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Abstract: Klebsiella (K.) pneumoniae is a One Health pathogen that has been isolated from
humans, animals, and environmental sources and is responsible for a diverse range of
potentially life-threatening infections. In the present study, we analyzed the genomes of
64 presumptive K. pneumoniae strains isolated in 2023 from different companion and farm
animals in Germany. Using whole-genome sequencing (WGS) data, 59 isolates (92.2%)
were identified as K. pneumoniae and five (7.8%) as K. quasipneumoniae. Multilocus sequence
typing (MLST) assigned 53 isolates to 46 distinct sequence types (STs). Eleven isolates
could not be assigned to existing STs of the Pasteur classification scheme because they
contained novel alleles not previously documented. Thus, these were considered novel
and designated as ST7681-ST7689 and ST7697-ST7698. Almost all isolates in this study
were assigned unique STs, and only five STs were shared among multiple isolates. This
research highlights the genetic diversity among K. pneumoniae strains isolated from different
companion and farm animals in Germany, provides information to help in surveillance
strategies to mitigate zoonotic transmission risks, and demonstrates the value of WGS and
MLST in identifying novel STs of K. pneumoniae.

Keywords: Klebsiella pneumoniae; companion and farm animals; MLST; WGS; novel
sequence types; Germany

1. Introduction
Klebsiella (K.) pneumoniae is a Gram-negative, non-motile, encapsulated, and faculta-

tively anaerobic bacterium belonging to the family Enterobacteriaceae [1]. It is ubiquitous
in nature and can be found in animals, water, and soil [2]. K. pneumoniae is an opportunis-
tic pathogen recognized globally as one of the most critical multidrug-resistant (MDR)
microorganisms [3]. It is a leading cause of hospital-acquired infections worldwide [4].
It can cause serious diseases, including pneumonia and urinary tract and bloodstream
infections, as well as liver abscesses [2], with high mortality rates due to its resistance to
multiple antibiotics [1]. K. pneumoniae is characterized by various virulence factors that
contribute to its pathogenicity. These include a polysaccharide capsule, surface lipopolysac-
charides, fimbriae, and siderophores, which facilitate adhesion to host tissues, evasion of
the immune response, and acquisition of essential nutrients [5]. Additionally, it possesses
the ability to form biofilms and harbors a diverse array of resistance genes, enhancing its
resilience against aminoglycosides, quinolones, polymyxins, and β-lactams [6]. In animals,
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K. pneumoniae is highly pathogenic and can affect the urogenital, respiratory, and diges-
tive systems [7]. Its ability to infect nearly every organ or tissue makes K. pneumoniae a
significant concern in animal health [8]. In Germany, multiple outbreaks of K. pneumoniae
have been reported in humans [9,10], and it has been isolated from various animals such as
dogs, cats, horses, pigs, and cattle [11–14] as well as from milk powder [15]. However, the
knowledge on STs of K. pneumoniae is limited in Germany, due to a lack of isolated strains.
This study aimed to perform molecular characterization of 64 presumptive K. pneumoniae
isolates from companion and farm animals across various federal states in Germany, and to
identify novel STs.

2. Materials and Methods
2.1. Bacterial Isolates and Identification

Sixty-four presumptive K. pneumoniae isolates from the strain collection of IDEXX
Laboratories, Kornwestheim, Germany, were used in the current study. The isolates were
isolated from various companion and farm animals in Germany in 2023. The majority of
isolates (75%, 48/64) were obtained from dogs, followed by horses (17.2%, 11/64), cats
(4.7%, 3/64), and 1.6% (1/64) each from cattle and chickens, as shown in Table 1. All isolates
were identified at the species level using Matrix-Assisted Laser Desorption/Ionization Time-
of-Flight Mass Spectrometry (MALDI-TOF MS). Sample preparation, protein extraction,
and species identification using MALDI-TOF were conducted as previously described [16]
using a Microflex LT instrument (Bruker Daltonics, Bremen, Germany).

Table 1. Host, source, and MLST diversity of 53 K. pneumoniae/quasipneumoniae strains with 46
distinct STs obtained from various companion and farm animals in Germany in 2023.

Host Sample Origin Number of Isolates MLST

Dogs (n = 42)

Feces 27
1537 *, 200 *, 37 **, 101, 29, 1999, 7120, 2349,

3155, 46, 1164, 4435, 45, 2648, 3096, 323,
1779, 3594 #, 2217, 2286, 26, 20, 252

Urine 2 4069, 1758
Tracheal swab 3 2310, 140, 237

Wound 2 353, 391
Nose 1 48
Skin 1 37
Eye 1 147

Vocal cords 1 6123
Abdominal abscess 1 4913

Intestine 1 29
Uterus 1 20

ND 1 901

Horses (n = 6)

Nose 2 3827, 661
Wound 1 60
Cervix 1 427
Penis 1 298

Uterus 1 5754

Cats (n = 3) Feces 2 309, 589
Ear 1 584

Cattle (n = 1) Nose 1 1609
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Table 1. Cont.

Host Sample Origin Number of Isolates MLST

Chicken (n = 1) Feces 1 1902

ND: Not determined, *: was identified in 2 isolates, ** was identified in 3 isolates, # K. quasipneumoniae isolate. n:
Number of isolates; MLST: multilocus sequence typing.

2.2. DNA Extraction, WGS, and In Silico Detection of Sequence Types

Genomic DNA extraction was performed from a single colony grown overnight on
Columbia blood agar at 37 ◦C using the High Pure PCR Template Preparation Kit (Roche
Diagnostics GmbH, Mannheim, Germany) according to the manufacturer’s instructions.
Nextera XT DNA Library Preparation Kit was used to prepare sequencing libraries, and
paired-end sequencing was carried out on an Illumina MiSeq sequencer (Illumina Inc.,
San Diego, CA, USA). Raw sequencing data analysis and quality checks of the assembled
genomes were performed as previously described [17,18]. The multilocus sequence typing
(MLST) was determined in silico using the in-house pipeline WGSBAC (https://gitlab.
com/FLI_Bioinfo/WGSBAC, accessed on 2 December 2024) and the software mlst v2.16.1
(https://github.com/tseemann/mlst, accessed on 2 December 2024) that uses the PubMLST
website [19] and the scheme proposed by Diancourt and colleagues [20], known as the
Pasteur typing scheme. Neighbor-Joining (NJ) analysis was performed using GrapeTree
software for constructing a phylogenetic tree [21]. Microreact was employed to visualize
both epidemiological data and phylogenetic trees [22].

3. Results
3.1. Bacterial Isolate Identification and MLST Analysis

MALDI-TOF MS initially identified all 64 K. pneumoniae isolates as K. pneumoniae.
However, subsequent WGS-based analysis only identified 59 strains (92.2%) as K. pneumo-
niae and 5 (7.8%) as K. quasipneumoniae. MLST analysis revealed that the majority of the
strains (53/64, 82.8%) belonged to 46 distinct STs, as shown in Table 1 and Figure 1.

3.2. Novel STs, Their Hosts, and Geographical Distribution

Of the 64 studied strains, 17.2% (n = 11) could not be assigned to any known ST
and were therefore classified as novel STs according to the institute Pasteur database
(https://bigsdb.pasteur.fr/, accessed on 29 October 2024). Seven of them were identified as
K. pneumoniae and four as K. quasipneumoniae. The newly identified STs included ST7681 to
ST7689 and ST7697 to ST7698. These novel STs were detected in isolates from dogs (n = 6)
and horses (n = 5), originating from various sample materials, including the feces, uterus,
cervix, and urine. The isolates were distributed across seven different federal states, as
shown in Figure 1 and Table 2.

Table 2. MLST characteristics of the eleven K. pneumoniae/quasipneumoniae isolates with novel STs
obtained from companion and farm animals in Germany in 2023.

ST MLST Profile Klebsiella Species Sample
Origin Source Geographical Origin

gapA infB mdh pgi phoE rpoB tonB

7681 4 1 2 1 1 4 61 K. pneumoniae Feces Horse North Rhine-Westphalia

7682 1 1 1 1 1 4 4 K. pneumoniae Uterus Horse Baden-Wuerttemberg

7683 2 1 37 1 9 1 31 K. pneumoniae Cervix Horse North Rhine-Westphalia

7684 18 22 327 223 11 105 99 K. quasipneumoniae Feces Dog Hesse

https://gitlab.com/FLI_Bioinfo/WGSBAC
https://gitlab.com/FLI_Bioinfo/WGSBAC
https://github.com/tseemann/mlst
https://bigsdb.pasteur.fr/
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Table 2. Cont.

ST MLST Profile Klebsiella Species Sample
Origin Source Geographical Origin

7685 17 55 73 20 103 18 608 K. quasipneumoniae Feces Dog Hesse

7686 18 22 55 22 193 54 50 K. quasipneumoniae Feces Dog Lower Saxony

7687 2 1 2 2 7 4 23 K. pneumoniae Urine Dog North Rhine-Westphalia

7688 17 80 92 306 100 18 162 K. quasipneumoniae Urine Dog Mecklenburg-West Pomerania

7689 15 6 2 26 10 279 4 K. pneumoniae Feces Horse North Rhine-Westphalia

7697 2 5 1 1 9 1 501 K. pneumoniae Feces Dog Bavaria

7698 3 5 2 1 16 1 363 K. pneumoniae Uterus Horse Saxony
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Figure 1. The phylogenetic tree of 64 K. pneumoniae/quasipneumoniae isolates from companion and
farm animals in Germany was constructed using the Neighbor-Joining (NJ) method based on MLST
data. The tree includes STs and corresponding geographical locations. Novel STs are indicated in red.
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4. Discussion
In the present study, we characterized 64 presumptive K. pneumoniae strains isolated

from different companion and farm animal species in Germany in 2023. These isolates
were initially identified as K. pneumoniae using MALDI-TOF MS. However, subsequent
confirmation via whole-genome sequencing (WGS) revealed that 59 isolates were K. pneu-
moniae and 5 were K. quasipneumoniae. The five K. quasipneumoniae strains were found in
fecal and urine samples from dogs. K. quasipneumoniae was described for the first time in
2014 and identified in human infections [23]. K. quasipneumoniae has been isolated from
humans, animals, and various environmental sources in Germany [24–26], as well as in
other European countries, including France [23], Sweden [27], Portugal [28], and Italy [29].
Our study also shows a genetic diversity, with 57 sequence types (STs) among 64 K. pneu-
moniae/quasipneumoniae strains. Altogether, 52 STs were represented by a single isolate
each, including eleven novel STs. These novel STs originated from seven different German
federal states, highlighting their geographical spread. Detecting novel alleles is essential for
advancing future surveillance and diagnostic strategies. Some identified STs in this study,
such as ST45, ST29, ST101, and ST147, have been previously reported in human infections
in Germany [30–33], highlighting the potential for zoonotic transmission of K. pneumoniae.

In conclusion, collaborative efforts between veterinary and public health sectors are
necessary to improve our understanding of transmission dynamics between companion
and farm animals and humans. The findings of this study highlight the importance
of molecular examination of Klebsiella strains isolated from animals, as it enables the
identification of novel sequence types, reveals genetic diversity, and provides insights into
their epidemiological significance. Further molecular studies on isolates from different
one-health sectors are necessary to assess transmission pathways and the epidemiological
impact of K. pneumoniae or K. quasipneumoniae.
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The following abbreviations are used in this manuscript:

K. Klebsiella
WGS Whole genomic sequencing
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NJ Neighbor-Joining
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