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Abstract
Muscle fatigue models (MFM) have broad potential application if they can accurately predict

muscle capacity and/or endurance time during the execution of diverse tasks. As an initial

step toward facilitating improved MFMs, we assessed the sensitivity of selected existing

models to their inherent parameters, specifically that model the fatigue and recovery pro-

cesses, and the accuracy of model predictions. These evaluations were completed for both

prolonged and intermittent isometric contractions, and were based on model predictions of

endurance times. Based on a recent review of the literature, four MFMs were initially cho-

sen, from which a preliminary assessment led to two of these being considered for more

comprehensive evaluation. Both models had a higher sensitivity to their fatigue parameter.

Predictions of both models were also more sensitive to the alteration of their parameters in

conditions involving lower to moderate levels of effort, though such conditions may be of

most practical, contemporary interest or relevance. Although both models yielded accurate

predictions of endurance times during prolonged contractions, their predictive ability was

inferior for more complex (intermittent) conditions. When optimizing model parameters for

different loading conditions, the recovery parameter showed considerably larger variability,

which might be related to the inability of these MFMs in simulating the recovery process

under different loading conditions. It is argued that such models may benefit in future work

from improving their representation of recovery process, particularly how this process differs

across loading conditions.

Introduction
Localized muscle fatigue (LMF) is a complex phenomenon that involves reduced muscle force
generation capacity and is typically associated with discomfort, pain, and a decline in desired
performance. LMF can influence diverse aspects of the neuromuscular system prior to task fail-
ure (or, endurance time), and thus has been broadly defined as “any exercise-induced reduc-
tion in the ability of a muscle to generate force or power” [1,2]. The fatigue-induced reduction
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in muscle capacity can result from impairments in several central and/or peripheral mecha-
nisms responsible for muscle force generation. These mechanisms are diverse, leading to sub-
stantial complexity in the fatigue process, as well as a substantial dependency of LMF on
specific loading conditions [3].

LMF development and its consequences (e.g., discomfort and decline in muscle capacity),
however, are important concerns in many fields such as rehabilitation, human factors engi-
neering, and occupational health and safety. As examples of the latter, LMF has been argued as
a contributing factor to the development of work-related musculoskeletal disorders [4], sug-
gested to increase the risk for accidents such as falls [5,6], and found to compromise perfor-
mance on precision tasks [7]. Again in the occupational domain, it is often of interest to
quantify the presence or extent of LMF, as this can be useful for task assessment or redesign,
and more generally to determine the extent to which task demands may exceed an individual’s
capacity. However, it is not practical to measure LMF directly in many situations, particularly
during actual task performance. As such, and given the noted dependency of LMF on loading
conditions, the use of muscle fatigue models (MFMs) to predict muscle fatigue has broad
potential application.

Existing MFMs has been broadly categorized into two types, empirical and theoretical [8].
Empirical MFMs are based on empirical observations and fitting to experimental data. These
models are simple and suitable for some purposes (e.g., for a few or small range of task
demands), though they suffer from lack of generalizability. Theoretical MFMs, on the other
hand, are based on mathematical representations of physiological processes that are either pre-
sumed or supported by existing evidence. These models have utilized several approaches for
predicting declines in muscle force during diverse fatiguing tasks. Some of these models are
particularly relevant to task design or evaluation in occupational settings (see Table 1 of
Rashedi and Nussbaum [8]), since they can be easily implemented and their underlying model-
ing rationale is related to voluntary contractions (and not, for example, muscle activation due
to electrical stimulation).

To improve and/or facilitate applicability of these models (such as in existing software and
digital human modeling), it is useful to assess and compare the performance of these models
under different loading conditions. Identifying conditions in which relatively better or worse
model performance exists can serve as a basis for generating and testing formal hypotheses,
which may lead to further improving such models in the future. Another useful step toward
improving MFMs is to conduct a sensitivity analysis, to determine which input parameters
contribute more substantially to output variability or which parameters are more influential in
affecting model predictions. Such information can provide a foundation to determine where
additional research is needed, for example to better specify model parameters or whether such
parameters might be variables vs. constants. However, to our knowledge, outcomes of MFMs
have not been compared to evaluate their consistency, nor has the noted sensitivity to model
parameters been formally assessed. Such evidence is expected to facilitate more accurate pre-
dictions of muscle fatigue and recovery during complex industrial tasks, particularly in a

Table 1. Parameter baselines, increments, and ranges used for the sensitivity analysis of twomuscle fatiguemodels (MFM).

MFM Parameter Baseline ± Increment Range

XFL [15] F 0.01090 ± 0.00071 0.00390–0.01800

R 0.00101 ± 0.00007 0.00032–0.00170

MCBZ [16] F 1.06870 ± 0.04840 0.58470–1.55280

R 0.10250 ± 0.00980 0.00500–0.20000

doi:10.1371/journal.pone.0143872.t001
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proactive fashion. More effective proactive design, such as by integrating existing or refined
MFMs in digital simulations may, in turn, reduce the development of LMF and associated
adverse consequences.

Methods
Four contemporary mathematical MFMs were initially considered, which our recent review
highlighted as having the most relevance and potential application in occupational settings
(i.e., predict responses to voluntary contractions, computationally efficient, and not overly
complex) [8]. The first model, by Ma et al. [9] (MCBZ), consists of two first-order differential
equations for fatigue development and recovery with associated constant parameters (F and
R).

dQðtÞ
dt

¼ �F
QðtÞ
MVC

Fext tð Þ ð1AÞ

dQðtÞ
dt

¼ R MVC� QðtÞð Þ ð1BÞ

where Q(t) is the current muscle capacity. External muscle force (Fext) and personal factors,
such as maximum voluntary contraction (MVC) and fatigue resistance, are incorporated
implicitly (Eq 1A). Fatigue and recovery are modeled separately: recovery from fatigue can
only occur while a muscle is in the resting state. The recovery process is represented as in Eq
1B.

The second MFM, by Xia and Frey-Law [10] (XFL), was based on compartmental theory
and divided the pool of motor units (MU) into three compartments: fatigued (MF), activated
(MA), and resting MUs (MR). The transfer rate between compartments is proportional to com-
partment size, leading to three coupled, first-order differential equations. Generated muscle
force is proportional to the size of active MU compartment. Similar to the MCBZ MFM, there
are two constant parameters in this model (F and R, for fatigue and recovery), and C(t) is the
activation-deactivation drive.

dMR

dt
¼ �CðtÞ þ R:MF

dMA

dt
¼ CðtÞ � F:MA

dMF

dt
¼ F:MA � R:MF

ð2Þ

8>>>>>><
>>>>>>:

The third MFM is also based on compartmental modeling, though with an additional com-
partment to the pool of MUs [11]. Fatigued MUs are considered to have two sub-pools of active
and inactive fatigued MUs. An additional motor drive has been simulated accordingly,
accounting for the transfer rates between these fatigued MUs. In practice, however, only one
motor drive has been considered, which simplifies the model structure to exactly the same
structure as the XFL MFM [10]. As such, no further assessment of this MFM has been under-
taken here. The fourth MFM, by James and Green [12] (JG), was developed by assuming a con-
tinuum of MU twitch speed rather than having two pools of slow and fast twitch MUs. This
model does not have any fatigue recovery process, however, so its performance was only evalu-
ated here during prolonged isometric exertions.

These MFMs were implemented in Matlab 13.0 (The Mathworks, Inc. USA) using a numer-
ical approach, which avoided the problem of analytically solving a complex set of differential
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equations. For the purpose of simulations, continuous differential equations in the models
were transformed into discrete space using the Matlab function “C2D”. In all numerical analy-
ses, a time step of one second was used, yielding a resolution of predicted endurance times
of ± 1 sec (Matlab workspace used for generating figures is provided in S1 File).

Loading conditions
Most previous efforts in fatigue modeling have been devoted to simulating the fatigue process,
particularly using prolonged isometric contractions for modeling and validation purposes (see
[8] for a review). However, this type of loading has relatively low occupational relevance, as
most work tasks have intermittent resting periods. Further, prolonged and intermittent fatigu-
ing exertions are fundamentally different, since blood flow is less of a limiting factor during the
latter [13], particularly when the ratio of exertion time to rest is not large [14]. As such, a range
of intermittent isometric exertions has been considered here, in additional to more simplistic,
isometric contractions.

Fatigue/recovery was simulated, as described above, using the XFL and MCBZ MFMs, for
36 different loading conditions. These conditions include all combinations of: 1) three exertion
levels (EL), of 20, 40, and 60% of maximum voluntary contraction (MVC); 2) four duty cycles
(DC), of 50, 65, and 80% (intermittent isometric exertions), and 100% (i.e. prolonged isometric
exertion); and 3) three cycle times (CT), of 30, 60, and 240 sec (Fig 1). These specific task char-
acteristics were chosen to correspond to a range of task parameters likely to occur in occupa-
tional settings. Other exertions, such as those involving non-isometric and/or non-isotonic
contraction, were not considered due to the increase in loading and modeling complexity
involved.

Sensitivity Analysis
As noted, both the XFL and MCBZ MFMs contain two parameters representing fatigue (F)
and recovery (R). The relative contributions of these parameters, or the sensitivity of model
estimates to them, was determined by simultaneously varying F and R (21 values of each). Spe-
cific parameter ranges investigated, and the baseline values around which they were varied,
were chosen based on previously reported values (means ± 1.5 SD) for different muscle groups
and joints (Table 1) [15,16]. These ranges of parameter values were used to provide a consistent

Fig 1. Representation of Exertion Level (EL), Duty Cycle (DC), and Cycle Time (CT). Toff is the rest time,
and Ton is the portion of time when an exertion is generated.

doi:10.1371/journal.pone.0143872.g001
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basis for assessing the models, ensuring positive values for the R parameter, and to maximize
the potential for these results to be meaningful for several human muscles.

For continuous functions, partial differential techniques can be used for assessing sensitivity
to one or more functional parameters [17]. In this approach, a sensitivity coefficient, Fi can be
derived for a particular parameter using:

Fi ¼ ðdY = dXiÞ � ðXi =YÞ ð3Þ

where Xi is a model parameter, Y is the dependent variable, and the quotient Xi / Y is intro-
duced for the purpose of normalization. Here, the parameters F and R are of interest, and
endurance time (ET) is used as the dependent variable as a relatively direct approach for assess-
ing predictions generated by a MFM. ET, or the time to task failure, was obtained as the time at
which simulated muscle capacity failed to meet or exceed the target exertion level. Model-pre-
dicted decrements in force/torque over a fixed period of time, or rates of change over time, are
other potential dependent variables. Since our purpose was to assess model sensitivity over a
broad range of model parameters, utilizing constant periods of time would have been less infor-
mative, and rates of change would be challenging in cases of nonlinear responses that occur
during intermittent fatigue/recovery cycles. Of note, 4 hours was used as an upper limit to ET
in all analyses, given that longer durations of activity without a rest break were considered rare.

ET, however, is not directly generated by the two MFMs (i.e., there is no analytical formula-
tion or closed-form solution for ET), but rather is only obtained after implementing the models
in a task simulation. As such, sensitivity needed to be approximated by evaluating changes in
model predictions (i.e., ET) for small variations in parameters (i.e., F and R). For this, Fi was
estimated as %ΔET / %ΔXi, or the relative change in ET for a relative change in parameter Xi.
This was determined using (see also Fig 2):

FF ¼ ½ðETmþ1 � ETmÞ � ðFmþ1 þ FmÞ� = ½ðETmþ1 þ ETmÞ � ðFmþ1 � FmÞ� ð4Þ

FR ¼ ½ðETnþ1 � ETnÞ � ðRnþ1 þ RnÞ� = ½ðETnþ1 þ ETnÞ � ðRnþ1 � RnÞ� ð5Þ

wherem and n index over the F and R parameters, respectively.
To assess model sensitivities, ET was first determined for each of the 21�21 combinations of

F and R parameters; this was done for each of the 36 noted loading conditions (Fig 2 shows an

Fig 2. Illustration of predicted endurance times (ET) for the XFLmodel, in a single loading condition
(EL = 0.6; DC = 65; CT = 60) and for a range of fatigue (F) and recovery (R) parameters.Methods to
derive sensitivity for the F and R parameters,ΦF andΦR, are also illustrated, and were determined using Eqs
4 and 5.

doi:10.1371/journal.pone.0143872.g002
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example for one loading condition). Next, ET changes with variations of the model parameters
were assessed using numerical differentiation. Specifically, for each parameter (i.e., F or R), 20
sensitivity values were calculated for each of the 21 levels of the other parameter, yielding 420
sensitivities (F) for each parameter in a given loading condition. This yielded a total of 420 x
36 = 15,150 sensitivity parameters for each of F and R, and in each model.

Preliminary results demonstrated large “spikes” in calculated sensitivity parameters, and
which were clearly due to inherent substantial changes in ETs with relatively small changes in
parameters during intermittent loading. For example, small alterations in either the F or R
parameters can lead to one more or less exertion cycle that can be completed, and in some
cases this would represent a considerable relative change in ET (Fig 3). Such substantial ET
changes will, in turn, lead to large changes in sensitivity parameters given the differentiation
involved. To avoid this, and to better reflect the general patterns of sensitivity, ET values were
first “smoothed”. This smoothing was done using a mean filter over a rectangle of size 3�3 (i.e.,
replacing each ET by the mean of itself and all neighboring points), Sensitivity parameters are
not reported on the boundaries of the matrix of F and R parameters, both to avoid edge effects
and since a full rectangle was not possible. Fig 4 illustrates an example of this smoothing proce-
dure and associated effects on the derived recovery sensitivity parameter.

Subsequently, sensitivity parameters were obtained as a function of task parameters (i.e., EL,
DC, and CT). For this purpose, the mean sensitivity of one parameter was derived for the mid-
range value of the other parameter: for each specific combination of task parameters, the mean
of eight FF values was obtained while setting the R parameter to its midrange value. This
approach was used to demonstrate the overall trends regarding model sensitivity to the F and R
parameters across different loading conditions.

MFMComparisons
To compare the MCBZ [9] and XFL [10] MFMs, their ability to predict ETs was assessed for
three types of loading conditions, and for which empirical data (ETs) was available from the lit-
erature for a consistent muscle group. Specific loading types assessed were: 1) prolonged iso-
metric exertions; 2) intermittent isometric exertions; and, 3) a combination of these two load
types. For each loading type, individual model parameters (F and R) were obtained that mini-
mized deviations between model predictions of ETs and existing empirical data, with such
error quantified as the root mean square deviation (RMSD). For prolonged isometric loading,

Fig 3. Representation of a considerable change in endurance time (ET) that can occur due to
relatively small alterations in MFM parameters. Here, ET1 is substantially shorter than ET2 despite a small
increment in F (from Fm to Fm+1).

doi:10.1371/journal.pone.0143872.g003
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the intensity-ET relationship presented by Frey Law and Avin [18]was used. For intermittent
isometric contractions, four empirical studies were available that each involved the hand/grip
(Table 2). Parameter values for both models were then obtained using an iterative search (over
a larger range comparing to Table 1), to identify the combination of F and R that produced the
least RMSD error. For prolonged isometric contractions, RMSD was minimized across 19 exer-
tion levels (0.1% - 100%MVC, in 5% increments). For intermittent isometric exertions, RMSD
was minimized across the four conditions available (Table 2). For the combination, RMSD was

Fig 4. Example illustration of the effects of 2D smoothing of endurance time (ET) predictions and the derived recovery sensitivity parameter (ΦR).
Original values of both are depicted in the left figures, and after smoothing on the right. For this illustration, the same model and loading condition was used
as in Fig 2.

doi:10.1371/journal.pone.0143872.g004

Table 2. Empirical studies involving hand/grip exertions that included intermittent isometric loading
conditions with reportedmean (SD) endurance times (ET).

Study EL (% MVC) DC (%) CT (sec) ET (sec)

Carpentier et al. [19] 50 65 20 502 (213)

Fujimoto and Nishizono [20] 40 60 10 720 (240)

Fulco et al. [21] 50 50 10 444 (48)

Pitcher and Miles [22] 80 50 10 62 (16)

doi:10.1371/journal.pone.0143872.t002
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minimized for the total of 23 conditions (19 isometric + 4 intermittent). Since the iterative
search for parameters was done separately for the three loading, three values of RMSD for each
model were obtained.

Results

Prolonged Isometric Contractions
ET predictions from the XFL, MCBZ, and JC MFMs during prolonged isometric contractions
are depicted in Fig 5 (see Table 3 for optimized parameter values for the former two MFMs).
Notably, in MCBZMFM, recovery process is only active during true rest, thus, R parameter
during prolonged isometric contractions is not applicable for this MFM. Both the XFL and
MCBZ MFMs demonstrated substantial consistency with reported ET values [18], and with
R2 >0.99 for both. The JC MFM output was less consistent with these target values (R2 ~ 0.91),
and overpredicted and underpredicted ETs for low and moderate effort levels, respectively. As
noted earlier, the JC MFM was not considered further (i.e., for intermittent contractions), since
this model does not include a recovery process.

Sensitivity Analysis
Representative examples of fatigue and recovery sensitivity parameters for both the XFL and
MCBZ MFMs are presented in Figs 6 and 7, respectively. Of note, all FF values are negative,
since a larger F parameter leads to smaller ET, and all FR values are positive, since an incre-
ment in R results in a larger ET. In general, and except for some localized steep changes related

Fig 5. Endurance Time (ET) predictions of three MFMs for sustained isometric exertions. Target values
are from data reported by Frey Law and Avin [18].

doi:10.1371/journal.pone.0143872.g005

Table 3. Optimized MFM parameters obtained for prolonged and intermittent isometric exertions, and the combination of both.

MFM Prolonged Exertions Intermittent Exertions Combined Exertions

F R RMSD (s) F R RMSD (s) F R RMSD (s)

XFL 0.0108 0.0008 14.0 0.0162 0.0065 206.1 0.0143 0.0014 292.3

MCBZ 1.0400 NA* 24.7 0.8428 0.1930 217.3 0.9074 0.0982 265.6

* NA: not applicable

doi:10.1371/journal.pone.0143872.t003
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to the inherent characteristics of intermittent exertions noted above (cf Fig 3), FF was relatively
“flat” for higher exertion levels. The maximum magnitude of FF was also larger than FR in
both MFMs. For lower exertion levels, both models were more sensitive to changes of the F
parameter (i.e., larger FF) at lower F values and at higher R values. Similarly, both models were
more sensitive to R parameter changes (i.e., larger FR) at lower F values and higher R values.
Such conditions, with lower F and higher R, are those involving longer ETs. As such, sensitivity
to both parameters, in both models, was highest for those tasks with the longer ETs.

Mean sensitivity parameters were obtained as a function of task parameters (i.e., EL, DC,
and CT), with representative examples shown in Fig 8 (similar results were obtained for the
remaining CTs). Both MFMs were more sensitive to alterations of their parameters at lower
ELs and DCs, which are conditions involving lower physical demands. Consistent for all CTs,
both FF and FR were largest for the lower DC (50%) and lowest EL (20%MVC). More gener-
ally, FF and FR were both larger for lower DCs and ELs.

MFMComparisons
The XFL and MCBZMFMs were used to predict ET during three loading types (prolonged,
intermittent, and combined), after obtaining optimized parameters for each type. Resulting
parameters and associated RMSD values are presented in Table 3. The MCBZMFM yielded a
lower correspondence (higher RMSD) between predicted and reported ETs in prolonged and
combination loading types. For the XFL MFM, the F and R parameters increased between pro-
longed and intermittent exertions by ~50 and 700%, respectively. For the MCBZ MFM, there
was a ~20% decrease in the F parameter. After fitting the models simultaneously to combined
prolonged and intermittent loading conditions, optimized F and R parameter values were
between respective values obtained for the two separate loading types. Similarly, RMSD values
for both MFMs were largest when fitting to the combined vs. separate loading types.

Discussion
Localized muscle fatigue (LMF) is a complex phenomenon, given the diverse mechanisms that
underlie both initiation of and recovery from fatigue. There is substantial value in quantifying
LMF, however, since it has potential adverse effects on both performance and injury risk.
Given the number of task-related variables (as well as intra- and inter-individual differences)
that impact LMF, it is not practical to measure LMF for all possible conditions. Nor is this prac-
tical (or often feasible) in the workplace, specifically measuring fatigue for each worker. There-
fore, it of interest and potential practical utility to predict LMF development and/or endurance
capability using MFMs, given a set of task demands and without the need for direct measure-
ments of LMF (e.g., from an actual worker or using a mock-up). MFMs have been broadly cate-
gorized into two types, empirical and theoretical [8]. We focused here on theoreticalMFMs,
because of their broader range of utility, in contract to empirical MFMs that appear mainly use-
ful for a narrower set of specific applications. Based on a previous review of the literature [8],
four MFMs were initially chosen, from which a preliminary assessment led to two of these
(XFL and MCBZ) being considered for comprehensive analysis. Specifically, this analysis
involved assessing the sensitivity of model predictions to alteration of their parameters, and a
comparison of the models’ ability to predict ET in different loading conditions.

Fig 6. Representative examples of fatigue sensitivity parameters (i.e.,ΦF) for the XFL (left) and MCBZ (right) MFMs.ΦF values were determined using
Eq 4, iterating the F and R parameters over a wide range (Table 1). Higher values ofΦF indicate larger relative sensitivity to changes in F values. SomeΦF

values (>10) are not shown, to better illustrate patterns of responses.

doi:10.1371/journal.pone.0143872.g006
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Fig 7. Representative examples of recovery sensitivity parameters (i.e.,ΦR) for the XFL (left) and MCBZ (right) MFMs.ΦR values were determined
using Eq 5, iterating the F and R parameters over a wide range (Table 1). Higher values ofΦR indicate larger relative sensitivity to changes in R values. Some
ΦR values (>5) are not shown, to better illustrate patterns of responses.

doi:10.1371/journal.pone.0143872.g007
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The sensitivity analysis revealed that both models had higher (normalized) sensitivity to the
F parameter, suggesting the dominance of the fatigue vs. recovery parameters. Except for some
relatively large but localized changes, related to inherent characteristics of intermittent exer-
tions (Fig 3), sensitivity parameters were relatively “flat” over the ranges investigated, particu-
larly for higher levels of EL and DC. Both FF and FR demonstrated larger values at lower
values of F and higher values of R (Figs 6 and 7). Since lower F and higher R values yield lower
rates of fatigue development over time, and thus longer endurance times, both MFMs appear
to be more sensitive to their parameters in less demanding loading conditions. This same out-
come was observed from averaged values of sensitivity parameters across different task condi-
tions (Fig 8), in which both models were more sensitive at lower values of EL and DC. Lower
EL and DC again indicate less demanding loading conditions, in which the fatigue process
would be relatively less active compared to the more active recovery process. A larger sensitiv-
ity of models for “easier” tasks may exacerbate the challenges in predicting LMF for such tasks.
In the occupational domain, MFMs are probably most useful at predicting LMF for these lower
demanding tasks, since, compared to more physically demanding conditions, such tasks are

Fig 8. Sensitivity values of onemodel parameter (F and R) at the midrange of the other parameter, for different values of task parameters in the
XFL (left) and MCBZ (right) MFMs (CT = 60 s). Note that in this figure the viewpoint is different forΦF andΦR, to better visualize the patterns of responses.

doi:10.1371/journal.pone.0143872.g008
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less often the target of task analyses and redesign to reduce or eliminate the hazardous expo-
sure, for example through automation or use of assistive devices [23,24].

Regarding their ability to predict ET during prolonged isometric conditions, both the XFL
and MCBZMFMs were able to nearly duplicate empirical intensity-ET values [18]. During
more complex intermittent contractions, the optimized F parameter in the XFL MFM [10]
increased ~50%, while the R increment was substantially larger (i.e., ~700%) (Table 3). Rela-
tively smaller alterations of the F parameter between prolonged and intermittent contractions
might suggest that a comparable fatigue process is involved in both contraction types, such as
due to similar excitation-contraction processes. In fact, Xia [25] assumed such a similarity in
developing his recently modified MFM (discussed below). In contrast to the fatigue process,
however, fundamental differences exist in the recovery process between prolonged and inter-
mittent contractions. During rest periods in intermittent contractions, blood flow increases
[26], resulting in muscle reperfusion [27]. Faster removal of metabolites (e.g., lactic acid from
prior muscle fatigue) in a complete rest condition may expedite the recovery process, and can
account for the higher values of the R parameter predicted for intermittent vs. prolonged con-
tractions. Furthermore, in prolonged contractions and depending on the intensity of exertion,
blood flow occlusion may prevent the removal of fatigue byproducts and replacement of oxy-
gen and glucose in muscle [28]. These evidence justify the observation of substantially different
recovery process between pronged and intermittent exertions.

To further explore the performance of these models in different loading conditions, addi-
tional assessments were completed. Optimized parameters for both MFMs were first obtained
for prolonged contractions (Table 3), and these parameters were subsequently used to predict
ET in intermittent contractions. From this, both models under-predicted ETs for intermittent
loading conditions (by ~80–125%). Such under-prediction may have resulted from overesti-
mating the rate of fatigue and/or underestimating the rate of recovery. Result of optimizing the
MFM parameters for intermittent contractions (Table 3), showed the latter speculation might
be more likely. In other words, a deficiency in simulating the recovery process is more proba-
ble, since the R parameter in XFL MFM demonstrated much larger changes between the two
conditions (i.e., ~700%). As such, the recovery parameter may need to be distinct between–or
specified as a function of–different loading conditions. A fundamentally new approach to sim-
ulating the recovery process may also be needed.

To address the limitations of the XFL MFM in accurately predicting changes in muscle
capacity during more complex loading conditions (e.g., intermittent contractions), recent
studies [25,29,30] have introduced new approaches to simulate the recovery process [10].
Rather than assuming a constant R parameter, Xia [25] proposed having R vary based on the
exertion level to reflect changes in blood flow in muscle recovery. However, outcomes with
this modification were not substantially different, possibly due to over-simplification of the
relationship between blood flow and muscle contraction. Looft [29] introduced a multiplier
to the model, specifically to increase the rate of recovery in rest periods (reflecting post-con-
traction reperfusion). He fit the XFL MFM with the new rest multiplier to empirical data
from the literature and reported improvements in predicting muscle fatigue during intermit-
tent contractions. However, substantially larger errors were reported after assessing the per-
formance of this modified version of the model for predicting ETs [29]. As such, it was
concluded that using the rest multiplier may not be suitable for predicting ETs during inter-
mittent contractions.

More recently, Sonne and Potvin [30] sought to increase the biological fidelity of the origi-
nal XFL MFM [10], by modifying recovery and fatigue rates to represent graded physiological
MU characteristics. Outcomes of this new modeling approach were compared with those from
the original model in two conditions: 1) with original parameter values, and 2) with optimized
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parameter values for intermittent contractions. These authors demonstrated that, while the
modified model can provide better predictions of muscle fatigue than the model with original
parameter values, it has similar performance to the original model with parameter values opti-
mized for new experimental conditions. Meanwhile, the new model did not provide good esti-
mations of ET for prolonged isometric contraction, particularly at lower exertion levels (<40%
MVC). While these alternative modeling approaches have demonstrated the potential for
improved predictions in more complex intermittent contractions, performance was actually
compromised for simpler loading conditions (i.e., prolonged isometric contractions). Such out-
comes are similar to what was found here, specifically that model predictions are ineffective
when done simultaneously for both prolonged and intermittent contractions (i.e., the largest
errors were found for mixed loading conditions, a combination of prolonged and intermittent
contractions).

MFM can facilitate the prediction of LMF development and/or endurance capability, pro-
viding potential benefits for tasks analysis and pro-active assessment and potentially obviating
the need for the direct measurements of LMF. Two MFMs with practical utility for application
in occupational settings were assessed here, in the context of prolonged and intermittent con-
tractions. As this work examined only static exertions, future studies would benefit from incor-
porating dynamic contractions, which are more complex due to inherently larger alterations in
MU recruitment and blood flow. Another limitation of the current study was the focus on only
one muscle group (i.e., hand/grip muscles). Subsequent work should assess MFM performance
for other muscle groups, since fatigue and recovery processes are not only task dependent, but
also dependent on the muscle group involved (e.g., related to differences in fiber type distribu-
tion). Of note, the four studies from which data were used to assess model performance
(Table 2) did not target consistent muscles group. Specifically, the studies address the first dor-
sal interosseous, adductor pollicis, and “grip”muscles. Along with typical inter-individual vari-
ability, which can be substantial, this increases the variability in ET, given differences in fiber
type distributions of the involved muscles. Future work evaluating and comparing MFMs
should ideally use more comparable data sets. Similarly, MFMs should be evaluated to assess
their potential to account for important inter-individual differences, such as related to gender
and aging.

In summary, two MFMs were assessed here in terms of their sensitivity to inherent model
parameters and their ability to predict ET in both prolonged and intermittent exertions. The
two MFMs were, in general, more sensitive to the alterations of the F parameter that represents
the rate of muscle fatigue. Both models demonstrated a higher sensitivity to their F and R
parameters in conditions involving lower to moderate levels of effort, though such conditions
maybe those that are of most practical interest in the occupational domain. The ability of these
models ability to predict ET was inferior for mixed loading condition (a combination of pro-
longed and intermittent contractions). When optimizing model parameters for different load-
ing conditions, the R parameter showed considerably larger variability, which might be related
to the inability of these MFMs in simulating the recovery process under different loading con-
ditions. For future application, improved model predictions of fatigue and recovery are needed,
especially across diverse loading conditions, and a specific focus on an improved representation
of recovery processes is recommended.
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