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Multiple myeloma (MM), a malignant neoplasm of plasma cells that reside in the

bone marrow (BM), is universally preceded by a precursor state termed monoclonal

gammopathy of undetermined significance (MGUS). Many individuals with MGUS

never progress to MM or progress over many years. Therefore, MGUS provides a

unique opportunity to surveil changes in the BM tumor microenvironment throughout

disease progression. It is increasingly appreciated that MGUS cells carry many of the

genetic changes found in MM. Prior studies have also shown that MGUS cells can

be recognized by the immune system, leading to early changes in the BM immune

environment compared to that of healthy individuals, including alterations in both innate

and adaptive immunity. Progression to clinical MM is associated with attrition of T

cells with stem memory-like features and instead accumulation of T cells with more

terminally differentiated features. Recent clinical studies have suggested that early

application of immune-modulatory drugs, which are known to activate both innate

and adaptive immunity, can delay the progression to clinical MM. Understanding the

biology of how the immune response and tumors coevolve over time is needed to

develop novel immune-based approaches to achieve durable and effective prevention

of clinical malignancy.

Keywords: myeloma and other plasma cell dyscrasias, immune response, immune checkpoint, MGUS, prevention

INTRODUCTION

Multiple myeloma (MM) is a malignant neoplasm characterized by progressive growth of clonally
transformed plasma cells in the bone marrow (BM), leading to organ dysfunction manifesting as
anemia, lytic bone disease, hypercalcemia, and renal failure (1). It is now well-appreciated that
nearly all cases of MM are preceded by the precursor phases termed as monoclonal gammopathy
of undetermined significance (MGUS) and smoldering myeloma (SMM) (2). In contrast to MM,
the precursor states are characterized by a clinically stable biomass of transformed cells that, by
definition, does not lead to overt organ dysfunction. However, a proportion of these patients,
estimated at 1% per year in the case of MGUS and 10% per year in the case of SMM, do transform to
clinical MM requiring therapy. It has been suggested that the precursor phasemay originate as early
as the third decade of life (3). Therefore, a great majority of the life history of the malignant clone
is spent in its precursor stage. Understanding the early events and the mechanisms underlying the
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pathogenesis ofMGUS and the factors that regulate the transition
of MGUS to MM is critical to develop rational approaches to
prevent clinical cancer.

The concept that clinical malignancy originates in the context
of a more common precursor state is not unique to MM but
also occurs across nearly all human malignancies. Hematologic
malignancies such as MM and their precursor states do however
represent useful models to gain basic insights into these early
events in cancer biology and immunology, as the precursor
lesions cannot be resected and, therefore, are typically monitored
longitudinally in patients. In cancer biology, progressive growth
and transformation of the precursor states to clinical malignancy
resemble evolution of the species, bearing several similarities
to Darwinian evolution (4). In this review, we will argue that
this evolution is impacted by and occurs in the context of host
response, and the coevolution of these two adaptive biologic
systems (tumors and immune system) determines the final
trajectory of evolution of MM tumors. Recent studies have
given a new understanding of how genetics, BM niche, and the
immune microenvironment may play distinct, interconnected
roles in disease evolution from MGUS to MM. However, it is
still unclear which events are causal for disease progression and
which events result due to progression. A deeper understanding
of the interactions between these factors andmyelomagenesis will
inform more effective strategies to delay disease progression and
target malignant plasma cells.

GENETIC HETEROGENEITY AND
EVOLUTION IN MYELOMA

Analysis of tumor genomes has demonstrated that MM is
characterized by a high degree of genetic complexity and
clonal heterogeneity. It has been proposed that the development
of the malignant plasma cell population occurs as a result
of the progressive accumulation of genetic changes (5).
Patterns of genomic evolution of MM have been recently
characterized (6). Common initiating mutations that confer
an initial clonal advantage and disrupt normal plasma cell
activity include hyperdiploidy, translocation of immunoglobulin
heavy chain, and 13q deletion (7, 8). After these initiating
events, increasing genetic alterations, such as copy number
variants, insertions/deletions, translocations, aneuploidy, and
non-synonymous single nucleotide variations (NS-SNVs), as well
as structural genomic alterations have been observed over the
progression of the malignant plasma cell populations (9, 10).
However, these mutations do not appear in a purely linear
fashion. Rather, they occur in a branching manner, leading to
a variety of distinct subclones within the tumor population;
therefore, the intraclonal heterogeneity model appears to best
describe the mutational landscape of MM. These subclones
differentially proliferate based on fitness, leading to a diverse
and evolving tumor (11). Patients with MM demonstrate an
average of five detectable major subclones, further emphasizing
the nature of MM as a heterogeneous disease (8, 12, 13).
Epigenetic changes in tumor cells also appear over the course
of MM (14). Both global hypomethylation and gene-specific

hypermethylation appear with a high degree of variability
in methylation among patients with MM (15). Deregulation
of histone-modifying proteins and chromatin modifiers has
been observed in MM, but the significance of downstream
modifications to chromatin is undetermined (14, 16–18).

The mechanisms underlying the genomic instability in MM
are under active evaluation but involve cytidine deaminases,
such as activation-induced cytidine deaminase (AID) and
apolipoprotein B mRNA editing enzyme, catalytic polypeptide-
like (APOBEC) (19, 20). Mutational signatures of these genes
have been detected in MM genomes. Expression of AID in MM
cells is impacted by their interaction with dendritic cells (DCs) in
a receptor activator of nuclear factor kappa-B ligand (RANKL)-
dependent manner, suggesting that genomic instability in tumor
cells may be more directly linked to interactions with the tumor
microenvironment (20).

Interestingly, the genomes of MGUS and MM clonal plasma
cells are rather similar; the majority of the genomic changes seen
in MM are already present in MGUS before transformation to
full malignancy (13, 21–23). The common initiating mutations
of MM previously mentioned, such as IgH translocations and
hyperdiploidy, are also already present in MGUS, and all
major genetic subtypes of MM are indeed represented in the
MGUS stage (7, 9, 10, 24). In this review, we argue that the
evolution from MGUS to MM is not solely influenced by the
genetic evolution of the tumor but rather by the interactions
between the tumor and the BMmicroenvironment, especially the
immune cells.

IMMUNE RECOGNITION AND
SURVEILLANCE IN MGUS AND MM

Evidence for Immune Surveillance in MM
The concept that the immune system mediates surveillance
of early tumors has been demonstrated in several models for
both spontaneous as well as carcinogen-induced models (25).
Effects of the immune system on early tumors have been
characterized in three distinct stages: elimination, equilibrium,
and escape. Evidence for immune surveillance in MM has
emerged both from the murine models and from studies on
patients with early lesions. In the Vk*MYC model of myeloma,
the immune system provides surveillance against the growth of
tumor cells in a CD226-dependent manner (26). The CD226-
dependent response was mediated by both NK and CD8+ T
cells in a perforin and interferon gamma-dependent manner. The
concept of tumor-extrinsic control on the growth of MGUS is
supported by studies in humanized mouse models. In a study
evaluating the engraftment of MGUS and MM patient bone
marrow transplanted into MIS(KI)TRG6 mice, MGUS tumor
cells exhibited progressive growth, suggesting that the dormant
nature of the MGUS cells in patients is regulated in part by
tumor-extrinsic controls, including the immune system (27). In
a preclinical model of syngeneic stem cell transplant for MM,
it was observed that TIGIT immune checkpoint blockade led
to the prevention of CD8+ T cell exhaustion and successful
immune control ofMM, supporting the role of immune system in
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tumor control (28). These studies are also supported by immune
recognition of MGUS lesions and the finding that the nature
of immune response against MGUS correlates with the risk of
progression to clinical MM (29). Clonal T cell expansions have
also been observed to be associated with lower tumor burden and
survival advantage in patients with MM, supporting a role for the
immune system in MM control (30–32).

Immune Recognition of Human MGUS and
MM
As with many cancers, substantial evidence exists indicating
immune recognition and activation in the context of MM.
Specific humoral and cytotoxic responses to cancer-associated
antigens occur in the BM of patients withMM. InMM expressing
the cancer/testis antigen NY-ESO-1, specific antibodies and
antigen-specific T cells were observed, and these T cells
maintained the ability to kill primary MM cells (33). T cells from
patients with MM exhibit robust anti-tumor responses when
activated by DCs loaded with tumor antigen (34). Natural killer
(NK) cell activation and cytotoxicity have also been implicated
in anti-MM immunity, with patient-derived NK cells being
able to recognize the MM cells (35). An increased number of
infiltrating immune cells, including NK cells and T cells, have
been observed in the BM of MM (36). MM cells expressing
MICA activate γ1 T cells and promote anti-MM cytotoxicity
(37). Furthermore, T cells in MM exhibit significant signs of
exhaustion, suggesting chronic exposure to target antigen on
the MM cells (38). Therefore, the immune system recognizes
MM, resulting in activated anti-tumor immunity and tumor-
specific immune cells. However, this immune response appears
insufficient to fully contain the tumor.

Immune recognition of the tumor does not solely occur
after its malignant transformation to symptomatic MM. Rather,
studies have demonstrated earlier immune recognition of MGUS
cells in the BM. Tumor-specific CD4+ and CD8+ T cell effector
responses have been observed in the BM of MGUS (34). T-
cell immune responses specific to several cancer/testis antigens
were also observed in the BM of MGUS (39). Interestingly, the
targets of T-cell response in MGUS appear to be enriched for
antigens typically expressed on stem cells. For example, robust
humoral and cellular anti-SOX2 immune responses have also
been observed in patients with MGUS (40). MGUS T cells have
exhibited responses that are specific to an MGUS-associated
antigen OFD1 (41). In a prospective clinical trial, the presence
of T cells against SOX2 was associated with a reduced risk of
progression to clinical MM (29). In the sections below, we will
discuss changes in innate as well as adaptive immunity in patients
with MM and MGUS.

Alterations in Innate Immunity
NK cells have been observed at increased frequencies in the
BM of both MGUS and MM relative to healthy donors (42–44).
However, there are clear functional differences between the NK
cells in MGUS and MM. MGUS NK cells generally maintain
their capacity for activation and antibody-dependent cellular
toxicity, while MM NK cells exhibit marked functional deficits
(45, 46). NK cells appear to lose tumor lysis ability correlating

with the clinical stage in MM (47). The NK cells in the BM
of MM exhibit decreased expression of activating NK receptors,
including NKG2D, NCR3, and CD244 (42, 48). The NK cells in
MM have also been observed to have increased PD-1 expression,
indicating a potential mechanism for tumor immune evasion, as
well as a potential therapeutic target (49). These data indicate
a role for increased populations of active NK cells early in
the course of disease in containing the malignant plasma cells.
Subsequent loss of this early anti-tumor NK cell activity seen in
MGUSmay allow the progression to symptomaticMM.MM cells
also express killer immunoglobulin-like receptor (KIR) ligands
that interfere with NK cell cytotoxicity. Anti-KIR antibodies have
been observed to enhance MM cell lysis in vitro in combination
with daratumumab and daratumumab plus lenalidomide (50).
Early clinical trials of an anti-KIR antibody in combination with
the immunomodulatory agent lenalidomide, an approved MM
treatment that is known to expand and activate NK cells, have
proven to be safe (51).

Natural killer T (NKT) cells have also been observed to have
deficits in MM, including defective interferon-γ production and
decreased frequencies. NKT cells from MGUS patients have
preserved interferon-γ production relative to MM patients (52,
53). Lenalidomide enhances NKT cell cytokine production and
proliferation in vitro (54). Another study assessing the effects
of a combination of lenalidomide and alpha-galactosylceramide-
loaded monocyte-derived DCs in patients with SMM showed
substantial activation-induced changes in the NKT cells, as well
as activation of NK cells and a decrease in M spike during
therapy, suggesting potential for targeting NKT cells against
MM (55).

Innate lymphoid cells (ILCs) are a relatively recently
discovered innate immune cell type related to NK cells and
T cells. Specifically, ILC1s, ILC2s, and ILC3s are the innate
analogues of the adaptive Th1, Th2, and Th17 cells, just as
NK cells serve as the innate counterpart of cytotoxic CD8+
T cells. Recently, ILCs have been suggested to have potential
effects on cancer growth and immunosurveillance (56, 57). In
a study analyzing both circulating and BM ILCs, patients with
MGUS were found to have increased BM ILCs, but not increased
circulating ILCs, relative to healthy donors. Furthermore,
patients with MGUS had increased IFNγ-producing ILC1
relative to healthy donors, but asymptomatic patients with MM
had a drastic decrease. These data suggest a potential role of
altered ILC populations and function in the evolution of MGUS
and MM (58). ILCs express high levels of some of the targets
of immune-modulatory drugs, such as pomalidomide, and are
activated early following the exposure to these drugs in vivo (58).
More studies are needed to better elucidate the roles of ILCs in
the progression of MM.

Various cells of the myeloid lineage, including DCs,
macrophages, and myeloid-derived suppressor cells, have been
observed to change over the course of the disease progression
of MM. Tumor-associated macrophages (TAMs) are known to
play a key role in tumor progression in a variety of cancers,
with substantial pro-tumoral effects, including stimulation of
angiogenesis and intravasation, promotion of tumor cell growth,
and immune suppression, by diminishing the anti-tumor activity
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of T cells and NK cells (59, 60). Similarly, changes in the
macrophage population in the BM microenvironment have been
observed over the course of the disease progression of MM
(60). M2 macrophages are significantly increased in the BM
of patients with MM relative to patients with MGUS, patients
with SMM, and healthy donors; this effect appears to be largely
mediated by increased levels of CXCL12 and IL-10 in the
tumormicroenvironment. Thesemacrophages allowed for tumor
proliferation as well as the suppression of the proliferation of
T cells, linking changes in both innate and adaptive immunity
over disease progression (61). The BM macrophages in MM
have been observed to be vasculogenic, an ability absent in
TAMs of MGUS (62). This finding aligns with the evidence that
neovascularization is increased in MM relative to MGUS (63).
TAMs in MM also appear to have increased IL-6 and IL-10
expression, along with decreased IL-12 and TNF-α expression,
leading to tumor growth and immune suppression (64).

Myeloid-derived suppressor cells (MDSCs) and immature
myeloid-lineage cells are now known to play a role in suppressing
both innate and adaptive immune responses in the tumor
microenvironment in many cancers. MDSCs have been observed
to have changes in number, phenotype, and function among
healthy donors, patients with MGUS, and patients with MM,
suggesting a role in MM disease evolution (65). MDSCs can
be divided into two subsets: CD15+ granulocytic MDSCs (G-
MDSCs) and CD14+ monocytic MDSCs (M-MDSCs). In a
study comparing the BM of healthy controls, stable MM, and
progressive MM, proportions of G-MDSCs were significantly
higher in both stable and progressive MM than healthy controls;
furthermore, the proportion was found to be significantly higher
in progressive MM than in stable MM. The increased number of
MDSCs also significantly correlated with the BM regulatory T cell
(Treg) population. In culture, these MDSCs were seen to induce
immunosuppressive Tregs and inhibit other T-cell responses,
contributing to immune suppression in MM (66). Increased
levels of CD14+HLA-DR-/low MDSCs have also been observed
in MM (67). Another study reported a significant accumulation
of CD11b+CD14-CD33+ immunosuppressive MDSCs in the
BM of newly diagnosed patients with MM. To further explore
this role, S100A9 knockout mice, which are deficient in MDSC
infiltration of tumors, had significantly reduced tumor MDSCs
and MM cells relative to wild type, suggesting that accumulation
of MDSCs plays a key role in tumor progression (68). The
mechanisms underlying the increase in MDSCs need further
study. Studies on the Vk*MYC model have suggested a role for
niche-derived IL18 in promoting MDSC-mediated suppression
as a therapeutic target in MM (69).

Dendritic cells play an important role in anti-cancer
immunity, helping to recruit T cells, present tumor-associated
antigens, and coordinate the immune response. Higher
infiltration of active DCs into the primary tumor has been
seen to correlate with increased patient survival in many solid
tumors. However, tumors have also been recognized to escape
the immune system by inducing DC dysfunction or apoptosis.
Several studies have shown that MM lesions are commonly
infiltrated with DCs, although the earlier findings reported that
tumor-infiltrating DCs infected with Kaposi-sarcoma herpes

virus were not reproduced (70). DCs likely play a multifaceted
role in MM biology with both immune as well as non-immune
implications. DCs can be divided into two main categories,
namely myeloid or conventional DCs (mDCs) and plasmacytoid
DCs (pDCs), with mDCs playing a more antigen-presentation
role and pDCs secreting Type I interferons (71, 72). Both subsets
have been observed to have altered distributions in MM. One
study found that both mDCs and pDCs accumulate in the BM
over the progression fromMGUS to MM. When stimulated with
apoptotic tumor cells, mDCs and pDCs from the BM of both
patients with MGUS and MM exhibited increased production
of IL-12 and IFN-α, respectively (70). DCs have been shown to
activate Tregs as well as Th17 cells in MM (73, 74) and promote
tolerance to tumor antigens and T-cell evasion via interactions
of CD80/CD86 with CD28 on tumor cells (70). However, DCs
can also directly promote the growth and survival of tumor cells
and may also impact genomic instability in MM cells (20, 75, 76).
In addition, DCs have also been implicated as precursors for
the formation of osteoclasts in the tumor microenvironment
(77–79). Together, these studies suggest that DCs may impact
both immune as well as non-immune aspects of tumor biology.

Collectively, it appears that alterations in innate immunity
occur early in myelomagenesis, with early alterations in NK
cells, NKT cells, and ILCs, which are evident in MGUS as
well as myeloma. Changes in innate immune function and
populations may contribute to the progression from MGUS to
MM, as NK cells appear to lose cytotoxic function, pro-tumor
M2 macrophages accumulate, and MDSCs and DCs increase
immunosuppressive activity. Furthermore, observed changes in
myeloid lineage cells may play a role in other immune changes
observed in MM, as they directly contribute to the substantial
changes in adaptive immunity seen over the course of the disease
as well.

Alterations in Adaptive Immunity
T Cells

T cells play a key role in anti-tumor immunity. Substantial
quantitative, phenotypic, and functional changes in the
population of T cells have been observed over the evolution
of MM. Overall, increased proportions of memory T cells and
depletion of naïve counterparts have been observed in MM and
MGUS, relative to healthy controls (44). Clonal CD8+ T cell
expansions were noted significantly more frequently in patients
with low tumor burden (MGUS or early-stage MM) compared
with those with advanced disease (30). T cells from the BM of
MGUS have been observed to mount a tumor-specific response
to malignant plasma cells; however, T cells from MM lacked
tumor-specific effector function, suggesting a role for the loss of
anti-tumor T cell function in disease progression (34). Despite
this finding, these MM T cells still demonstrated the ability
to mount an anti-tumor cytolytic response when activated by
tumor-loaded DCs, indicating that even in advanced MM, T cells
can be recruited to mediate anti-MM activity (80). The capacity
of the endogenous T cells to mediate anti-tumor function in vivo
has now been translated to clinical studies with the efficacy of
bispecific antibodies (81).
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Persistent antigen stimulation in the setting of cancer leads
to the emergence of T cell exhaustion (82). CD8+ T cells
in MM have been observed to have features associated with
senescence and exhaustion, expressing proteins such as PD-1,
CD160, CTLA-4, and CD57 (29, 83–85). Interestingly, recent
data suggest that the features of T-cell exhaustion begin early and
may manifest as early as MGUS (42). As the MGUS phase lasts
for several decades, this raises a question as to how exhausted
clones can be maintained over prolonged periods of time. A
possible solution from murine models is the appreciation that
chronic persistence of immunologic memory depends in part
on the presence of a subset of stem-like memory T cells, which
are marked by the expression of a transcription factor TCF-1
(82). Indeed, recent studies have suggested that transition from
MGUS toMM is associated with the attrition of TCF1hi stem-like
memory T cells, as well as T cells expressing markers associated
with tissue residence (86), and instead accumulation of senescent
T cells expressing high levels of lytic genes and senescent markers
(42). These cells exhibit decreased proliferation and impaired
cytotoxic function and fail to produce IFN-γ when stimulated
(38). The senescent phenotype described in MM cells includes
a distinct telomerase-independent phenotype, which may not be
reversible (84). However, data from studies on T-cell redirection
does support the capacity of endogenous T cells to mediate
anti-tumor function in vivo (81).

Oligoclonal expansions of CD8+ CD57+ terminal effector
T cells (TTE cells) have been observed in the BM and the
peripheral blood of patients with MM (87, 88). Treatment
with thalidomide led to an increased expansion of cytotoxic
T-cell clones, and these expansions correlated with increased
progression-free survival (32). The TTE cells have relatively
low PD-1 expression, making the cell subset a less appealing
target for PD-1/PD-L1 blockade (89). CD69 may be a marker
for T-cell activation or tissue residence (86). Further, the
division of these cells by CD69 expression has shown altered
proportions of BM C69+ and CD69-TTE cells among controls,
MGUS, SMM, and MM. The CD69- cells showed oligoclonal
expansions capable of lysing autologous tumor cells, while
the CD69+ cells showed an increased inhibitory-immune
checkpoint expression (88).

An important feature of exhausted T cells is the expression
of inhibitory checkpoints, such as PD-1 (85, 90). In a murine
model, MM-specific T cells were shown to express higher levels
of PD-1 when compared to non-reactive T cells (91). The
expression of PD-L1 on MM plasma cells has also been observed
to be higher than that of MGUS and healthy plasma cells
(92, 93). Increased PD-L1 expression has also been described in
persistent minimum residual disease (MRD+), after treatment
(94). The PD-L1 expression also was observed to correlate
with an increased risk of progression of SMM (29). Secretion
of IL-6 by BM stromal cells induced PD-L1 expression on
MM cells via signaling through JAK2, STAT3, and MEK1/2
(93). Activation of the JAK/STAT pathway by IFNγ secreted
by the BM immune cells as well as toll-like receptor (TLR)
stimulation may also contribute to MM cell PD-L1 expression
(92, 95). Another analysis of BM from patients with MM,
SMM, andMGUS revealed a correlation between increased T-cell

exhaustion and senescence and disease progression, particularly
in tumors with trisomies (96). These considerations have led to
studies targeting the PD1 and PD-L1 pathway in clinical MM
as well as SMM (90, 97). The clinical results from these studies,
however, have been underwhelming to date. Recent data also
suggest that other inhibitory checkpoints, such as TIGIT or Lag-
3, may be important targets in MM (98), and studies targeting
these pathways are currently ongoing. Recent studies have also
demonstrated a role for adenosine signaling in inhibiting the T-
cell function in MM (99), indicating another potential target for
anti-MM immunotherapy.

Two other aspects of T-cell function relevant to MM include
regulation and altered T-cell polarization. Tregs have been
extensively observed in MM. Treg populations have been
observed to be increased both in MM and MGUS relative
to healthy controls and were predicted to play a role in
immune dysfunction observed in MM (100). A separate study
observed an increase in CD4+CD25+ T cells in MGUS and
MM, but a decrease in FOXP3+ Treg cells; these Tregs also
appeared dysfunctional with a decreased ability to suppress
T-cell proliferation, potentially contributing to a non-specific
increase in T cells and dysfunctional anti-tumor immunity
(101). Mechanisms underlying the increase in Tregs involve both
direct induction by tumor cells, as well as via cross-presenting
DCs (73, 102). Mice lacking Tregs, achieved via knockout of
FOXP3, had prolonged survival after injection of Vk*MYC
MM cells compared to wild-type mice, further emphasizing
the role of Tregs in immune suppression and MM progression
(103). Together, these studies suggest a role for Treg-mediated
regulation in MM immunity. Immunotherapy targeting Tregs
has shown promise for certain types of cancer in preclinical
models (104); as these methods evolve, they may eventually have
a role in MM treatment.

Another feature of MM-associated T cells is an increase in IL-
17 producing T cells (74). Th17 cells have been observed to be
increased in frequency in the BM of patients with MM compared
to patients with MGUS and healthy donors (74, 105). The IL-
17 secretion by these Th17 cells increases osteoclastogenesis and
activation and contributes to MM bone disease (106). The Th17
IL-17 secretion was also observed to promoteMM cell growth via
its receptor. Furthermore, these Th17 cells significantly inhibit
the production of pro-inflammatory Th1 cytokines such as IFN-
γ, suggesting a role in maintaining immune suppression in
the tumor microenvironment (105, 107). In Vk∗MYC mice,
increased Th17 cells favored progression of MM, and treatments
blocking IL-17 delayed disease progression (108). Another study
in the Vk∗MYC mouse MM model further suggests that T cells
are a key controlling agent in MM and again implicates IL-17
in disease progression. With autologous BM transplant in these
mice, robust tumor control was observed in mice with distinct
TCR repertoires. Generation of MM-specific T cells was also
observed after transplant. Furthermore, IL-17 was observed to
promote tumor growth and MM relapse, while IFN-γ secretion
appeared critical to anti-tumor responses (109). From these data,
it appears that therapies targeting IL-17 secretion by Th17 cells
may have a positive impact both on MM bone disease and
tumor control.
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Immune properties of long-term survivors in MM may
provide further insight into potentially key immune populations
for sustained tumor control. Comparison of peripheral blood
immune cells between long-term survivors (those surviving
>10 years) and patients with <10 years follow-up revealed
significantly higher frequencies of clonal cytotoxic T-cell
expansion in the long-term survivors. Furthermore, long-term
survivors had higher circulating Th17 cells and lower Tregs
compared to other patients with MM (110). Circulating immune
cell populations after autologous stem cell transplant also
correlate with patient survival. Namely, increased circulating
lymphocytes, decreased circulating monocytes, and an increased
lymphocyte to monocyte ratio all significantly predicted
improved treatment-free survival, further suggesting a role
for lymphocyte immune surveillance against MM and delayed
disease progression in patients with positive responses (111).

These data together show that there are major changes in T-
cell states associated with MM progression. However, the degree
to which these changes reflect cause vs. effect of the underlying
disease progression remains to be established. Features of T-
cell exhaustion appear as early as MGUS, but MM is associated
with the attrition of stem-like memory T cells and instead
accumulation of effector cells expressing lytic genes.

B Cells

As MM is a tumor of B-cell lineage, these cells have also
been extensively studied in MM, and the most notable feature
of MM is the depletion of normal immune globulins. While
the contribution of B-cell lineage to the clonal compartment
and its evolution is outside the scope of this review, we will
briefly discuss the potential contributions of regulatory B cells
(Bregs) in tumor immunity. Bregs have been proposed to
play a role in immune modulation, suppression, and tolerance.
Recently, these cells have been implicated in the maintenance of
immunosuppressive tumor microenvironments and impairment
of T-cell mediated tumor killing (112). Interest in Bregs has
increased after the appreciation that they express high levels
of CD38 and may be targets of immune effects of anti-CD38
antibodies. A recent study described higher proportions of Bregs
in the BM of newly diagnosed patients with MM compared
to those on maintenance therapy. Furthermore, NK cells co-
cultured with Bregs derived from the BM of patients showed
decreased lysis of MM cells, suggesting a role for Bregs in MM
immune evasion (113). While these initial studies are of interest
and indicate a role for B cells inMMdisease evolution, substantial
further investigation will be necessary to better understand
their role.

Role of BM Niche and Bone Cells
A characteristic feature of MM is the growth of tumor cells in
the BM. Therefore, MM lesions evolve in close proximity to bone
cells, and MM-associated immune cells are continually modified
by signals derived from the marrow. Co-culture of MM cells
with T cells induced RANKL expression and secretion by the
T cells, caused in part by MM cell secretion of IL-7 (114). In
addition to overactivation of osteoclasts, MM bone disease also
has contributions from osteoblast inhibition (115). Co-culture

of MM cells with osteoprogenitor cells inhibited differentiation
of mature osteoblasts; blockade of Runx2/Cbfa1 activity was the
observed mechanism. This blockade was mediated by cell-to-cell
contact and interaction between VCAM-1 on osteoprogenitors
and VLA-4 on MM cells. Furthermore, BM biopsies of patients
with MM revealed significantly fewer Runx2/Cbfa1-positive
cells in patients with osteolytic lesions (116). IL-3 secretion
also appears to play a role in osteoblast inhibition, osteoclast
stimulation, and MM bone disease. IL-3 levels in the BM of
MM have been observed to be increased relative to both healthy
controls and in patients with MGUS; this IL-3 contributed both
to bone destruction and MM cell growth (117). The IL-3 in the
BM microenvironment is also derived from T cells—MM T cells
can express IL-3 (118). Furthermore, the IL-3-dependent effects
appeared to be mediated bymonocytes andmacrophages, further
emphasizing the complex interactions between tumor, bone, and
immune cells over the evolution of MM bone disease (119). This
data also suggests potential for the modulation of IL-3 as a target
to combat MM bone disease.

Dikkopf 1 (DKK1), a Wnt inhibitor, has been observed to be
overexpressed in malignant plasma cells in patients with MM
who have focal bone lesions. DKK1 expression has also been
observed to be significantly increased inMMplasma cells relative
to both MGUS and healthy controls, and BM DKK1 levels are a
risk factor for the progression of SMM (120–122). DKK1 directly
inhibits osteoblast differentiation via Wnt inhibition (123).
Furthermore, DKK1 increases osteoclast function via disruption
of osteoprotegrin and RANKL expression by osteoblasts (124). In
addition to contributing to MM bone disease, DKK1 has recently
been implicated in altering T cells in the BM of MM. TCF1, a
marker of stem-like memory T cells, is known to be regulated by
Wnt signaling. Patients with MMwho have elevated DKK1 levels
were observed to have reduced levels of TCF1+ memory T cells,
suggesting a role of DKK1 from MM cells in depleting stem-like
memory T cells (42).

Osteoclasts with increased function due to interactions with
MM cells go on to alter the BM environment in ways conducive
to further MM expansion and immune suppression (125). They
can enhance the activity of Treg cells via antigen presentation
and secretion of IL-10 and TGF-β (126, 127). Osteoclasts can
also directly inhibit T-cell cytotoxicity and anti-tumor activity via
the expression of immune checkpoint molecules, including PD-
L1, CD200, herpes virus entry mediator, and Galectin-9. These
osteoclasts also express T-cell metabolism regulators, such as
IDO and CD38 (128). As these molecules contribute to MM
immune evasion, they represent potential therapeutic targets,
some of which are already being explored. Therefore, in addition
to immune dysfunction and suppression induced over disease
progression by direct interactions betweenMMcells and immune
cells, indirect immune modulation by MM cells via osteoclast
activation appears to play a significant role in the coevolution of
tumor and immune changes.

IL-6 is known to play a central role in encouraging survival
and proliferation of malignant plasma cells via its receptor, IL-
6R. This IL-6 can also induce the expression of PD-L1 on MM
cells, aiding in immune evasion (93). The main source of BM IL-
6 is BM stromal cells. Additionally, some MM cells can produce
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their own IL-6, and macrophages, osteoblasts, and osteoclasts
also contribute to BM IL-6 levels (129, 130). Serum IL-6 has
been observed to be increased in MM relative to MGUS, as
well as in patients with advanced MM compared to patients
with early or plateau-phase disease. Furthermore, elevated IL-
6 levels have been observed to correlate with higher disease
activity and poor prognosis (131). Additionally, increased soluble
IL-6R levels in patients with MM have been associated with
shorter survival, further implicating interactions between IL-6
and IL-6R in disease progression (132, 133). Therefore, strategies
targeting both IL-6 and IL-6R are being explored. Direct targeting
of IL-6 via monoclonal antibodies has shown promise in vitro
and in mouse models against MM cell lines (130). Strategies
to downregulate IL-6R on MM cells are also being explored,
including metformin treatment and pharmacologic inhibition
of histone deacetylase 3, both of which have been shown to
decrease MM proliferation in vitro (134, 135). A recent clinical
trial of siltuximab, a monoclonal antibody targeting IL-6, in SMM
failed to meet the pre-specified endpoint criteria but did show
promise for delaying high-risk SMM progression (136). While
these approaches have not yet had a large clinical impact on
MM, the IL-6 – IL-6R axis remains an interesting target for MM
therapy and prevention of disease progression.

EVOLUTION OF THE TUMOR-IMMUNE
INTERFACE

The studies discussed above paint a complex picture with
multifaceted interactions between MM cells and immune cells.
These interactions include signals that both promote as well
as suppress tumor growth. However, neither tumors nor the
immune system are static entities. Both represent highly adaptive
and complex biologic systems that have the capacity to evolve
over time. In the case of MM, which is a tumor of an immune
cell (plasma cell), both systems may also share a common niche
in the BM. Therefore, in terms of evolutionary principles for the
interaction of species, the interactions may involve competition
as well as immune predation. Therefore, we suggest that this
biology will depend both on tumor intrinsic as well as extrinsic
elements (Figure 1). Some other elements that uniquely apply to
MM include the presence of underlying antigenic triggers and
interactions with bone cells.

Tumor Intrinsic Factors: Genetics,
Instability, Proliferation, and Antigenic
Triggers
As discussed earlier, MM tumors are highly heterogenous
and vary in terms of underlying oncogenic drivers, degree of
genomic instability, cell cycle checkpoints, and proliferation
rate. While these considerations often form the basis of clinical
“risk phenotypes,” they are also likely to impact the fitness of
the tumors in terms of being able to compete for resources,
such as growth factors and nutrients, and either overcoming or
escaping the effect of immune predation. It is therefore essential
that the next generation of studies understanding the immune
biology of MM is carried out in the context of the underlying

genetics of the tumors. MM and MGUS are more common
in the black population, and a deeper understanding of the
mechanisms underlying race-dependent differences in the risk
of transformation of precursor states is needed, particularly as
these patients have been underrepresented in the existing studies
on MM biology and therapy (137). Recent studies on other
hematologic malignancies, such as leukemia, find a correlation
between clinical/genomic risk and immune phenotypes (138),
but such studies on MM or MGUS are lacking. One of the
challenges in MM research is that the current mouse models
do not recapitulate the oncogenic drivers found in human MM
and do not recapitulate its genetic diversity (139). Therefore,
there remains an unmet need to better understand the changes
in preneoplastic cells, altered immune surveillance, and the
nature of MGUS-specific immune responses that contribute to
this process.

It is also increasingly appreciated thatMM is likely to originate
in the context of a polyclonal immune response (5). This is
supported both by recent genome sequencing studies (3) as well
as in vivo modeling of disease states, such as Gaucher disease
(140, 141), wherein the risk of MM is increased. Interestingly,
in settings, such as Gaucher disease, wherein the underlying
antigen driving the gammopathy is known, tumor cells remain
responsive to underlying antigenic triggers in vivo in preclinical
models (141) and respond to targeting the underlying antigen in
patients (142). Targeting the underlying antigenic trigger may,
therefore, potentially change the evolutionary trajectories of these
precursor lesions.

An important component of tumor-intrinsic features that may
impact immune surveillancemay be their recognition by antigen-
specific immune cells. Malignant plasma cells in MM have
long been known to exhibit a capacity for antigen presentation
(143). These cells also express many molecules involved in
interactions with immune cells in the BM microenvironment.
Both MGUS andMMmalignant plasma cells have been observed
to have an increased expression of CD86. Overall, these data
suggest increased antigen presentation/costimulation in MGUS
that decreases over progression to MM (144). Alterations in
the antigen-processing machinery (APM) of plasma cells have
been observed in MGUS and MM, and this may contribute to
the evasion of immunosurveillance; additionally, the progression
of MGUS was correlated with the expression of APM-related
factors, such as calnexin and calreticulin (145). Furthermore,
MM plasma cells have been observed to have increased PD-
L1 expression relative to MGUS, further connecting tumor
evolution to immune alterations (93, 95).

Immune Intrinsic Features: Persistence,
Function, and Spatial Aspects
As with tumor genetics, the immune microenvironment in
each patient with MM or MGUS is distinct. This has become
particularly evident in the recent application of high-content
single-cell approaches to study these tumors (42). As the evidence
of immune activation and exhaustion appears early during the
pathogenesis of MGUS (42), the features of the immune response
that are essential to maintain long-term stability and persistence
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FIGURE 1 | Co-evolution of myeloma precursor states and immune microenvironment. We propose that the malignant transformation of the precursor states to

myeloma depends not just on evolution of tumors but also on the immune microenvironment. Understanding the principles underlying these evolutionary trajectories

will enable effective immune prevention.

of immunity, such as the presence of stem-like memory T cells,
are likely to be the critical determinants of immune control.
Specific targets of the immune response may also be critical,
as it may be more important to target clonal, as opposed to
subclonal, alterations or to target critical properties of the clone,
such as stemness. Finally, although spatial aspects of the immune
response in hematologic malignancies have been understudied,
it has been well-known to pathologists and radiologists that
myeloma grows in a multifocal pattern, hence the name multiple
myeloma. Understanding the spatial aspects of the immune
response as well as tissue resident vs. recruited cells may therefore
be a critical element of immune control (86).

Evolutionary Trajectories
Evolutionary features of tumors can be understood based
on the balance of evolutionary and ecologic diversity (146).
Evolutionary diversity is represented by tumor heterogeneity
in terms of genomic makeup as well as changes in this over
time. Ecologic diversity is impacted by hazards, such as immune
cells, and the availability of resources, such as growth factors
and nutrients (146). In the setting of MGUS, much of the
evolutionary diversity is established early but changes over
time can vary. These considerations, however, also suggest that
a critical determinant of the evolutionary trajectory may be
related to ecologic features, including the hazards posed by the
immune system. However, as these interactions are likely to be
regional, the attention to spatial aspects of these interactions
will be essential to better understand critical regulators of
tumor evolution.

IMPLICATIONS FOR
IMMUNE-PREVENTION

With the expanding evidence of immune changes accompanying
the progression from MGUS to SMM to MM, the next
step is to leverage this knowledge to delay or even prevent
disease progression. The standard of care for both MGUS and

SMM has traditionally been observation (147, 148). However,
recent clinical trials now seek to leverage the immune system
to delay the presentation of symptomatic MM. Early trials
investigating the treatment of SMM with melphalan and
prednisone, thalidomide, thalidomide plus pamidronate, and
other combinations did not lead to the improvement in patient
outcomes relative to observation, although some increase in
initial responses to treatment were seen (149–151). A subsequent
phase 3 randomized trial stratified by risk revealed that high-risk
patients with SMM, identified by biomarkers such as high M-
protein levels, benefited from lenalidomide plus dexamethasone,
with significantly increased time to progression and overall
survival compared to observation (152). In a recent randomized
trial comparing lenalidomide to observation in SMM, the
lenalidomide group showed a significantly longer time to
progression to symptomatic MM, providing promising early
evidence for immunomodulatory methods of delaying the usual
disease course (153). While these studies are expected to change
the current practice in a subset of patients, we need a deeper
understanding of the mechanisms of response and resistance to
these therapies. As discussed earlier, it is likely that different
precursor lesions may follow different trajectories based on
both the genetics of these lesions as well the host response.
Therefore, it is unlikely that the one-size-fits-all approach will
suffice for the targeted prevention of MM (154). For some
lesions, such as those with a higher rate of genomic evolution,
it may be essential to pursue combinatorial approaches. For
others, more conservative and sequential approaches may suffice.
The concept that the hierarchy of immune exhaustion begins
early also suggests the need to link immune-based prevention
to early detection (155) to fully realize the potential of
this strategy.
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