In interaction representation learning, the time com-
plexity mainly comes from the construction of inter-
action graph and aggregation operations. The time
complexity of the construction of interaction graph is
O(H2), where H is the number of nodes in Ginte. In
aggregation operations, the time complexity of DTW
is O(lD), where lD is the maximum length of the
sequence [33]. We use a binary search to compute
the structural similarity for each pair node, and its
time complexity is O(logn). There are k layers of
aggregation operations. Hence, the time complexity
of aggregation operation is O(lD · logn · k). To sum
up, the time complexity of intearaction representation
learning is O(H2) + O(lD · logn · k).

The values of l, D, lD and k are small and can
be neglected. In addition, the attribute and interaction
representation learning are independent of each other and
thus can be paralleled. Finally, the construction of graphs
can be performed offline. Therefore, the overall time
complexity of IMGC-GNN can be accepted.

5 Experiments

We deploy the IMGC-GNN model on a PyTorch platform
with an NVIDIA Quadro P6000 GPU and an i7-10700K
CPU. Then, we test the performance of the proposed model.
We particularly focus on the following three issues: (RQ1)
the accuracy of our algorithm on top-n recommendation

compared to existing algorithms; (RQ2) the performance
of our algorithm in data sparsity or cold start scenarios;
and (RQ3) how IMGC-GNN algorithm can improve the
recommendation effectiveness.

5.1 Experimental setup

5.1.1 Dataset

The dataset we use is an open real-world dataset. We extract
app usage records in three cities from the original dataset
(Beijing, Shanghai and Guangzhou). After excluding users
with fewer than 15 records and apps with fewer than
20 records, we obtained the dataset for experiments. The
dataset contains 6,520 users and 7,160 apps with 1,017,628
interaction records. The detailed information is shown in
Table 2.

The dataset contains three types of information, includ-
ing user information, app information, and user-app interac-
tions in different contexts. We provide three sample snap-
shots of the above information in Tables 3, 4 and 5. We
randomly separate the dataset into a training set, a validation
set, and a test set. The ratio is 7:2:1.

5.1.2 Benchmark methods

Our goal is to make a personalized app recommendation list
for target users in specific contexts. The recommendation
list is Ru = {a1, a2 · · · an|uc, aiεA, cεC, uεU}, where n is
the length of recommendation list, and |uc indicates that
user u is in context c. The recommended apps are not limited
by whether the user has used them or not. We compare
IMGC-GNN with the following seven benchmark methods.

(1) MF is a widely used CF solution based on matrix
factorization. MF solves the feature combination
problem in large-scale sparse data. In addition,
accounting for feature interaction, MF performs cross-
feature combination.

(2) SVD++ [34] is a classic baseline, which is an improved
singular value decomposition (SVD) model that
incorporates users’ implicit behavior toward items.

(3) NeuMF [35] is a typical deep learning-based recom-
mendation algorithm. It combines generalized matrix

Table 2 Statistics of Datasets

Dataset Beijing Shanghai Guangzhou

User 1,736 1,732 3,052

App 2,224 2,230 2,706

Interaction Record 272,680 318,965 425,983

Duration 168 Hours 168 Hours 168 Hours
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Table 3 Snapshots of user information

User id Gender Age Phone brand Device model

1007 MALE 30 Apple X

1045 FEMALE 28 XiaoMi MI2

1326 MALE 41 HuaWei MATE

factorization (GMF) and multilayer perceptron (MLP)
and can extract both low- and high-dimensional fea-
tures. In our test, the GMF model and MLP model
are first trained separately, and then the NeuMF is ini-
tialized with the trained parameters. This pretraining
approach was verified to be effective in improving the
accuracy of recommendations.

(4) NGCF [22] is a classical graph-based recommen-
dation model. This model solves the problem that
traditional recommendation methods fail to capture
potential collaboration signals in user-item interac-
tions. Specifically, NGCF designs an embedding prop-
agation layer to refine the embedding representation
by aggregating the user’s (or item’s) embedding. By
stacking multiple embedded propagation layers, this
method can capture synergistic signals in higher-order
user-item interactions, thus improving recommenda-
tion performance.

(5) MMCF [36] is a state-of-the-art graph-based rec-
ommendation model. Not only the direct interaction
between users and items need to be considered in
recommenders, but also the user’s historical interac-
tions, as well as additional information about items.
The research focus of MMCF is how to better model
this additional information to improve the recommen-
dation performance. MMCF utilizes a memory layer
containing an interaction memory (IM) sublayer and
two co-occurrence context memory (CCM) sublayers
that together capture important information in the user-
item interaction and co-occurrence context. However,
this method only focuses on co-occurrence relation-
ships but ignores the higher-order transfer relation-
ships between users and items.

(6) MB-GMN [28] is a state-of-the-art graph-based rec-
ommendation model. This model can extract user and
item representations from complex multibehavioral

Table 4 Snapshots of app information

App id Category Developer

252 News ByteDance

292 Game NetEase

722 Shopping Alibaba

Table 5 Snapshots of user-app interactions in different contexts

User id App id Longitude Latitude Date

1007 292 116.25 40.01 2018-07-15 19:33:07

1045 252 116.47 39.83 2018-07-16 21:18:54

1326 722 116.33 39.71 2018-07-16 08:03:41

relationships. It uses graph convolution neural net-
work to extract the higher-order neighbors users and
items, so as to obtain the smooth representation under
each behavior. Since MB-GMN is based on multi-
relationships of users, in our test, we classify the
interactions into strong and weak interactions based on
the frequency of user-app interactions.

(7) GGRM [37] is another state-of-the-art graph neural
network recommendation model based on group
information integration. This model considers that
integrating the preferences of users’ group can
improve recommendation accuracy. It learns user
preferences by constructing relationships between
users and groups, groups and items, users and items.
Learning and integrating group preferences is the key
to GGRM. In our experiment, we treat the users
gathered in the same context as a group and test this
model on our dataset.

5.1.3 Evaluation protocols

We adopt a variety of widely used protocols to measure
the recommendation performance, which is described as
follows [38, 39].

(1) Precision@N and Recall@N . We recommend
a top-n recommendation list for each user; thus
Precision@N and Recall@N are used to measure
the performance of the recommendation methods,
which are shown in (25) and (26), respectively.

Precision@N = T P

N
(25)

Recall@N = T P

M
(26)

where N is the recommendation list length. We regard
apps that the user would choose without the use of
a recommender system as the ground truth. M is the
length of the ground truth. T P is the intersection of
the recommendation list and ground truth.

(2) Fa −measure@N . However, precision and recall are
two related metrics; when one goes down, it causes
the other to go up. To consider these two indicators
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together, we use Fa − measure@N to measure the
recommendation performance, which is shown in (27).

Fa−measure@N =(1+α)2
Precision@N×Recall@N

α2Precision@N+Recall@N
(27)

where α is used to adjust precision and recall. In our
study, we set α = 1, which means that Precision@N

and Recall@N are equally important.
(3) MAE and RMSE are two widely used metrics

to measure information system accuracy [40]. The
smaller the values of MAE and RMSE are, the better
the recommendation performance. MAE and RMSE
are calculated as follows.

MAE =
∑T

i=1

∣
∣ŷi − yi

∣
∣

T
(28)

RMSE =
√

∑T
i=1 (ŷi − yi)

2

T
(29)

where T is the number of records in the validation set.
ŷi is the ith predicted value and yi is the true value
corresponding to ŷi .

5.1.4 Experimental settings

In this subsection, we focus on exploring the key parameters
of the IMGC-GNNmodel. Hyperparameters are determined
on the validation set using a grid search method, which
is widely used in many depth models [11, 13]. Mean
absolute error (MAE) and square mean error (RMSE) can
clearly and intuitively measure the deviation between the
predicted and true values of the model. Therefore, we
choose MAE and RMSE to evaluate the model and find the
best hyperparameters.

To determine the algebraic number l of homogeneous
graphs and the maximum order kmax of the interaction
graph, we use the Shanghai dataset to explore the effects of
l and kmax on the recommendation performance, as shown
in Fig. 8. From this figure, it can be seen that the best
performance is achieved when l = 5 and kmax = 3.

In addition to l and kmax , there are six other hyperpa-
rameters involved in our model, which are penalty factor ξ ,
balance parameters δ0 and δ1, number of aggregation layers
d , dimension of embeddings h and learning rate η. In our
experiments, we initialize these hyperparameters according
to Table 6.

IMGC-GNN is a depth model, thus it is essential to
avoid overfitting. We adopt the L2 regularization strategy to
prevent overfitting. We test the convergence of the proposed
method, as shown in Fig. 9. In this figure, we can observe
that the IMGC-GNN converges after 10 epochs.

Fig. 8 IMGC-GNN’s 3D fit plots on different algebra l and maximum
order kmax . The red circles represent real experimental results, and the
rest are fitting values

5.2 Empirical study (RQ1)

We calculate Precision@N , Recall@N and Fa −
measure@N for different lengths of the recommendation
list on the test dataset of three cities. We compare our model
with seven benchmark methods, and the results are shown
in Fig. 10. From the results, we can draw the following
conclusions.

(1) MF performs poorly on all three datasets, and its
recommendation performance is unacceptable. This is
because the user-app interaction data are sparse, which
severely hinders MF from constructing the user-app
vectors effectively.
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Table 6 Hyperparameters settings of IMGC-GNN

hyperparameters Value Description

ξ 0.5 Penalty factor

δ0 0.75 Balance parameters

δ1 0.25 Balance parameters

d 2 Aggregation layers

h 64 Dimension of embeddings

η 0.001 Learning rate

(2) NeuMF and SVD++ perform better than MF, but
the overall performance is still not sufficient. This
is because SVD++ cannot capture complex user-
app interactions. The overall performance of NeuMF
is higher than that of SVD++, which indicates the
importance of nonlinear feature interactions between
users and apps.

(3) The performance of MMCF is significantly better than
that of MF, SVD++ and NeuMF, which means that
considering the neighbors of user-user and app-app can
effectively improve the recommendation performance.
NGCF outperforms MMCF, and the reason is that
NGCF uses graphs to model higher-order information
about users and apps.

(4) As a method based on a graph neural network, MB-
GMN has a better recommendation performance than
MMCF and NGCF. This is because MB-GMN per-
forms fine-grained mining for strong and weak inter-
actions separately, making the learned features more
accurate. In addition, the recommendation accuracy
may be further improved with the introduction of more
interaction types.

(5) The performance of GGRM is better than that of
MB-GMN. The reason is that compared with the
previous methods, GGRM also learns group (context)
preferences. The exploration of group preferences can
accurately predict user preferences. However, it does
not learn features from the perspective of attributes and
interactions.

(6) IMGC-GNN always has the best performance among
all the tested methods. This proves the effectiveness
of IMGC-GNN in top-k app recommendations. This
is because (a) in attribute representation learning,
IMGC-GNN not only filters negative explicit rela-
tionships but also compensates for data sparsity by
introducing implicit relationships. (b) Introducing con-
text information and graph neural networks enable
IMGC-GNN to deeply mine users preferences in dif-
ferent contexts. This multi-dimension mining is ben-
eficial to improve recommendation performance. For
this reason, IMGC-GNN performs better than SVD++,
NeuMF and MMCF. (c) IMGC-GNN performs repre-
sentation learning from both attribute and interaction
perspectives. The learned features facilitate mining
users’ intrinsic and extrinsic interaction motivation.
This is the main reason why IMGC-GNN outperforms
other algorithms.

5.3 Data sparsity and cold start scenarios (RQ2)

In this subsection, we test the performance of IMGC-
GNN with sparse data and cold start, which are the
main challenges for recommendation models [41]. The
recommendation performance is generally poor in these
two scenarios. Therefore, in the early stages of using

Fig. 9 Training and validation error of each epoch of IMGC-GNN on three datasets
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Fig. 10 The recommendation performance of IMGC-GNN and benchmark methods

a recommendation system (data sparsity) or when using
a recommendation system for the first time (cold start),
the accuracy (error) of the top-1 app recommendation is
particularly important. We use the deviation between the
predicted and true values to measure the IMGC-GNN
performance with sparse data and cold starts. Hence, RMSE
is used as the indicator in our experiment.

5.3.1 Results in data sparse scenarios

The sparsity of interaction data is the main factor
affecting the recommendation model. To demonstrate the
performance of IMGC-GNN in sparse data, we sparse the
real-world data of three cities and perform comparison tests.

We sparse the experimental data into three levels by
randomly removing the interaction records. That is, more
than half of the users use the app 5-20 times, 35-50 times or
55-70 times.

We test the recommendation performance using these
sparse data, as shown in Fig. 11. It is worth mentioning
that IMGC-GNN outperforms the baseline methods in
three tests, which further proves that IMGC-GNN also has
better performance even in sparse data. The reasons for
this advantage are twofold. (1) In attribute representation
learning, IMGC-GNN uses implicit relationships to enrich
the sparse data of inter-user, inter-context, and inter-
app. Therefore, sparse data has less impact on attribute
representation learning. (2) In interaction representation
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Fig. 11 Recommendation performance at three sparsity levels

learning, the sparsity of interaction data makes the
interaction nodes less. However, there is little impact on
the connected edges between nodes (connected according
to node similarity). Therefore, the effect of sparse data on
interaction representation learning is also less.

5.3.2 Results in cold start scenarios

In addition to the data sparsity problem, the cold start
problem is also a major challenge for recommendation
models [42]. The cold start problem refers to giving
personalized recommendations without historical user-app
data. Recommending apps for new users denotes cold start
users, and recommending new apps for users means cold
start apps.

We test our model for two cold start scenarios: cold start
users and cold start apps. For the cold start user scenario,
we select some users and exclude their interaction data in
the training set. Then we make recommendations for these
users. Similarly, for the cold start app scenario, we select

some apps and exclude their interaction data in the training
set. Then, we attempt to recommend apps to certain users.

RMSE is used to evaluate the performance under the cold
start scenario, and the test results are shown in Fig. 12. It is
not difficult to find that the performance of IMGC-GNN is
better than that of the baseline methods, which indicates that
IMGC-GNN still has relatively good performance under
cold start conditions. This is because IMGC-GNN uses the
node similarity in attribute representation learning. That is,
IMGC-GNN can find the neighbors of users/apps based on
the node’s attributes without interaction data.

5.4 Ablation experiment (RQ3)

To investigate the impact of attribute and interaction
representation learning on the performance of IMGC-GNN,
we conduct ablation experiments. Particularly, in attribute
representation learning, we conducted ablation experiments
on explicit and implicit relationships, respectively. The
experimental setup and results are as follows.

Fig. 12 RMSE results under
cold start users (a) and cold start
apps (b) using Shanghai dataset
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Fig. 13 Impact of implicit relationships

5.4.1 Impact of implicit relationships in attribute
representation learning

First, we ensure that the input and output of the IMGC-
GNN model remain unchanged and remove the calculation
of the implicit relationships in attribute representation
learning to obtain a new recommendation method, IMGC-
Imp. IMGC-Imp does not calculate implicit relationships,
only calculates explicit relationships, and then completes
recommendations.

The performance of IMGC-GNN and IMGC-Imp is
shown in Fig. 13. As you can see from this figure,
the performance of IMGC-GNN is better than that of
IMGC-Imp. This indicates that the introduction of implicit
relationships are extremely meaningful for mining user
preferences. Mining user preferences has been the core idea
of many recommendation models. This further confirms
the importance of attribute representation learning in the
IMGC-GNN model.

5.4.2 Impact of explicit relationships in attribute
representation learning

Similarly, while ensuring that the inputs and outputs of
our model remain unchanged, we remove the explicit
relationship from the aggregation operation of in the
attribute representation learning to obtain another new
recommendation method, IMGC-Dom. IMGC-Dom only
uses explicit relationships for the initialization of implicit
relationships. However, only implicit relationships are used
in the information aggregation process.

The recommendation performance of IMGC-GNN and
IMGC-Dom is shown in Fig. 14. From this figure,
we can observe that the performance of IMGC-GNN
is much better than that of IMGC-Dom. This suggests
that explicit relationships are direct and highly significant
for mining user preferences. Although we found some
possible negative effects of explicit relationships in attribute
representation learning, its positive effects remain obvious.

Fig. 14 Impact of explicit relationships
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Fig. 15 Impact of Interaction relationships

Therefore, combining explicit and implicit relationships
can accurately perform attribute representation learning,
which in turn improves the recommendation performance of
IMGC-GNN.

5.4.3 Impact of interaction representation learning

IMGC-GNN uses interaction graphs to perform represen-
tation learning. We remove the interaction representation
learning from IMGC-GNN to obtain a new app recom-
mendation model, IMGC-Int. This model only performs
attribute representation learning and then makes recommen-
dations.

The performances of IMGC-GNN and IMGC-Int are
shown in Fig. 15. It can be seen that the performance
of IMGC-GNN is better than that of IMGC-Int. This is
because in interaction representation learning, IMGC-GNN
takes an interaction perspective rather than looking at users,
contexts, or apps in isolation. This is more conducive to the
mining of collaboration signals (extrinsic motivation). As
a result, interaction representation learning has a positive
effect on improving the performance of the IMGC-GNN
model.

6 Conclusions, limitations and outlook

In this paper, we propose a multi-granularity coupled graph
neural network recommendation method based on implicit
relationships. IMGC-GNN introduces context informa-
tion into user-app interactions and performs representation
learning from attribute and interaction perspectives. Finally,
the learned representations are used to complete accu-
rate recommendations. Furthermore, we conduct extensive
experiments on real-world datasets to prove the effective-
ness of the IMGC-GNN. The results show that IMGC-GNN

is effective, and it outperforms the baseline methods on var-
ious evaluation protocols. It also has better performance in
data sparsity and cold start scenarios.

However, IMGC-GNN also has certain shortcomings,
which are manifested in the following aspects. (1) IMGC-
GNN constructs a coupled graph Guca with the help of
context information. Then, it perform representation learn-
ing from both attribute and interaction perspectives. How-
ever, these constructed graphs are usually macro and stable,
lacking the concern of new interaction types. For exam-
ple, the outbreak of COVID-19 has forced people to work
at home, and numerous online office apps have been
developed and used. Users may have never or rarely per-
formed home-based online office activities. The lack of
attention to such activities in these graphs makes IMGC-
GNN underperform in predicting new emergent interac-
tions. However, as the frequency of working from home
online increases, IMGC-GNN can capture this interaction
preference and thus improve the recommendation perfor-
mance. Shortening this lag of IMGC-GNN is the next
step of our research. (2) In attribute representation learn-
ing, IMGC-GNN uses the same aggregation method for
all homogeneous graphs (user/context/app graph). How-
ever, the relationships between user-user, context-context,
or app-app are not identical, and each of them has a cer-
tain specificity. For example, the social relationship between
users, the spatial and temporal distance between contexts,
and the adaptability between apps. How to reflect these spe-
cial relationships in our model also be the next research
direction.

Acknowledgements This study was supported by the Joint
Funds of the Tianjin Municipal Commission of Education, China
(No.2021YJSB252); National Natural Science Foundation of China
(No. U1536122) ; Science and Technology Commission Major
Special Projects of Tianjin, China (No. 15ZXDSG X00030).



IMGC-GNN: A multi-granularity coupled graph neural network recommendation method based on implicit...

Author Contributions Qingbo Hao: Conceptualization, Methodology,
Software, Validation, Formal analysis, Investigation, Data Curation,
Writing-Original Draft, Visualization.
Chundong Wang: Writing-Review, Supervision, Project administra-
tion, Funding acquisition.
Yingyuan Xiao: Writing-Review, Supervision. Hao Lin: Methodol-
ogy, Writing-Review and Editing.

Declarations

Conflict of Interests All authors declare that they do not have any
conflict of interest.

References

1. Liang T, Zheng L, Chen L et al (2020) Multi-view factorization
machines for mobile app recommendation based on hierarchical
attention. Knowl Based Syst 187:104,821

2. Lei C, Dai H, Yu Z et al (2020) A service recommendation
algorithm with the transfer learning based matrix factorization to
improve cloud security. Inf Sci 513:98–111

3. Xue F, He X, Wang X et al (2019) Deep item-based collaborative
filtering for top-n recommendation. ACM Trans Inf Syst (TOIS)
37(3):1–25

4. Liu Y, Yang S, Xu Y et al (2021) Contextualized graph attention
network for recommendation with item knowledge graph. IEEE
Transactions on knowledge and data engineering

5. Fan W, Ma Y, Li Q et al (2019) Graph neural networks for social
recommendation. In: The world wide web conference, pp 417–426

6. Harada S, Taniguchi K, Yamada M et al (2019) Context-
regularized neural collaborative filtering for game app recommen-
dation. In: RecSys (late-breaking results), pp 16–20

7. Hao Q, Zhu K, Wang C et al (2022) Cfdil: a context-aware feature
deep interaction learning for app recommendation. Soft Comput
26(10):4755–4770

8. Ebesu T, Shen B, Fang Y (2018) Collaborative memory network
for recommendation systems. In: The 41st international ACM
SIGIR conference on research & development in informationre-
trieval, pp 515–524

9. Yengikand AK, Meghdadi M, Ahmadian S et al (2021)
Deep representation learning using multilayer perceptron and
stacked autoencoder for recommendation systems. In: 2021 IEEE
International Conference on Systems, Man, and Cybernetics
(SMC), IEEE, pp 2485–2491

10. Ahmadian M, Ahmadi M, Ahmadian S et al (2021) Integration
of deep sparse autoencoder and particle swarm optimization to
develop a recommender system. In: 2021 IEEE International
conference on systems, man, and cybernetics (SMC), IEEE,
pp 2524–2530

11. Lin KP, Chang YW, Shen CY et al (2018) Leveraging online
word of mouth for personalized app recommendation. IEEE Trans
Comput Soc Syst 5(4):1061–1070

12. Liu Z, Xia X, Lo D et al (2019) Automatic, highly accurate
app permission recommendation. Autom Softw Eng 26(2):241–
274

13. Xu X, Dutta K, Datta A et al (2018) Identifying functional
aspects from user reviews for functionality-based mobile app
recommendation. J Assoc Inf Sci Technol 69(2):242–255

14. Sun J, Zhang Y, Guo W et al (2020) Neighbor interaction aware
graph convolution networks for recommendation. In: Proceedings
of the 43rd International ACM SIGIR conference on research and
development in information retrieval, pp 1289–1298

15. Huang L, Zhao ZL, Wang CD et al (2019) Lscd: Low-rank and
sparse cross-domain recommendation. Neurocomputing 366:86–
96

16. Sun J, Zhang Y, Ma C et al (2019) Multi-graph convolution
collaborative filtering. In: 2019 IEEE International conference on
data mining (ICDM), IEEE, pp 1306–1311

17. Kumar I, Hu Y, Zhang Y (2022) Eflec: Efficient feature-leakage
correction in gnn based recommendation systems. In: Proceedings
of the 45th International ACM SIGIR conference on research and
development in information retrieval, pp 1885–1889

18. Duan Z, Wang Y, Ye W et al (2022) Connecting latent relation-
ships over heterogeneous attributed network for recommendation.
Applied Intelligence, pp 1–19

19. Ahmadian M, Ahmadi M, Ahmadian S (2022) A reliable deep
representation learning to improve trust-aware recommendation
systems. Expert Syst Appl 197:116,697

20. Wei C, Bai B, Bai K et al (2022) Gsl4rec: Session-based
recommendations with collective graph structure learning and
next interaction prediction. In: Proceedings of the ACM web
conference, vol 2022, pp 2120-2130

21. Ying R, He R, Chen K et al (2018) Graph convolutional neural
networks for web-scale recommender systems. In: Proceedings of
the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp 974–983

22. Wang X, He X, Wang M et al (2019) Neural graph collaborative
filtering. In: Proceedings of the 42nd international ACM SIGIR
conference on research and development in information retrieval,
pp 165–174

23. Li A, Yang B, Huo H et al (2021) Leveraging implicit relations for
recommender systems. Inf Sci 579:55–71

24. Gao H, Xiao J, Yin Y et al (2022) A mutually supervised graph
attention network for few-shot segmentation: The perspective
of fully utilizing limited samples. IEEE Transactions on neural
networks and learning systems

25. Gao H, Qiu B, Barroso RJD et al (2022) Tsmae: a novel anomaly
detection approach for internet of things time series data using
memory-augmented autoencoder. IEEE Transactions on network
science and engineering

26. Guo J, Zhou Y, Zhang P et al (2021) Trust-aware recommendation
based on heterogeneous multi-relational graphs fusion. Inf Fusion
74:87–95

27. Ahmadian S, Ahmadian M, Jalili M (2022) A deep learning
based trust-and tag-aware recommender system. Neurocomputing
488:557–571

28. Xia L, Xu Y, Huang C et al (2021) Graph meta network
for multi-behavior recommendation. In: Proceedings of the
44th international ACM SIGIR conference on research and
development in information retrieval, pp 757–766

29. Fogg BJ (2019) Tiny habits: The small changes that change
everything. Eamon Dolan Books

30. Huskey R, Wilcox S, Weber R (2018) Network neuroscience
reveals distinct neuromarkers of flow during media use. J
Commun 68(5):872–895

31. Derfler-Rozin R, Pitesa M (2020) Motivation purity bias:
Expression of extrinsic motivation undermines perceived intrinsic
motivation and engenders bias in selection decisions. Acad Manag
J 63(6):1840–1864



Q. Hao et al.

32. Cai H, Zheng VW, Chang KCC (2018) A comprehensive survey of
graph embedding: Problems, techniques, and applications. IEEE
Trans Knowl Data Eng 30(9):1616–1637

33. Iwana BK, Frinken V, Uchida S (2020) Dtw-nn: a novel neural
network for time series recognition using dynamic alignment
between inputs and weights. Knowl Based Syst 188:104,971

34. Zhang S, Yao L, Sun A et al (2019) Deep learning based
recommender system: a survey and new perspectives. ACM
Computing Surveys (CSUR) 52(1):1–38

35. Koren Y, Rendle S, Bell R (2022) Advances in collaborative
filtering. Recommender systems handbook, pp 91–142

36. Jiang X, Hu B, Fang Y et al (2020) Multiplex memory network
for collaborative filtering. In: Proceedings of the 2020 SIAM
international conference on data mining, SIAM, pp 91–99

37. Tian Z, Liu Y, Sun J et al (2021) Exploiting group information for
personalized recommendation with graph neural networks. ACM
Trans Inf Syst (TOIS) 40(2):1–23

38. Guo Z, Yu K, Li Y et al (2021) Deep learning-embedded social
internet of things for ambiguity-aware social recommendations.
IEEE Transactions on network science and engineering

39. Yu J, Yin H, Li J et al (2020) Enhance social recommendation with
adversarial graph convolutional networks. IEEE Transactions on
knowledge and data engineering

40. Ma Y, Narayanaswamy B, Lin H et al (2020) Temporal-contextual
recommendation in real-time. In: Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data
mining, pp 2291–2299

41. Herce-Zelaya J, Porcel C, Bernabé-Moreno J et al (2020) New
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