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Parkinson’s disease (PD) is the most common neurodegenerative movement disorder

that affects extensive regions of the nervous system. Its current clinical diagnosis

is based on motor symptoms that appear late during disease progression when

substantial proportions of the nigrostriatal dopaminergic neuron population are lost

already. Although disturbances in sleep and other biofunctions often surface years prior

to motor impairments and point to a long prodromal phase, these phenotypic signs

in a person’s midlife lack predictive power. They do, however, signal the unfolding of

the disease and suggest molecular correlates that begin deviating early on. Revealing

such trajectories, hence, promises not only a better understanding of prodromal PD

but may also enable a much-needed earlier diagnosis. A nexus that may harbor such

molecular trajectories is the epigenome as key etiological factors of PD—genetics,

age, and environment—influence this substrate. An earlier diagnosis would also allow

earlier interventions and lifestyle adjustments to improve brain function and reduce

symptoms. In this review, we describe the challenges of diagnosing PD early on

and highlight the opportunities that may arise from steering research efforts towards

comprehensive interrogations of molecular layers during the long-time neglected midlife

phase. In particular, we emphasize how existing cohorts of at-risk individuals, available

animal models, and suitable markers may come together and aid in revealing molecular

trajectories that offer diagnostic utility for PD in its prodromal stage.
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INTRODUCTION

Neurodegenerative disorders are a growing health threat in demographically aging societies. The
complexity of many of these disorders is stereotypically exemplified in Parkinson’s disease (PD),
the second most common neurodegenerative disorder after Alzheimer’s disease (1–4). Numbers of
PD patients globally have more than doubled between 1990 and 2015 to an estimated 6.2 million
and are predicted to affect more than 14 million individuals by 2040 (5–7).

The pathological hallmark of PD are misfolded alpha-synuclein protein (aSyn) structures
accumulating in cellular inclusions known as Lewy bodies (8). Identifying neurons with aSyn
inclusions in post-mortem pathological examinations of the brain is considered the gold standard
for diagnosing PD (7, 9).
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While about 10% of PD cases are familial and can be traced
to specific genetic defects either in the SNCA locus that encodes
aSyn (10) or in few other genes such as LRRK2 (11), the vast
majority derives from an unclear etiology. For these idiopathic
cases, an unresolved interplay of genetic predisposition, age-
related processes, and environmental as well as behavioral factors
is assumed to be responsible for disease manifestation (12, 13).
While several environmental and lifestyle factors, including
exposure to pesticides, intake of beta blockers, or head trauma
seemingly increase risk for disease onset and progression (14),
age is the single most influential risk factor for PD (15, 16).

The prevalence rate of PD increases with age and rises from
about 1% in people aged 60+ to 3.5% in individuals of 85–
89 years of age (16–18). Prior to clinical diagnosis, typically at
the age of 55–65, most idiopathic patients experience years or
sometimes decades of unspecific symptomology, indicating the
existence of a long prodromal phase. While these prodromal
symptoms lack diagnostic specificity (19), they signal an early
unfolding of pathology and, hence, are likely accompanied
by molecular correlates that deviate from the healthy norm.
Revealing such deviating molecular trajectories would greatly
complement phenotypic markers and help to arrive at an earlier
diagnosis than with today’s criteria based primarily on motor
symptoms. Earlier diagnosed patients would then benefit from
engaging in neuroprotective lifestyle adjustments as well as
optimized pharmacological treatments.

In this review, we stress the need and opportunity for
diagnosing PD in its prodromal phase and summarize existing
findings in order to identify neglected aspects and steer future
research that might allow advancing from late- to early-stage
PD diagnostics.

CLINICAL PARKINSON’S DISEASE

PD is a progressive neurodegenerative disease that manifests
in selective loss of dopaminergic neurons starting in early
disease stages (20) and affects an array of motor and non-
motor functions (21, 22). This loss is most prominent in the
substantia nigra pars compacta, from which important afferent
projections for the basal ganglia originate (23). Within the
substantia nigra, the caudal and ventrolateral tier that project
into the dorsal putamen of the striatum are usually affected
most (24). The successive dopamine deficiency particular in this
area is most likely causal for the development of characteristic
motor features (25). However, neuronal loss in PD is not
restricted to the basal ganglia, but also takes place in other brain
regions including the hypothalamus, amygdala, locus coeruleus,
raphe nucleus, nucleus basalis of Meynert, pedunculopontine
nucleus, and dorsal motor nucleus of the vagus nerve (26). In
addition, molecular hallmarks of PD can be found in non-brain
compartments of the nervous system, such as the spinal cord,
vagus nerve, sympathetic ganglia, cardiac plexus, enteric nervous
system, adrenal medulla, and cutaneous nerves (27–30). Aside
from dopamine, non-dopaminergic pathways seem to be affected
by PD, too (31).

Similarly, clinical symptoms of PD are as diverse as the
affected tissues, with motor impairments being the most
prominent and characterizing deficits. Specifically, resting
tremor, bradykinesia, rigidity, and postural instability are
regarded as indicative features of PD (32, 33), with bradykinesia
having the strongest correlation with the degree of dopamine
deficiency (34). Clinically, PD is diagnosed primarily on
motor symptoms (35) that surface in advanced disease stages
when substantial proportions of the nigrostriatal dopaminergic
neurons are lost (36–38).

PRODROMAL PARKINSON’S DISEASE

In addition to motor impairments, symptoms of PD typically
involve a plethora of non-motor features that range from sensory
disturbances, to neuropsychiatric and cognitive symptoms, to
sleep disorders, and to autonomic dysfunction (39–41). Olfactory
impairment/hyposmia, rapid-eye movement sleep behavior
disorder (RBD), constipation, impairments in memory retrieval
and decision making as well as depression (42–45) often have a
greater impact on the patient’s quality of life than motor deficits
(46). A number of these symptoms precede motor deficits by
years or even decades (Figure 1) (23, 47–49), but due to the lack
of specificity, diagnostic possibilities based on these markers are
still limited (19). However, for research purposes, many markers
have been summarized in theMovement Disorder Society (MDS)
research criteria for prodromal Parkinson’s disease (50), in order
to estimate the probability of prodromal PD. Among them
are risk markers such as sex, caffeine consumption, smoking
behavior, genetic mutations, and a positive family history, as well
as prodromal markers, including RBD, olfactory loss, depression,
and erectile dysfunction.

THE NEED IN RESEARCH TO FOCUS ON
MIDLIFE IN PARKINSON’S DISEASE

The prodromal stage of PD coincides withmidlife, approximately
between 40 and 60 years of age (51). Midlife is a highly
relevant period for biopsychosocial development with high
interindividual heterogeneity and long-term impact for health
in later life phases (51). In particular, the health status of the
nervous system is influenced by lifestyle choices during midlife.
Extensive stress during midlife, for example, correlates with
self-care disability in older age (52). In contrast, individuals
who exercise regularly in midlife have higher speed of cognitive
processing, better memory and executive functions, and reduced
risk of dementia later in life (53, 54). In addition, supportive
social relationships and positive control beliefs in midlife
support functional health and cognitive skills and curtail age-
related health decline (55, 56). Regarding behavioral influences
specific to PD, a physically and mentally active lifestyle in
midlife is associated with a lower disease incidence and capable
to reduce risk for developing PD by up to 40% (57–60).
Hence, diagnosing PD in midlife would allow taking advantage
of the neuroprotective potential of beneficial behavioral and
environmental factors, most importantly by promoting physical

Frontiers in Neurology | www.frontiersin.org 2 December 2019 | Volume 10 | Article 1328

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kilzheimer et al. Midlife in Parkinson’s Disease

FIGURE 1 | Prodromal and clinical symptomology of Parkinson’s disease over the course of life. Schematic representation of the course of life from early childhood to

old age and associated brain health trajectories that deviate in PD patients from the healthy norm (upper and lower curves). Current clinical diagnosis of PD is based

on hallmark motor phenotypes that occur in advanced disease stages. They are preceded by prodromal symptomology that surfaces years to decades earlier during

midlife but is less specific and varies considerably with respect to timing and features between individuals (44). Tracing deviating molecular trajectories from clinical

stages into midlife would enable a prodromal diagnosis of PD, thereby widening the beneficial impact (shown as angle under raised brain health trajectories) of

neuroprotective lifestyle adjustments or treatment options.

activity. Pharmacological interventions might profit from a wider
therapeutic time window that may lead to increased efficacy,
too (61).

The role of midlife in PD, however, has largely been neglected
by research so far (Figure 2A). Despite publication shares on
PD and related neurodegenerative disorders like Alzheimer’s and
Huntington’s disease indicate a focus on old age, the Alzheimer’s
field already shows rising awareness for midlife as increasing
publication shares suggest (Figure 2B). In PD, this paradigm shift
is not obvious yet but essential to embrace in order to derive a
comprehensive understanding of the prodrome in PD.

MOLECULAR MARKERS OF PARKINSON’S
DISEASE

Research has explored a number of potential molecular markers
for PD that center on measures that directly or indirectly

assess the degree of mitochondrial dysfunction, oxidative stress,
Lewy bodies formation, neuroinflammation, and other core
pathological characteristics of PD in readily accessible biofluids
or biopsies (62). Their utility in diagnosing or prognosing
the disease early on, however, has remained limited (63, 64).
Even for aSyn and its pivotal role in the etiology of familial
and sporadic PD, its protein level in cerebrospinal fluid shows
no correlation with progression of clinical motor symptoms
(65). Similarily in saliva, in which aSyn can be detected, its
concentration does not differ between PD patients and healthy
controls (66). While even Lewy bodies have been found in
salivary glands of PD patients (30), they too lack sensitivity
and specificity (67). And neither in blood, for which aSyn (68),
EGF (69), and several cytocines (70) have been considered,
tests are conclusive. Interestingly, a growing amount of data
suggests that aSyn may also accumulate in skin nerves of
patients with PD and related diseases such as dementia with
Lewy bodies and idiopathic RBD (71–75). These observations
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FIGURE 2 | Midlife is still largely neglected in PD research. (A) Relative publication shares over the past 5 years (2015–2019) examining PD, Alzheimer’s disease (AD),

Huntington’s disease (HD), type II diabetes, and stroke with respect to young, middle, and old age. (B) As in (A) but focusing on PD and AD at greater temporal

resolution for the past 10 years. While research on the role of midlife in context of AD is continuously increasing, this trend is less obvious and seemingly lagging

behind for PD. Numbers are derived from PubMed searches, querying publication titles and abstracts. For diseases, the terms [parkinson*] for PD, [alzheimer*] for AD,

[huntington*] for HD, [maturity-onset diabetes, noninsulin-dependent diabetes mellitus, diabetes mellitus type II, type 2 diabetes mellitus] for type II diabetes, and

[ischemic stroke, cerebrovascular accident, cerebral infarction] for stroke were used. For the “young” phase, the terms [adolescen*, youth*, juven*, young adult*,

early*life, early adulthood, childhood], for the “middle age” phase, the terms [mid*life, middle*age*, mid*adulthood, middle*adulthood] and for the “old age” phase, the

terms [late life, old*age*, senescence, elder*, senior*, geriatr*, aged] were used, respectively.

are currently being followed up with respect to their utility as
potential biomarkers.

Despite these research efforts of the last decades that identified
a wealth of candidate molecular readouts, there is no single
reliable biomarker available yet that provides clinical utility for
diagnosing or prognosing PD (76). This issue may largely result
from the relatively low prevalence of PD on which sensitivity,
specificity, and the predictive values of these measures are
dependent (77) and has been discussed before (78–80).

THE PROMISING FIELD OF EPIGENETIC
BIOMARKERS

While suggestions exist to combine multiple markers in order
to improve their diagnostical accuracy and to better capture
the complexity of the disease (62), other approaches seek to
increase the predictive power by focusing onmolecular substrates
on which several etiological or pathological aspects converge.
With respect to the latter line of research, the epigenome
has gained increasing research attention as major etiological

contributors of the disease—genetics, age, and environment—
are known to influence epigenetic modifications such as DNA
methylation (81). The metastable nature of some epigenetic
marks is both dynamic and yet sufficiently stable to capture
and record environmental influences and behavioral stimuli that
allow tracing disease pathology (82, 83).

Also with respect to the passage of time, the epigenome
undergoes distinctive changes (84) and allows intriguingly
accurate readouts of biological age through so-called epigenetic

clocks that are based on DNAmethylation at particular CpG sites

in the genome (85–87). The accuracy and robustness of some

of these clocks with respect to sex and tissue type (87, 88) led
to their consideration as diagnostic readout for biological age in
the context of PD, given that the disease has been suggested to
represent a form of accelerated aging (89). Indeed, the epigenetic
clock in blood of clinical PD cases indicates advanced age (90),
although the deviation between chronological and biological age
compared to effect sizes for related neurodegenerative diseases
is much smaller (91). Nevertheless, genes near such clock
sites are also often linked to PD and other neurodegenerative
diseases (92).
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These and other findings support the idea that epigenetic
regulation is highly relevant in the context of complex
neurodegenerative disease, especially in PD (93, 94), and that
the epigenome represents a nexus which allows identifying
epigenetic traces of early molecular deviations long before
protein aggregation, widespread neuronal loss, and other
characterizing features of advanced disease stages dominate
molecular disturbances (95).

Nevertheless, while the epigenome may yield diagnostic
markers for PD, it also harbors challenges and limitations.
A critical challenge is that the magnitude of epigenetic
changes in patients has to exceed the variation within
populations and cell composition of the investigated tissue.
Standardization has to be improved in order to reduce
technical noise and evaluate the most suitable of the available
interrogation technologies.

LONGITUDINAL STUDIES OF AT-RISK
INDIVIDUALS

In order to reveal epigenetic traces as a proxy for deviating
molecular trajectories during prodromal PD stages,
comprehensive interrogations of epigenomic layers are required.
While there is rich molecular data available covering the
transcriptome, the epigenome, and even the metabolome for
advanced disease stages (96–98), similar datasets for preclinical
and prodromal stages of PD are still limited. Closing this gap,
hence, requires a research shift from molecular interrogations in
clinically diagnosed PD patients in advanced disease stages to
early disease stages and, most importantly, at-risk individuals
with prodromal symptomology in midlife. To address this need,
some cohorts have already been established over the past few
years (7). Among others, there are the:

• Parkinson’s Progression Markers Initiative/PPMI (99): The
study consists of 400 newly diagnosed PD patients and 200
healthy subjects that are being assessed for clinical, imaging,
and molecular markers in urine, DNA, serum, plasma, RNA,
whole blood, and cerebrospinal fluid.

• Prospective Validation of Risk Factors for the Development of
Parkinsonian Syndromes/PRIPS (100): 1847 at baseline PD-
free participants stratified by age, sex, family history, olfaction,
motor functions, and substantia nigra echogenicity.

• Tübingen Evaluation of Risk Factors for Early Detection
of Neurodegeneration/TREND (101): At baseline, this study
enlists about 1,200 healthy individuals with no or at least one
of three prodromal PD symptoms from depression, rapid eye
movement behavior disorder, and hyposmia.

• The Parkinson’s Associated Risk Study/PARS (102): A cohort
of 303 hyp- and normosmic subjects without baseline
diagnosis of PD.

These cohorts provide rich prior-to-diagnosis data from at-
risk individuals that may develop PD during the observation
period or that have just been diagnosed. Studies based on these
cohorts focus on developments of prodromal symptomology
and epidemiologic characteristics, but many of them also

collect biological samples for molecular interrogations
and profiling. Intensifying these efforts towards a better
understanding of the molecular prodrome is crucial in
order to tell apart typical age-related adaptations from
disease-relevant molecular changes that might point at
distinctive markers.

MODELING PARKINSON’S DISEASE IN
ANIMALS

Any studies on these promising cohorts, however, will still
remain restricted to measures available through biofluids
or biopsies. Inferring disease progression indirectly from
these measures and not being able to directly profile disease
unfolding on molecular level in the brain remains a fundamental
limitation in neurodegenerative disease research. That is
why animal models are inevitable as they uniquely enable
studying any disease-relevant tissue directly and longitudinally
over disease progression. In addition, they allow assessing
environmental and behavioral influences on etiologically
complex diseases such as PD through standardization and
fine-grained monitoring of living conditions. However,
this approach comes with the complex question of what
exactly is being modeled. While it is possible to induce aSyn
overexpression, Lewy bodies-like structures, or motor-deficient
phenotypes, they only partially recapitulate the underlying
molecular mechanism, histopathology, and phenotype of the
disease. As with any model, of course, this reduction leads to
comparability problems between the genuine disease and its
models (103).

Despite these limitations, there are commonly accepted
animal models of PD for a wide range of organisms along the
evolutionary tree from worms and flies to non-human primates
(104–106). Among them, rodent models lend themselves to
research due to their relatively short lifespan but still sufficiently
high organismal complexity.

TOXIN-INDUCED ANIMAL MODELS OF
PARKINSON’S DISEASE

For PD rodent models, a common approach to induce pathology
is to specifically target dopaminergic neurons with exogenous
neurological toxins. Compounds such as 6-hydroxydopamine
(6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) administered over days to weeks lead to loss of
dopaminergic neurons and developments of PD-like phenotypes
(107). The severity and extent of symptoms depend on dosage,
mode of administration, and choice of rodent strain, thus
allowing a certain combinatorial flexibility to mimic different and
rather advanced stages of the disease (108, 109). As toxin-induced
models typically lack aSyn inclusions (110) and starkly differ in
their rapid loss of dopaminergic neurons from the much slower
neuronal demise in patients, their utility for understanding
prodromal PD remains limited (111, 112).
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TRANSGENIC MODELS OF PARKINSON’S
DISEASE

Complementing toxin-induced models, transgenic animals that
carry genetic defects linked to familial forms of PD represent an
alternative approach to study the disease. Besides models with
mutations in key loci including LRRK2, PINK1, PRKN, or DJ-1
(113), those with defects in SNCA belong to the most commonly
used ones. The human wildtype SNCA-overexpressing rat model
(114), for example, represents a system that displays aSyn
inclusions as well as a loss of dopaminergic neurons in an age-
dependent manner accompanied by phenotypic impairments in
sense of smell, increased anxiety-like behavior (115), and motor
deficits later on (114). Genome-wide molecular investigations in
a mouse model carrying the same transgenic construct suggest
distinctive disturbance modes of deviating gene expression
trajectories that underlie the earliest stages of SNCA-related
pathology (116) and their modulation through environmental
conditions (117, 118). By capturing early characteristics of
pathology, these rodent models are also suited to investigate
epigenetic mechanisms that presumably play a role in integrating
and transducing external stimuli into the genomic regulatory
program and form the basis of disease-modulating gene-
environment interactions.

Lastly, combinations of toxin-induced and transgenic models
exist, too. Examples are the LPS-treated Parkin-deficient mouse
model (119) or the rotenone-treated LRRK2R1441G knock-in
mice line (120), which seek to unite the advantages of both
modeling approaches and are geared to reflect larger parts of
PD pathogenesis.

DISCUSSION

Taken together, the current clinical diagnosis of PD is primarily
based on motor symptoms that occur at advanced disease stages
when neuroprotective and risk-mitigating lifestyle adjustments
are capped because of wide-spread neuronal loss (36–38).
Distinctive phenotypic changes, however, already surface up
to 20 years earlier and suggest unfolding of early pathogenic
processes in midlife. Yet, these phenotypic characteristics alone
lack discriminative power to diagnose PD in its so-called

prodromal stage (19). To overcome this hurdle and substantially
advance PD diagnostics, the underlying molecular prodrome in
midlife requires greater research attention. Given that sequencing
technology allows genome-wide molecular interrogations of
unprecedented depth and breadth down to the level of single
cells at ever-decreasing cost, research needs to fully embrace
the paradigm shift and look prospectively at this alleged old-
age disease. Cohorts enriched for at-risk individuals in tandem
with animal models that facilitate paired measurements of
brain and peripheral pathology in controlled environmental
conditions have great potential to tackle the complexity of the
disease from a new angle and to identify novel biomarkers.
With respect to the latter, the epigenome should receive
particular attention as individual aetiological contributors are
already known to influence epigenetic marks. If this holds true
also in context of early disease stages, distinctive epigenetic
signatures might be the sought-after molecular complement to
the phenotypic prodromal symptomology. Together, they may
translate into a pheno-molecular tool of clinical utility that
not only allows diagnosing prodromal PD but also offers a
monitorable readout for disease progression and assessment of
pharmacological treatments.
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