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Brain lesion mapping studies have provided the strongest evidence regarding

the neural basis of cognition. However, it remained a problem to identify

symptom-specific brain networks accounting for observed clinical and

neuroanatomical heterogeneity. Independent component analysis (ICA) is a

statistical method that decomposes mixed signals into multiple independent

components. We aimed to solve this issue by proposing an independent

component-based lesion mapping (ICLM) method to identify the language

network in patients with moderate to severe post-stroke aphasia. Lesions

were first extracted from 49 patients with post-stroke aphasia as masks

applied to fMRI data in a cohort of healthy participants to calculate the

functional connectivity (FC) within the masks and non-mask brain voxels.

ICA was further performed on a reformatted FC matrix to extract multiple

independent networks. Specifically, we found that one of the lesion-related

independent components (ICs) highly resembled classical language networks.

Moreover, the damaged level within the language-related lesioned network

is strongly associated with language deficits, including aphasia quotient,

naming, and auditory comprehension scores. In comparison, none of the

other two traditional lesion mapping methods found any regions responsible

for language dysfunction. The language-related lesioned network extracted

with the ICLMmethod showed high specificity in detecting aphasia symptoms

compared with the performance of resting ICs and classical language

networks. In total, we detected a precise language network in patients

with aphasia and proved its e�ciency in the relationship with language

symptoms. In general, our ICLM could successfully identify multiple lesion-

related networks from complicated brain diseases, and be used as an e�ective

tool to study brain-behavior relationships and provide potential biomarkers of

particular clinical behavioral deficits.
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Introduction

Mapping the neural circuits of a specific neurological or

psychiatric symptom is crucial for neuroscience research and

clinical practice (1, 2). From the earliest history of cognitive

neuroscience to modern neurology, detailed studies on focal

brain lesions have provided the strongest evidence to localize the

neuroanatomical substrate of cognition (3–7). However, because

of the challenging clinical and neuroanatomical heterogeneities

in many brain diseases, it remains highly infeasible to dissociate

the precise brain circuit responsible for a specific neurologic

symptom. Mapping the causal links between symptoms and

neuroanatomy for patients with complex neurologic and

psychiatric disorders remains an unsolved problem (8, 9).

Contemporary neuroimaging techniques have been applied

to patients with cognitive deficits following brain damage to

examine the functional and anatomical organizations of the

lesioned brain (10, 11). The traditional voxel-based lesion-

symptom mapping (VLSM) method based on the assumption

of “collective lesioned voxels” is aimed to find the most

commonly damaged voxels associated with symptom severity

(12). Despite the seemingly high spatial resolution, VLSM has

been recognized as apparently flawed with the rise of network

theories and evidence of many symptoms caused by damage

distributed in different brain locations (13, 14).

Lesion network mapping (LNM) was then proposed linking

brain lesions to a shared network of connected regions (15, 16).

Specifically, LNM took each patient’s lesion mask as a “seed”

to generate the likely lesion-affected functional connectome

based on a cohort of healthy controls. The symptom-related

network was identified as the shared functional connectome by

overlaying connectome-based maps across patients (15). This

method has been successfully applied to various symptoms such

as hallucinations, delusions, abnormal movements, and loss of

consciousness, with obvious advantages in revealing the brain

circuit of a single symptom with large heterogeneity in lesion

locations (6, 17–23). However, the plain overlaying approach

to construct the functional network was also likely to cause

low specificity (24). When connectivity patterns are broadly

diverse across patients, as in those with multiple lesion-induced

symptoms, it is not clear whether meaningful information could

be obtained from the shared connectome. As patients seldom

converge into only one deficit, the affected brain regions would

likely belong to multiple functions instead of a single one,

and the subsequent overlaying might yield a mixed non-sense

network that failed to explain any particular symptom.

To illustrate, stroke, a major cause of severe disability in

adults, broadly influences multifarious cognitive functions (25–

27). As one of the most common clinical features affecting

about one-third of patients with stroke, aphasia often co-

occurs with other cognitive behavioral problems such as motion,

attention, or memory deficits (28). Due to the comorbidity with

different lesioned cognitive networks, previous studies utilizing

the LNM method were questioned about the specificity of the

obtained network in the causal relationship with the aphasia

symptom (29, 30). Hence, a more precise network segregation

technique is desperately required to embrace the complexity

of lesion topographies as well as clinical symptoms. Ensuring

both the sensitivity and specificity of the lesioned-mapping

method is also an essential requirement to comprehensively

study the network-behavior relationships in complicated brain

diseases and to find the accurate brain biomarkers of a specific

cognitive deficit.

A feasible way is to apply the independent component

analysis (ICA), a generative machine learning method

commonly used for blind source separation in fields of neural

networks and signal processing (31). The ICA method has been

employed in brain imaging data to extract multiple spatially

independent networks from mixed BOLD signals (32). With

an emphasis on blind decomposition, the ICA method is

conventionally performed on healthy brains, detecting some

general networks such as visual, sensorimotor, and default mode

networks (8, 33–35). As a drawback, the ICA method often fails

to find a more subtle functional network with a high correlation

with a specific task (36). One critical account might be that

whole brain signals involve too much mixed and irrelevant

information to separate a fine-grained function without any

prior spatial constraints. Therefore, a more accurate way should

be to take advantage of both the ICA and lesioned brains. With

the lesion-affected connectome being selectively identified, the

scope of decomposing source signals can be narrowed more

specifically. With better segregation of a particular cognitive

network, we would be more efficient in establishing linkages

with related symptoms and in delineating lesion-associated

functional networks.

Here, we propose a method by leveraging independent

component-based lesion mapping (ICLM) to precisely identify

a functional network that is specifically related to a symptom

in patients with brain injury. We chose patients with post-

stroke aphasia as the target population mainly for two reasons.

First, large variability of lesion site and lesion complexity is

commonly observed in this population (37); thus, we could

compare whether and how our method could outperform the

two established lesion mapping methods (VLSM and LNM)

in diseases with high heterogeneity. Moreover, the language

network is a well-studied function that is suitable for verifying

our identified functional map (33, 38). Specifically, we first

demonstrated how the heterogeneity in lesion locations could

affect the results from the two established LM methods. Next,

we present our method by identifying the language network

by ICLM analysis. Then, the damage level of the language

network was correlated with aphasia symptoms to test the

specificity of our method compared with other networks.

Finally, we performed ICLM independently on randomly
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divided subgroups of participants to test the reproducibility of

the obtained language network.

Materials and methods

Participants

A total of 49 patients hospitalized in the Department of

Neurorehabilitation of the China Rehabilitation Research Center

were recruited for this study. The study was according to

the Declaration of Helsinki ethics principles and approved by

the Ethics Committee of the China Rehabilitation Research

Center. All the patients gave written informed consent

before participation.

The patients were recruited following these inclusion

criteria: (1) had a stroke due to a single infarction or hemorrhage

in the left hemisphere, (2) were diagnosed with aphasia

according to the Chinese version of theWestern Aphasia Battery

(WAB) and had an aphasia quotient of <93.8 (39), (3) using

Chinese as mother tongue, (4) were right-handed. The exclusion

criteria were (1) having visual and hearing impairments that

affect language evaluation, (2) with metallic foreign bodies or

other implanted electronic devices so could not undergo MRI

examinations, (3) having language disorder or severe dysarthria

before the stroke, (4) comorbidity with other neurological

diseases that are associated with speech disorders.

The healthy control cohort was selected from the Beijing

Normal University of the Consortium for Reliability and

Reproducibility (CoRR-BNU) dataset with 50 participants

(23 males, mean age = 23.39, range 19–30) (http://fcon_

1000.projects.nitrc.org). All the participants had no previous

history of nervous system or mental diseases and had

signed a written informed consent form before getting

scanned. The study was approved by the Institutional Review

Board of Beijing Normal University Imaging Center for

Brain Research.

Language assessments for patients

The assessments were evaluated by a professional speech-

language pathologist after patients’ enrollment using the

Chinese version of the WAB. The WAB assessment for this

study included four subsets: naming, auditory comprehension,

fluency, and repetition. The Aphasia Quotient (AQ) (range 0–

100) is a composite score of the WAB and was calculated

using the formula developed by Kertesz (naming score/10

+ comprehension score/20 + fluency score + repetition

score/10) × 2 (40–42), with lower scores indicating a more

severe deficit in language. All the language assessments were

performed within 3 days of MRI scanning. No new cerebral

hemorrhage or infarction occurred in any patient within

these days.

Image acquisition and preprocessing

Structural images of the patients were acquired with

Philips Ingenia 3.0T Magnetic Resonance System at the China

Rehabilitation Research Center. Acquisition parameters were as

follows: T1-weighted: TR = 7.1ms, TE = 3.2ms, flip angle (FA)

= 7◦, 192 slices with a slice thickness of 1mm and a 0-mm slice

gap, field of view (FOV) = 256mm, and matrix size = 256 ×

256. T2-weighted: TR = 2,500ms, TE = 252ms, FA = 90◦, 192

slices with a slice thickness of 1mm and a 0-mm slice gap, FOV

= 256mm, and matrix size= 256× 256.

The fMRI data of healthy controls in the CoRR-BNU dataset

were acquired with a SIEMENS TRIO 3-Tesla scanner at the

Beijing Normal University Imaging Center for Brain Research.

Each participant received four resting-state fMRI scanning

sessions, with each session lasting for 8min. During the resting-

state sessions, the participants were required to keep still and not

think systematically. The acquisition parameters were as follows:

TR = 2,000ms, TE = 30ms, FA = 90◦, FOV = 200mm ×

200mm, number of slices = 33, thickness/gap = 3/0.6mm, and

in-plane resolution= 64× 64.

The resting-state fMRI data of the 50 healthy participants

were preprocessed using procedures previously described

(43–47). The following steps were performed: (1) slice

timing correction (SPM2; Welcome Department of Cognitive

Neurology, London, United Kingdom), (2) rigid body correction

for head motion with the FSL package, (3) normalization for

global mean signal intensity across sessions, and (4) band-

pass temporal filtering (0.01–0.08Hz), head motion regression,

whole-brain signal regression, and ventricular and white matter

signal regression.

Lesion mapping and lesion variability
analysis

For each structural magnetic resonance imaging of the

patients, an experienced neurologist identified and manually

drew lesioned areas using MRIcron, an open-source tool for

brain imaging visualization and definition of volumes of interest

(http://people.cas.sc.edu/rorden/mricron/index.html) (48). Two

professional neurologists reviewed the lesion segmentation.

Lesion masks were spatially normalized to the Montreal

Neurological Institute (MNI) 152 atlas space (voxel size= 4mm,

dimension = 64 × 64 × 64, number of voxels = 262,144) and

binarized such that voxels inside the lesion had a value of 1 and

all other voxels had a value of 0.

For lesion variability analysis, we combined all the 49

lesion masks to create an overlapped lesion map with a coarse

view of lesion locations. Then, we calculated the proportion of

commonly shared lesion regions according to different numbers

of patients. The relationship between the proportion of typical

lesioned patients and overlapped regions was delineated to

quantify the inter-subject variability in aphasia lesion areas.
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Traditional VLSM and LNM analysis

For the standard VLSM method (12), first, we identified the

voxels with at least 25% and at most 75% of all 49 patients

that are lesioned, which are 1,176 in total. Then, for each

voxel, we classified the participants into two groups based

on the criterion below: the participants are lesioned or not

lesioned in this voxel. Then, we performed an independent

two-sample t-test on the two groups’ AQ scores to build a

relationship between the voxel and the symptom. We then

repeated the t-test for all the 1,176 voxels and performed

a False Discovery Rate (FDR) correction on 1,176 p-values.

Corrected p < 0.05 were defined as significant, and the

corresponding t-values were projected to the brain. In doing

so, we got a t-map that linked the lesion and the aphasia-

related symptom.

For the standard LNM method (15), the lesion masks

extracted from the 49 patients were separately used to calculate

the functional connectivity (FC) associated with the lesion

area using the fMRI data from the 50 healthy controls. First,

we used the intersection of brain areas extracted from the

50 HCs to be the brain mask, with a size of 1 × 32,894,

which will be used later. Then, for the lesion mask from an

individual patient, we used it as a seed ROI to calculate the

Pearson correlations between the averaged time course within

the ROI with all the brain voxels outside the ROI, which

resulted in a lesion-affected FC matrix with a size of 50 ×

VL (VL = 32,894 minus number of lesioned voxels) for each

patient. Correlation values were transformed into Z-values

by Fisher-Z transformation. Note that each patient’s size in

the second dimension of the FC matrix might differ because

of the variance in lesion sizes. Next, for each patient’s FC

matrix, we conducted a one-sample t-test across the 50 HCs

to get the t-value and p-value for each voxel in the matrix.

We then conducted a voxel-level family-wise error (FWE)

correction for all the VL p-values, and corrected p < 10−6

were considered significant voxels (49). The corresponding t-

values were then projected to the brain, forming a t-map for

each patient representing the individual lesion network map.

Lastly, we binarized the partial t-map that only considered

positive values for each patient and overlaid all positive t-

maps to identify areas that were functionally connected to the

lesion sites. We used different thresholds to retain only voxels

identified in most patients (i.e., 70, 80, and 90%) to get a

common map (49).

Independent component-based lesion
mapping

The ICLM method was consistent with the standard LNM

method in calculating the lesion-affected FC matrix for each

lesion mask. The preprocessed fMRI data of the 50 healthy

participants were used for calculating the FC with the lesion

mask extracted from each of the 49 patients.

In doing so, we had 50 FC vectors for each patient. To

preserve more spatial information in the following ICA, we

then averaged the FC vectors across the 50 HCs instead of

binarizing the statistical t-map in the traditional LNM method.

The averaged FC vector represented the FC pattern with each

patient’s lesion site mapped in the normative fMRI data.We then

combined all the 49 FC vectors to get a union FC matrix as an

input dataset for ICA, with empty elements filled with zeroes.

The values in the FC matrix were Z-scored to have a zero mean

and unit variance before the ICA.

ICA seeks to recover latent sources with the assumption that

observations are linearly mixed by independent latent sources

(50). Given a dataset X ∈ R
M×V, which is comprised of M

participants and V samples (e.g., voxels), the generative model

for noiseless ICA can be written as:

X = AS, (1)

where A ∈ R
M×M is a full rank square mixing matrix and

S ∈ R
M×V is the latent source matrix. The goal of ICA is

to estimate the demixing matrix W ∈ R
M×M, such that the

estimated source matrix Ŝ can be computed as:

Ŝ = WX, (2)

Because of the effects of additive noise, it is desirable

to reduce the observed data to a lower-dimensional signal

subspace before performing an ICA. We conducted a principal

component analysis (PCA) to extract the signal subspace in

this study. The knee point method was used on the cumulative

explained variance to determine the order of the subspace.

We then performed an ICA on the signal subspace to get

independent components (ICs). The MATLAB code provided

in the group ICA of fMRI Toolbox (https://trendscenter.org/

software/gift/) was used to implement the ICA.

In this study, we used Infomax, an ICA algorithm widely

used in biomedical imaging (51). Since ICA is an iterative

algorithm, its optimization yields different solutions depending

on initialization. Therefore, we performed an ICA for 30

independent runs with different random initializations and

selected the most consistent run using a metric called cross

inter-symbol interference (cross-ISI) (52).

The resulting ICs were then converted to Z-scores with a

zero mean and unit variance. The Z-maps were thresholded

at a Z-value of ±1 (i.e., |Z| > 1) and referred to as lesion-

related network maps (53). These spatial maps should contain

a “lesioned language network” that linked lesions and aphasia

symptoms we are mainly interested in, as well as other

networks related to dysfunctions in cognitive domains apart

from language.
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Identification of the language network

To identify the language network from the seven ICs

obtained in the ICLM, we compared the pattern of each IC

with two classical language networks. One was the healthy

language network defined in Yeo 17 networks parcellated

from the resting-state imaging of healthy participants (44).

Another was the large-sample refined language network derived

from the meta-analysis results of 1,101 studies, including

task-related imaging and patient data (www.neurosynth.org).

We regarded the former as a healthy analog and the

latter as the “gold standard.” Specifically, we calculated the

dice coefficient (54) and the Pearson correlation coefficient

between each positive IC map and the language region from

the Yeo 17 parcellation or the language region from the

Neurosynth study. The dice coefficient was used to assess the

degree of spatial overlap between different maps (54). The

Pearson correlation coefficient was a reflection of similarity in

activation patterns between different maps. The IC that showed

the highest dice coefficients and correlation coefficients was

defined as the specific lesioned language network in patients

with aphasia.

Calculation of network damage score
and correlation with aphasia symptoms

In order to confirm the link of language network extracted

above by ICLM and aphasia-related symptoms, we examined

the relationship between the AQs and the level of damage

in the lesioned network across patients. Specifically, we

assigned each patient a “network damage score” using the

lesioned language network. To measure an individual patient’s

network damage score, we first identified the intersection of

the binarized lesioned language map and the patient’s lesion

mask. Then, we extracted the maximum Z-value within the

intersection area identified above. This Z-value represents

the highest intensity within the area and measures the level

of network damage and therefore is defined as “network

damage score.”

We then explored the relationship between the network

damage score and behavioral abilities. Pearson correlation

coefficients were calculated between the network damage score

and the behavioral scores measured by AQ. To avoid an

influence caused by lesion size, we regressed out the lesion

size from the network damage score before the calculation

of the correlation. In addition, we also calculated the

correlation coefficients between the language network damage

score and the subtests scores in the WAB, i.e., naming,

auditory comprehension, fluency, and repetition, to explore the

relationship between the language network and performance in

different language domains.

Validation of the reproducibility, stability,
and specificity of the method

To validate the robustness of our findings from the

ICLM method, we mainly conducted three types of control

analysis: (1) reproducibility analysis on different subgroups of

patients, (2) stability analysis on different parameters in the

ICLM method, and (3) specificity analysis for the network-

symptom relationship.

First, to examine the reproducibility of ICLM in different

subgroups, we randomly excluded one lesion and then split

the remaining 48 aphasia-causing lesions into two subgroups

(group A, N = 24; group B, N = 24). Then, we performed

ICLM separately for each subgroup and compared the identified

language network map using a dice coefficient. We calculated

pairwise dice coefficients between the acquired language

networks extracted from the subgroups. The random splitting

was performed 10 times, and the dice results for each time

were recorded.

We also considered the influence of different clinical

subtypes of patients on examining the aphasia-related lesioned

network. As our cohort includes patients with different lesion

types (ischemic and hemorrhagic stokes), different lesion stages

from onset time, and different severity in aphasia symptoms,

we repeated the ICLM on each subgroup separately to test

the potential influence brought by these factors. Specifically,

we grouped the patients with stroke into ischemic (N = 19),

hemorrhagic (N = 30), acute/subacute (< 1 month since stroke

onset, N = 29), chronic (> 3 months since stroke onset, N

= 20), minor aphasia (the highest 25% with AQ > 54, N =

12), and severe aphasia (the lowest 25% with AQ < 20.3, N =

12). ICLM was conducted on each subgroup, and the language

networkmap was identified using the same approach introduced

in section Identification of the language network. To test the

robustness of our method, we calculated the dice coefficient

between the map obtained from each subgroup and the one we

got obtained all the 49 patients.

Second, to validate the robustness of our ICLM method

regarding the parameter space, we also considered two possible

confounds that might influence the performance of ICA and

accuracy of the extracted network. One was the sample size of

the healthy cohorts to construct the FC matrices and the other

was the specific threshold value in constructing the lesioned

language network. Specifically, we tested if our method is robust

by repeating the ICLM by including more HCs. Specifically,

we formed two more extensive datasets: one dataset had 17

more HCs added from the BNU dataset, which has 67 HCs in

total; the second dataset had 65 HCs added from the IPCAS

dataset, which has 132 HCs in total. We then performed ICLM

using the two HC datasets separately and calculated the dice

coefficients between the identified language network and the

one identified using 50 HCs. Moreover, we also changed the

threshold to either looser (Z = 0.5) or stricter (Z = 1.5) in
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the construction of lesioned language network, and repeated the

analysis of exploring the relationship between the corresponding

lesioned language network and the behavior dysfunction.

Lastly, to validate the specificity of the symptom-network

relationship established by the language lesioned network, we

performed a control analysis in the sameway described in 2.8 but

on different maps as follows: (1) the lesioned network extracted

from traditional LNM, (2) other ICs extracted by ICLM, and

(3) classic language networks including the healthy language

network and the large-sample refined network. Of note, as the

healthy language network from the Yeo 17 networks was already

binarized, we counted the number of the voxels within the

intersection instead and used the Z-scored value as the network

damage score. We then calculated the correlation of the network

damage score from the lesioned network with the AQ scores and

compared the correlation value of the language lesioned network

and those of the control networks.

Results

High heterogeneity in aphasia lesion
areas resulted in the failure of traditional
methods

The baseline demographic and clinical characteristics of

the enrolled patients, such as gender, years of education,

disease duration, type of stroke, aphasia quotient, and scores

on various WAB subtests are shown in Table 1. The lesions

of 49 patients with post-stroke aphasia included in this study

were mostly distributed in the blood supply area of the left

hemisphere middle cerebral artery, and the lesions were large

and heterogeneous. All the 49 lesion masks were added together

to create the overlapped lesion maps. The overlapping map

of the lesions is shown in Figure 1A and exhibits a high

heterogeneity in lesion locations across patients. Specifically, we

found a striking decrease in the overlapped regions along with

the increased number of patients (Figure 1B). While about 70%

of the lesioned regions were shared in less than five patients,

only 5% of the lesioned regions were collectively damaged across

half of the patients. None of the lesion regions were found to

be common in all the 49 patients. The analysis of the overlap

between any two chosen patients also revealed about a 2/3

discrepancy (overlap proportion: mean = 0.33, std = 0.1) in

their lesioned regions, indicating large inter-subject variability

in the stroke lesion locations.

Given the heterogeneity in the lesion locations,

we next tested whether the traditional methods (i.e.,

VLSM and LNM) were able to detect a brain circuit

specific to language dysfunction. Unsurprisingly, the

standard VLSM failed to identify any voxels significantly

associated with aphasia symptoms after multiple corrections

(Supplementary Figure 1A), whereas the overlapped map

TABLE 1 Demographic and clinical characteristics of the patients.

Demographics (n = 49)

Age, year 54± 14

Gender, female (%) 30.61%

Education, year 15± 4

Time since stroke onset, month 2± 2.88

Cortex accumulation (%) 42.86%

Hemorrhagic stroke (%) 61.22%

WAB

Fluency 7± 7.5

Comprehension 115.80± 44.81

Repetition 45.00± 55.50

Naming 20.00± 38.50

AQ 40.10± 34.35

Lesion volume voxels 50,776± 33,697

WAB, Western Aphasia Battery; AQ, Aphasia Quotient.

in LNM decreased according to the percentage of shared

participants and disappeared in the requirement of 90% shared

participants, which was considered as the traditionally threshold

in previous researches (Supplementary Figure 1B). Even when

we loosened the threshold to calculate the overlapped map in

70 or 80% the participants, the lesioned map comprised few

language-related regions and failed to detect any relationship

with symptoms (p= 0.36).

A specific language network identified
from ICLM

We then performed the ICLM according to the flowchart

shown in Supplementary Figure 2A. By combing all FC vectors

that resulted from each patient’s lesion mask, we got an

FC matrix with a size of 49 × 32,894. The dimension of

the signal subspace determined with the knee point method

was 7 (Supplementary Figure 2B). We then performed an

ICA on the signal subspace extracted by PCA to get ICs.

We obtained seven spatially independent components by

performing ICLM on the lesion maps from the 49 patients

and normative fMRI data from the 50 HCs, as shown in

Figure 2. To identify the language network from the seven

ICs obtained by ICLM, we compared the pattern of ICs with

the classic, healthy language network defined in the Yeo 17

networks parcellated from the resting-state imaging of healthy

participants (Figure 3A), as well as with the large-sample refined

language network as the “gold standard” (Figure 3B), which

was derived from the meta-analysis results of language regions

in 1,101 related studies using task-related imaging and patient

data (www.neurosynth.org). Intriguingly, we found that IC#1

was outstandingly advantageous in the overlap (DICE = 0.36,
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FIGURE 1

Overlapped lesion mapping shows large spatial variability. (A) Overlapped lesion mapping. Overlay of lesions of 49 patients with post-stroke

aphasia is shown. Lesions spread to a large area of the left hemisphere and are mostly distributed in the blood supply area of the left hemisphere

middle cerebral artery. Color scale illustrates the number of patients with a lesion in that voxel, with warmer color indicating higher number. (B)

Overlap of the lesion regions across people. The blue curve shows a trend of decreasing proportion of overlapped lesion regions along with

increase in patients, indicating great inter-subject variability of the lesion location. Two dots with dash lines are shown as examples: about 30%

of the lesioned regions are shared by approximately 5 patients (10%); when the proportion of patients was raised to 50%, only 5% of the lesioned

regions were commonly damaged.

compared with 0.08 as mean ICs) and correlation (r = 0.44,

p < 0.001, significantly higher than the second strongest

correlation, Z = 67.17, p < 0.001) with the healthy language

network. Consistently, IC#1 was also highest in the overlap

(DICE = 0.3, compared with 0.14 as mean ICs) and correlation

(r = 0.22, p < 0.001, significantly higher than the second

strongest correlation, Z = 12.05, p < 0.001) with the “gold

standard” language network. Therefore, IC#1 was referred and
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FIGURE 2

Seven independent spatial maps are generated by lesion-based independent component analysis. Seven spatially independent components

derived from ICLM are illustrated with both volume (left) and surface (right) maps. The major brain regions included in each spatial map are

listed. IC#1: inferior frontal gyrus, superior frontal gyrus, and middle frontal gyrus together with some other regions in premotor cortex; IC#2:

fusiform gyrus, inferior parietal lobe, middle frontal gyrus, inferior frontal gyrus, and superior parietal lobule; IC#3: thalamus, pons, caudate, and

precuneus; IC#4: temporal pole, insula, and supramarginal gyrus; IC#5: occipital lobe, precentral gyrus, and postcentral gyrus; IC#6: anterior

cingulate, superior frontal gyrus, medial frontal gyrus, and inferior frontal gyrus; IC#7: middle frontal gyrus, orbitofrontal cortex, postcentral

gyrus, precentral gyrus, and inferior frontal gyrus. Color bar indicates the weight of each voxel in the corresponding IC. IC, independent

component.

defined as the specific lesioned language network in patients

with aphasia.

The identified symptom-related language network were

typically left-lateralized and included brain regions which

are traditionally recognized as being involved in language

processing, regions mostly distributed in the inferior frontal

gyrus, superior frontal gyrus, and middle frontal gyrus, together

with some other regions in premotor cortex. A complete list

of MNI coordinates and t values for all statistically significant

clusters is shown in Table 2. In addition, we found that the

derived language network also revealed language-related regions

in the cerebellum, which was consistent with previous findings

(15, 55).

High specificity of the lesioned language
network in detecting behavioral
dysfunction

To further investigate the role of the lesioned language

network in aphasia symptoms, we calculated the correlation

between the network damage score calculated within the

lesioned language network and the AQ performance of the

patients. As a result, we found a significant negative correlation

of damage level with the total score of AQ (r =−0.29, p= 0.04)

(Figure 4A). In addition, the correlation coefficients between the

language network damage score and the subtest scores were

also calculated. We found that the language network damage
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FIGURE 3

IC#1 has the most advantage in the spatial overlap and correlation with two well-established language networks. (A) Comparison with the

parcellated language network in healthy people. Bar chart shows the comparison of seven ICs obtained by ICLM with the healthy language

network defined in Yeo 17 networks. The Yeo 17 networks are parcellated from the resting-state imaging of healthy participants. The black bar

indicates IC #1, and the gray bars indicate IC#2 to IC#7. The dashed lines in this figure represent the average correlation coe�cient or dice

coe�cient across the seven ICs. Overall, IC#1 is significantly higher than the other ICs in terms of spatial overlap (left, DICE = 0.36) and

correlation (right, r = 0.22) with the healthy language network. (B) Comparison with the large-sample refined language network. The

comparison of the seven ICs obtained by ICLM with the language network from Neurosynth is shown. This target network is regarded as the

“gold standard” since it is derived from the results of a meta-analysis of 1,101 language-related studies (www.neurosynth.org). The black bar

indicates IC#1, and the gray bars indicate IC#2 to IC#7. The dashed lines in this figure represent the average correlation coe�cient or dice

coe�cient across the seven ICs. Again, IC#1 exhibits the highest overlap (left, DICE = 0.3) and correlation (right, r = 0.44) with the “gold

standard” language network, and therefore is defined as the specific lesioned language network in patients with aphasia. corr., correlation; IC,

independent component; r, correlation coe�cient.

scores were also negatively correlated with the naming scores

(r = −0.41, p < 0.001) and comprehension (r = −0.38, p =

0.01) (Figures 4B,C and Supplementary Figure 3). Accordingly,

the lesioned language network was significantly associated with

lesion-induced language deficits. The results indicate that the

more severe the damage within the derived language network

of patients with post-stroke aphasia, the lower the patient’s AQ,

that is, the more severe the aphasia (40). We thus succeeded in

mapping the symptom-related language network associated with

aphasia severity in patients.

In comparison, we conducted an additional correlation

analysis of network damage score in the other six ICs with

the AQ performance (Supplementary Figure 4). None of the ICs

were found to be responsible for the behavioral dysfunction

(p > 0.05 for each of the six ICs), indicating the specificity

of lesioned language network in causing aphasia symptoms.

To further prove the efficiency and accuracy of the language

network derived from our ICLM method, we also compared it

with the healthy language network as well as the refined language

network (Supplementary Figure 5). As a result, we found no
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TABLE 2 ICLM results and MNI coordinates for the language network.

Brain region Brodmann area Volume (cc) Random effects: Max value (x, y, z) MNI (x, y, z)

Left hemisphere Right hemisphere Left hemisphere Right hemisphere Left hemisphere Right hemisphere

Middle frontal gyrus 6, 8, 9, 10, 11, 46, 47 11.3 2.1 1.5 (−46, 6, 45) 1.3 (26, 43,−3) (−46, 4, 49) (26, 44,−1)

Precentral gyrus 6, 9, 44 0.5 / 1.5 (−50, 3, 49) / (−50, 1, 53)

Sub-gyral 8, 21 0.4 4.5 1.2 (−14, 27, 42) 1.4 (22, 13, 26) (−14, 26, 47) (22, 12, 29)

Inferior frontal gyrus 9, 10, 11, 44, 45, 46, 47 10.4 3.6 1.4 (−61, 27, 3) 1.3 (53, 38,−11) (−62, 28, 5) (54, 40,−11)

Superior frontal gyrus 6, 8, 9, 10, 11 15.0 1.5 1.4 (−6, 30, 57) 1.4 (1, 28, 52) (−6, 28, 64) (1, 26, 58)

Medial frontal gyrus 6, 8, 9, 10, 11 4.0 0.8 1.3 (−10, 41, 39) 1.3 (1, 45, 42) (−10, 40, 45) (1, 44, 48)

Superior temporal gyrus 21, 22, 38, 39, 41, 42 2.2 2.3 1.3 (−33, 9,−40) 1.2 (38,−39, 7) (−33, 11,−47) (38,−40, 5)

Inferior temporal gyrus 20, 21 2.7 / 1.3 (−50,−21,−28) / (−51,−20,−35) /

Inferior parietal lobule 39, 40 0.5 / 1.2 (−66,−41, 26) / (−67,−44, 26) /

Middle temporal gyrus 20, 21, 22, 38 4.1 2.0 1.2 (−43, 6,−36) 1.2 (38,−41, 7) (−43, 8,−43) (38,−43, 5)

Fusiform gyrus 18, 19, 20 0.9 0.1 1.2 (−53,−9,−26) 1.1 (25,−74,−12) (−54,−8,−31) (25,−76,−19)

Supramarginal gyrus 39, 40 1.5 / 1.2 (−63,−49, 29) 1.1 (−57,−64, 31) (−64,−52, 29) (−58,−67, 30)

Rectal gyrus 11 0.6 0.4 1.1 (−2, 30,−24) 1.2 (4, 49,−25) (−2, 32,−27) (4, 52,−27)

Orbital gyrus 11 0.2 0.2 1.1 (−6, 38,−21) 1.2 (5, 47,−27) (−6, 40,−23) (5, 50,−29)

Angular gyrus 39 0.1 / 1.1 (−54,−56, 36) / (−55,−59, 36) /

Uncus 20, 38 0.1 / 1.0 (−29, 3,−40) / (−29, 5,−47) /

ICLM, independent component-based lesion mapping; MNI, Montreal Neurological Institute; cc, cubic centimeters; Max, maximum.
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FIGURE 4

Damage level of the identified language network is reversely associated with aphasia severity. (A) Network damage level is associated with AQ.

The scatter plot illustrates a significant negative correlation (r = −0.29, p = 0.044) between network damage scores of the identified language

network and patients’ AQ. (B,C) Network damage level is associated with the naming and comprehension subtests. The scatter plots show that

the language network damage score is negatively correlated with naming (r = −0.41, p = 0.004) and comprehension (r = −0.38, p =0.006)

scores. AQ, Aphasia Quotient. The solid line represents the best linear fit with its 95% confidence interval (shaded area). Black dots are individual

data points.

FIGURE 5

ICLM of randomly split subgroups reveals adequate

reproducibility of this method. The scatter plot shows the dice

values between the language networks of the two subgroups

extracted in 10 di�erent runs. Each point represents the dice

value between two language networks generated by ICLM

within two randomly split subgroups. The dotted line indicates

the mean value of 10 dice values, which is 0.8, demonstrating

the relatively strong reproducibility of ICLM.

significance of the correlation between the damage score in

the healthy language network and the language dysfunctions in

patients (r = 0.17, p = 0.26). Such relationship was significantly

weaker when compared with the association of our lesioned

language network and symptoms (Z = −2.11, p = 0.034 in

comparing the two correlation coefficients). Together, the result

of the traditional parcellated language network indicated a

low specificity when we applied the network derived from the

healthy participants to the lesioned patients. Moreover, the

damage score calculated in the “golden standard” language

network has a strong association with behavioral abnormality

(r = −0.41, p = 0.004). The association to behavior from

our lesioned language network turned out to quite resemble

the result calculated from large-sampled refined language

network (Z = −0.82, p = 0.41). Given the authority of the

refined language network, which was extracted from thousands

of language-related research studies, our lesioned language

network derived from only 49 patients exhibited a high efficiency

in detecting the symptom-related language map.

Reproducibility and stability analysis

We further tested the reproducibility and stability of the

ICLM method in yielding the language network from patients

with aphasia. To exclude the possible confounds of distinct

neurofunctional mechanisms taking place in different patients,

we conducted a control analysis on the different subgroups

of patients either by random splitting or according to clinical

features. In the former method, we repeated the calculation

of the pairwise correlation between the language networks of

the two randomly divided subgroups extracted in 10 different

runs and obtained an average dice count of 0.8. The pairwise

dice from the different runs is shown in the graph (Figure 5).

This demonstrates that the language network obtained with the

ICLMmethod was highly reproducible. In the latter method, we

grouped the patients according to their lesion types (ischemic

and hemorrhagic strokes), disease stages (acute/subacute and

chronic stokes), or symptom severity (stroke with minor and

severe aphasia). The identified language networks with the

ICLM method exhibited a spatial distribution quite similar to

the one using all the patients (Supplementary Figure 6).
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To validate the stability in generating the lesioned language

network with the ICLM method, we also changed the sample

size of the healthy cohorts in constructing FC matrices

as well as the threshold in defining the lesioned language

network. Both the identification of the lesioned language

network and the correlation with behavioral dysfunction were

unchanged by repeating the ICLM with the different parameters

(Supplementary Figures 7A,B). Our results thus proved the

robustness of ICLM by including different healthy populations

as well as changing the network threshold.

Discussion

In this study, we identified a language network from mixed

lesion-affected brain regions in patients with moderate to severe

post-stroke aphasia by ICLM. We found that the language

network damage scores were negatively correlated with AQ and

the other two subtests, naming and auditory comprehension,

which verified the identified language circuit. By detecting a

specific lesioned language network that otherwise could not be

identified with the traditional VLSM and LNM methods, our

ICLM method succeeded in mapping the language network in

relation to clinical behavioral deficits in post-stroke aphasia.

The highlight of this study also lies in the high specificity of

the lesioned language network in associating the behavioral

dysfunction, which was more superior to the classic parcellated

language network and as good as the large-sample refined

language network.

Based on the improved ICLM method, this study mapped

the language network in post-stroke aphasia. The large-scale

network was mainly distributed in the temporal lobe, prefrontal

lobe, parietal cortex, and cerebellum, which generally covers

the circuits of speech and semantic processing. This is basically

consistent with previous research findings. For example, our

language circuit includes two key nodes of the brain language

network, the posterior middle temporal gyrus and the inferior

frontal gyrus (56). The resulting circuit also includes the angular

gyrus, which is related to semantic fluency (57), the middle

temporal gyrus, which is related to speech processing, and the

superior temporal gyrus, which is involved in the semantic-

phonological interaction process (58). These functions are

highly related to naming and comprehension ability, which

corresponds to the two significantly correlated WAB subtests.

Furthermore, we found that the derived language network also

discovered language-related maps in the cerebellum, which

fitted well with previous findings (15).

Compared with those of the traditional VLSM and

LNM methods, our results have shown that lesion mapping

incorporating ICA can accurately identify language regions from

multiple lesion-affected networks. The excellent performance of

our method benefited from the following reasons.

First, ICLM mapped the lesion-affected networks more

independently from the healthy controls instead of directly

using fMRI signals from the patients. This is because the

brain tissue at the lesion location in patients with stroke is

mostly destroyed, and functional neural activities within or

near the lesion site can no longer accurately reflect the normal

physiology or connectivity of ROIs. Also, the abnormalities

in BOLD signals detected in patients with post-stroke are not

only affected by the focal lesion but may also be affected by

secondary compensation or adaptive reorganization of brain

networks away from the lesioned area. Therefore, our method

uses an indirect functional connectivity profile from a large

cohort of healthy participants as in LNM, which can map brain

regions that are normally associated with lesioned sites. The

complementary application of LM and indirect fMRI in the

future may bring some new insights into the field of neurology

(15, 59).

Second, our method differs from the conventional LNM in

that the introduced ICA makes it more suitable for mapping

the symptom-related network from complicated lesions.

Conventional LNM directly applies lesions as seed regions

to calculate FC and then simply overlaps the maps obtained

from each patient to identify common brain regions. However,

when the stroke lesion is heterogeneously distributed, the

lesion-related brain regions calculated by traditional LNM

may also exhibit large inter-subject variability, leading to

a question whether meaningful information could be fully

obtained from the plain overlapping approach. The mapping

results of conventional LNM confirmed our speculation, with

very limited common regions found and failed to establish

a relationship with aphasia symptom. In comparison, ICLM

utilizes the full set of lesion-affected connectivity information

and leverages ICA to isolate the symptom-related component

from mixed signals. As a blind source separation technique,

ICA has been commonly conducted in brain network analysis of

cerebrovascular diseases in recent years. When both the source

signal and the mixing matrix are unknown, it can find out

mutually independent implicit components by analyzing the

high-order correlation between multidimensional observational

data and complete the extraction of the independent source

signal (60–62). After calculating the lesion-affected FC, we

performed an ICA to extract independent components from

the combined FC matrix from all the patients and identified

the language network that is linked to the aphasia-related

symptoms. Through this procedure, ICLM can discriminate

the single concerned network from a mixed bag of lesion-

affected networks, of which the results were robust after

reproducibility analysis.

Third, our definition of network damage score differs

from that of previous LNM studies. Conventional LNM

has been applied to studies on memory and depressive

disorders and successfully obtained memory and depressive

circuits (14, 49). These studies found that network damage
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scores were associated with depression severity and memory

behavioral scores. The network damage score in these studies

was calculated by summing the t-values for each voxel that

fell within the intersection of the derived circuit and the

lesion mask. However, summed t-values are heavily dependent

on the number of damaged voxels when calculating the

correlation between the network damage score and behavior

scores, so this index is highly perturbed by the size of

the lesions. In contrast, the network damage score in this

study was replaced with the max of z-values of the IC

map that fell within the intersection of the derived language

network and the lesion mask for each patient (63). In large

lesion studies, such a network damage score definition may

better represent the extent to which the lesion and language

network intersect.

As a result, we identified the lesioned language network

extracted with the ICLM method. The symptom-related

language network turned out to be mostly distributed in the

inferior frontal gyrus (IFG), superior frontal gyrus (SFG),

superior temporal gyrus (STG), and middle frontal gyrus

(MFG) in the left hemisphere, which were traditionally

recognized as key regions in healthy language processing

(64). Specifically, the opercular and triangular part of the

IFG was traditionally known as Broca’s area (BA), and the

posterior aspect of the STG was traditionally known as

Wernicke’s area (WA). Besides, a number of regions we

found were covered in the premotor cortex (Brodmann’s

area 6), which was referred to as language supplementary

motor area (SMA). Compared with previous classical language

networks, our lesioned language network was also more

specific to these key regions that played crucial roles in

clinical practice and for localization in treatment planning

(38, 65). For instance, a body of research has indicated a

strong increase of activation in SFG and a high correlation

with language recovery in patients with post-stroke. The IFG,

SMA, BA, and WA were also used as targets of non-invasive

brain stimulation to facilitate language rehabilitation (66, 67).

Therefore, our lesioned language network showed a high

specificity in identifying the crucial regions responsible for

behavior deficits.

Furthermore, the symptom-related brain circuits identified

by ICLM were not only specific to the behavioral deficit

but also showed relatively high reproducibility and stability.

Among the seven ICs segregated by ICA, only one was

significantly correlated with the patients’ language assessments,

indicating the high specificity of our method. In other

words, we have established an association between the

network damage score and the aphasia severity assessment

exclusively in one IC, namely, the language network.

The estimation power of our lesioned language network

was significantly higher than that of the classical healthy

language network and approximated to the meta-analysis

results from thousands of language-related research studies,

indicating the reliable symptom-localization ability of ICLM.

Further with the reproducibility analysis, we found that the

determined symptom-related regions were highly similar

between every two independent samples and different types

of subgroups, which again showed the great reliability of

our method.

This upgraded, accurate, and reliable lesion mapping

method can be beneficial to clinical practices. The precise

delineation of a symptom-related functional network has

direct clinical implications for optimizing patient rehabilitation

strategies. Neuromodulation techniques such as transcranial

magnetic stimulation can promote rehabilitation by modulation

of targeted brain regions or of their corresponding functional

connectivity (66). The clear symptom-biomarker mapped by

ICLM could facilitate patient management with more targeted,

effective, and optimal intervention planning. Furthermore,

ICLM can also be performed to map other symptom-related

functional networks besides language. Given that neural diseases

with complex lesion topographies are probably common

in patients, this method has a great potential in helping

discover the neural correlates of multiple functional deficits.

Finally, although the regional damage level was correlated

with overall or partial aphasia severity, whether the feature of

this network can serve as a predictive marker of behavioral

improvement remains to be determined. In future studies,

we can further validate the prognostic value of the obtained

functional network.

There are still some limitations in this study. First of all,

the sample size of this study is relatively small. In the future,

we should try to apply this method to a larger database to

observe its robustness. Second, we have only performed ICLM

on post-stroke aphasia and cannot verify whether this method

can be generalized to different clinical syndromes. This method

should be also applied to other diseases in the future to evaluate

its sensitivity and specificity. Third, we mainly focused on the

language network of the cerebral cortex and did not further

explore the circuits of white matter areas such as fiber tracts.

Finally, ICLM may also need to consider many covariates such

as age, gender, and education. The healthy control group was

young, and age may affect functional connectivity strength

(68). However, previous studies applying conventional LNM

to the elderly have not concluded that age directly changed

results, so this should not affect our interpretation of ICLM

(15).

In conclusion, this study mapped a specific language

network in post-stroke aphasia with high heterogeneous regions

and linked the lesioned language network to aphasia severity.

We consider ICLM to be an important complement to lesion

behaviormapping by improving the precise network localization

of complicated lesions. In the future, ICLM may be combined

with non-invasive brain stimulation to identify key stimulation

targets for specific symptoms and promote functional recovery

in complicated brain diseases.
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