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The cerebral cortex is a structure that underlies various brain functions, including
cognition and language. Mammalian cerebral cortex starts developing during the
embryonic period with the neural progenitor cells generating neurons. Newborn neurons
migrate along progenitors’ radial processes from the site of their origin in the germinal
zones to the cortical plate, where they mature and integrate in the forming circuitry.
Cell biological features of neural progenitors, such as the location and timing of
their mitoses, together with their characteristic morphologies, can directly or indirectly
regulate the abundance and the identity of their neuronal progeny. Alterations in the
complex and delicate process of cerebral cortex development can lead to malformations
of cortical development (MCDs). They include various structural abnormalities that
affect the size, thickness and/or folding pattern of the developing cortex. Their
clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy,
developmental delay, intellectual disability, or autism spectrum disorder. The recent
advancements of molecular and neuroimaging techniques, along with the development
of appropriate in vitro and in vivo model systems, have enabled the assessment of
the genetic and environmental causes of MCDs. Here we broadly review the cell
biological characteristics of neural progenitor cells and focus on those features whose
perturbations have been linked to MCDs.

Keywords: neural progenitor and stem cells, neurogenesis, cortical malformation, neocortex, neuronal migration

HUMAN CORTICAL DEVELOPMENT

One of the most intriguing features that characterizes the human species is the exceptional size
of the cerebral cortex, in particular the neocortex. Humans show a significant expansion in both
radial and tangential direction of the cerebral cortex, which is involved in the increased cognitive
abilities that we consider unique to humans. This expansion is a consequence of the increased
neuronal production during the embryonic and fetal development, due to a prolonged neurogenic
period and to an increased proliferative capacity of different neural progenitor cell types (Rakic,
2009; Geschwind and Rakic, 2013; Wilsch-Bräuninger et al., 2016; Sousa et al., 2017; Molnar et al.,
2019; Kalebic and Huttner, 2020; Pattabiraman et al., 2020; Del Valle Anton and Borrell, 2021). In
addition, the survival of newborn neurons also plays a role, as the inhibition of apoptosis was shown
to increase brain size (Kuida et al., 1996, 1998; Rakic and Zecevic, 2000; Roth and D’Sa, 2001).

During mammalian evolution, the neocortex, which constitutes much of the cerebral cortex,
shows the most significant expansion (Kriegstein et al., 2006; Lui et al., 2011; Borrell and Reillo,
2012). The developmental organization of the mammalian neocortex has been described by Rakic
(1988, 2000, 2009) in radial unit and protomap hypotheses: it consists of columns positioned
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tangentially to the cortical surface, generated by distinct
proliferative units in the germinal zones (GZs), that form
specialized regions with specific cytoarchitecture and function,
called areas. Newborn excitatory neurons hence originate from
progenitor cells located in the GZs and they migrate to their
final location in the cortical plate (CP) along the processes of
progenitor cells. In the radial dimension, the adult neocortex is
organized in six layers (I-VI). The neocortex is built in an “inside-
out” manner, with the deep layers (V–VI) generated first and
the upper layers (II–IV) following subsequently (Angevine and
Sidman, 1961; Rakic, 1988; Bayer and Altman, 1991; Molyneaux
et al., 2007). The layer I, however, is formed by the earliest-
born neurons that form a preplate which later splits into the
marginal zone populated by Cajal-Retzius cells (Marin-Padilla,
1978; Zecevic and Rakic, 2001; Bielle et al., 2005) and the
subplate (Kostovic, 2020). In contrast to excitatory neurons,
cortical inhibitory interneurons are generated in the medial and
caudal ganglionic eminences and undergo a tangential migration
to reach the developing neocortex (Hu et al., 2017).

Developing mammalian brain exhibits apicobasal polarity
with the apical side facing the lumen of the ventricles and the
basal side facing the skull. The developing neocortex contains
two principal GZs: the ventricular zone (VZ), situated along the
ventricle, and the subventricular zone (SVZ), which is located
more basally between the VZ and the intermediate zone (IZ).
The latter is the layer through which newborn neurons migrate
along the progenitors’ scaffold toward the cortical plate (CP)
(Figure 1). In contrast to lissencephalic mammals, whose brain
is smooth, such as mouse, the gyrencephalic mammals, whose
brain is folded, such as ferrets and primates, exhibit a massively
enlarged SVZ that contains two cyto-architectonically specific
sublayers, the inner and outer SVZ (iSVZ and oSVZ), separated
by an axon-rich fiber layer (Smart et al., 2002; Reillo and Borrell,
2012; Dehay et al., 2015; Saito et al., 2018). Whereas the primate
iSVZ is comparable to the mouse SVZ, with densely packed cells,
the oSVZ cells have a radial arrangement similar to the VZ (Smart
et al., 2002; Dehay et al., 2015).

The differences in neocortex size and complexity across
mammals are widely considered to derive from the differences
in the proliferative capacity and neurogenic potential of neural
progenitor cells (Lui et al., 2011; Fernandez et al., 2016; de
Juan Romero and Borrell, 2017; Molnar et al., 2019; Kalebic
and Huttner, 2020). Neuroepithelial cells (NECs) are the first
progenitor cells specifically devoted to neocortical development
and the source of all other neocortical progenitors (Taverna
et al., 2014). Before the onset of neurogenesis, NEC population
is enlarged by symmetric proliferative divisions, which is
prominent in primates, due to an extended period of proliferation
(Rakic, 1995). At the beginning of neurogenesis NECs undergo
asymmetric divisions to generate apical Radial Glia (aRG), a new
pool of progenitor cells that replaces the NECs and populates
the VZ (Figure 1). aRG maintain the epithelial apicobasal
polarity, with an apical process that lines the ventricle and tightly
seals the tissue with an adherens junction belt, and a basal
process that contacts the basal lamina and provides a scaffold
fundamental for the radial migration of newborn neurons to
the CP (Rakic, 2003; Taverna et al., 2014). aRG can undergo

self-amplifying symmetric proliferative divisions that increase
their population and asymmetric divisions to produce more
differentiated progenitor cell type called Basal Progenitors (BPs),
or rarely a neuron. BPs delaminate from the apical belt of
adherens junctions at the surface of the VZ and migrate basally
to form the SVZ (Haubensak et al., 2004; Miyata et al., 2004;
Noctor et al., 2004).

Basal Progenitors include two subtypes: basal intermediate
progenitors (bIPs) and basal or outer Radial Glia (bRG or oRG)
(Figure 1) (Taverna et al., 2014; Kalebic and Huttner, 2020). In
species with a small and smooth brain, such as mouse, BPs usually
divide only once to generate 2 neurons, whereas in species with
an expanded and folded neocortex, such as ferret and primates,
BPs have a greater proliferative capacity and they can undergo
several proliferative divisions producing other BPs before finally
generating neurons. This is particularly relevant for the bRG,
whose abundance (up to 50% of all BPs) and proliferative capacity
are significantly increased in humans, macaques and ferrets,
compared to lissencephalic mammals (in mouse, bRG comprise
up to 10% of BPs), suggesting a role in neocortical expansion
(Fietz et al., 2010; Hansen et al., 2010; Reillo et al., 2011; Betizeau
et al., 2013; Lewitus et al., 2014; Kalebic et al., 2019). Whereas
the basal processes of both bRG and aRG are crucial for neuronal
migration, bRG processes are considered particularly important
for the tangential dispersion of newborn neurons, a key feature
of folded brains (Borrell and Götz, 2014; Fernandez et al., 2016;
Nowakowski et al., 2016; Kalebic and Huttner, 2020).

The complexity that characterizes human cortical
development makes it particularly vulnerable to the effects
of genetic mutations and environmental factors. The resulting
alterations of the cortical development can lead to cortical
malformations, defects that are considered to be a probable cause
for neurological conditions such as epilepsy, autism spectrum
disorder or intellectual disability (Pan et al., 2019).

MALFORMATIONS OF CORTICAL
DEVELOPMENT

Malformations of cortical development are a heterogeneous
group of disorders characterized by macroscopic alterations in
the brain structure caused by genetic mutations or environmental
factors that affect neocortical development (Sun and Hevner,
2014; Bizzotto and Francis, 2015; Desikan and Barkovich, 2016;
Romero et al., 2018; Juric-Sekhar and Hevner, 2019; Subramanian
et al., 2019; Klingler et al., 2021). Such alterations of brain
structure can include abnormal brain size, layering, folding
and presence of heterotopic gray matter. As the causative
genetic mutations are highly diverse, the classification of MCDs
is typically based on the neurological outcomes, whereas the
diagnosis is mostly based on MRI data (Barkovich et al., 2012;
Guarnieri et al., 2018; Severino et al., 2020). Three major groups
of MCDs can be identified based on the affected developmental
phase: (i) cell proliferation and survival, (ii) neuronal migration,
(iii) post-migrational differentiation and circuits connectivity
(Barkovich et al., 2012; Romero et al., 2018; Subramanian et al.,
2019; Severino et al., 2020; Francis and Cappello, 2021).
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FIGURE 1 | Malformations of the cortical development. (Upper) Schematic representations of the control brain and brains affected by the following MCDs:
microcephaly, macrocephaly, lissencephaly, periventricular nodular heterotopia, cobblestone lissencephaly and polymicrogyria. (Lower) Schematic representation of
the mechanisms underlying these MCDs. In Control: VZ, ventricular zone; SVZ, subventricular zone; CP, cortical plate; aRG, apical radial glia; bRG, basal radial glia;
migrating and mature neurons.

When cell proliferation or survival are affected, neurogenesis
can be increased or reduced, which leads to an increase or
reduction of the brain volume, that is megalencephaly or
micrencephaly, respectively (Homem et al., 2015; Jayaraman
et al., 2018). This in turn usually leads to a consequent
modification of the entire head dimension, that is macrocephaly
and microcephaly, respectively (Figure 1). Microcephaly is
characterized by a reduction in the total number of neurons
generated developmentally and is typically caused by a decreased
neocortical progenitor pool size or an abnormal apoptosis. The
former is accompanied by a premature differentiation of neurons
and can most often be caused by various abnormalities of the
mitotic phase and neural progenitor polarity (Jamuar and Walsh,
2015; Jayaraman et al., 2018). Instead, macrocephaly is typically
characterized by a localized increase in the number or size of
neurons and glial cells, which is usually due to mutations in key
signaling pathways that regulate cell proliferation and growth
(Mirzaa and Poduri, 2014; Hevner, 2015).

A disruption of the migration of newborn neurons from GZs
to CP can lead to an aberrant localization of neocortical neurons
and a failure in formation of cortical layers (Buchsbaum and
Cappello, 2019; Castello and Gleeson, 2021). Such disruption
can be a consequence of the primary defect in the migrating
neuron or in the progenitor cell (aRG or bRG) whose processes
are providing a scaffold for the migrating neurons. In this
review we focus on the cell biology of neural progenitors.
MCDs such as heterotopia and lissencephaly can arise when
the neuronal migration is incomplete, whereas polymicrogyria
and cobblestone lissencephaly are usually observed in relation
to an excessive migration (Figure 1) (Francis and Cappello,
2021). Heterotopia is characterized by clusters of normal neurons
in abnormal locations (Barkovich et al., 2012; Guerrini and
Dobyns, 2014; Guarnieri et al., 2018) whose migration was
arrested in different moments. In case of periventricular nodular
heterotopia (Figure 1), the nodules or thick bands of gray
matter are stuck at or near the ventricular surface, whereas in
subcortical heterotopia newborn neurons remain in the white

matter (Barkovich et al., 2012; Guerrini and Dobyns, 2014).
Lissencephaly (“smooth brain”, also known as classical or type
I lissencephaly) is characterized by an abnormal gyral pattern
accompanied by thickening and altered layering of the neocortex
(Di Donato et al., 2017; Buchsbaum and Cappello, 2019). It
includes a spectrum of conditions, ranging from broadening of
few gyri, as in the case of pachygyria, to a complete absence
thereof, as in the case of agyria. The latter, however, is extremely
rare as it is observed almost only in Miller–Dieker syndrome
(Blazejewski et al., 2018). Polymicrogyria refers to an overfolding
of the neocortex with presence of abnormally small gyri that
can be focal, multifocal, or affecting the entire neocortex, often
characterized by dyslamination with displaced and disoriented
neurons and discontinuities in the pial basement membrane
(Figure 1) (Squier and Jansen, 2014; Stutterd and Leventer, 2014;
Jansen et al., 2016; Diamandis et al., 2017; Sarnat and Flores-
Sarnat, 2021). Cobblestone lissencephaly (also known as type II
lissencephaly) shows a cobblestone-like brain surface due to an
over-migration of neurons through ‘gaps’ in the pial basement
membrane (Figure 1) (Devisme et al., 2012; Buchsbaum and
Cappello, 2019). The MCDs characterized by incomplete or
excessive migration are most often caused by mutations in genes
related to cytoskeleton and cell adhesion (Moon and Wynshaw-
Boris, 2013; Jamuar and Walsh, 2015; Romero et al., 2018).

The final step of neocortical development is the post-
migrational differentiation with integration into neuronal
circuits, which includes complex events like growth and
maturation of axons and dendrites, synaptogenesis and synaptic
pruning. MCDs arising at this stage usually lead to certain
forms of focal cortical dysplasia (FCD) and dysgyria. FCD is
characterized by disorganized cortical lamination, variability in
cortical thickness and abnormal gyral pattern (Najm et al., 2018;
Subramanian et al., 2019). Dysgyria refers to a dysmorphic cortex
with abnormalities in gyral size and sulcal depth (Mutch et al.,
2016; Romaniello et al., 2018). The main identified causes of
MCDs affecting post-migrational differentiation and integration
into neuronal circuits are mutations in signaling molecules and
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cytoskeletal proteins (Jamuar and Walsh, 2015; Manikkam et al.,
2018; Romaniello et al., 2018).

The MCD-causing mutations often arise de novo during
gametogenesis or postzygotic development (Wilfert et al., 2017;
Juric-Sekhar and Hevner, 2019). The timing of mutation is often
associated with the severity of phenotype (Sarnat, 1987; Sarnat
and Flores-Sarnat, 2014). In this context, somatic mutations
have recently been found to exert and important contribution
to MCDs with focal insult, such as in focal heterotopia, focal
cortical dysplasia and hemimegalencephaly (Jamuar et al., 2014;
Jansen et al., 2015; Gonzalez-Moron et al., 2017; Montier et al.,
2019). Somatic mutations can be of type 1 or type 2, which cause
a new heterozygous mutation or lead to a loss of heterozygosity,
respectively (Qin et al., 2010; Jansen et al., 2015; Juric-Sekhar and
Hevner, 2019).

The landscape of pathological conditions of MCDs
is highly heterogeneous, as are the genetic variants and
molecular pathways involved in the disease onset. However, the
classifications of MCDs are mainly based on the neurological
outcome and neuroimaging data. Furthermore, specific genetic
mutations or events can impact the cortical development by
affecting different cell types and/or different developmental
phases, thus causing various MCDs (Sapir et al., 2019; Klingler
et al., 2021). In this review we focus on the neural progenitor cells
and their role in generation of neurons and supporting neuronal
migration. To bridge across scales from genetic mutations to
neurological outcomes, we focus on the cell biological level, as a
key interaction point between genes and phenotypes.

CELL BIOLOGICAL BASIS OF
MALFORMATIONS OF CORTICAL
DEVELOPMENT IN NEURAL
PROGENITORS

Below we discuss the cell biological features of neural progenitors
involved in the onset of MCDs. We particularly focus on the
progenitor proliferation and polarity as key aspects disrupted
in MCDs. Tight regulation of mitosis is the key cell biological
feature influencing the proliferation of neural progenitors.
Hence, protein products of many MCD-causative genes are
associated to the mitotic spindle. Various microtubule-associated
proteins that operate at centrosome, kinetochore or that are
involved in microtubule dynamics and severing have been
implicated with MCDs. Similarly, actin-binding proteins that
are important for the progression of mitosis and its fine
regulation are also associated with MCDs. To correctly progress
through the cell cycle, neural progenitors need to be able to
receive extrinsic signals and to transduce this information via
intracellular signaling pathways. Maintaining correct cell polarity
is a fundamental cell biological feature that enables both the
exposure to extrinsic signals and the neuronal migration. Various
molecules operating in both the apical and the basal endfeet
of aRG and bRG, adherens junctions, cell trafficking, cilium as
well as components of the extracellular matrix and its receptors
have been implicated in MCDs. Further, different receptors and

molecules operating in pro-proliferative signaling pathways are
often mutated in MCDs. Finally, several metabolic enzymes,
transcription factors and epigenetic modifiers that promote
proliferation of neural progenitors are found to be mutated in
patients with MCDs. Considering that many molecules, whose
mutations are associated with MCDs, operate in multiple cell
biological domains, we typically discuss individual molecules
within the cell biological context that is the most relevant for the
disease aetiology.

Mitotic Spindle
The mitotic spindle is the key element involved in establishing
the orientation of the cleavage plane, that is symmetric versus
asymmetric cell division, and therefore is involved in determining
the fate of the daughter cells (Lancaster and Knoblich, 2012;
Taverna et al., 2014; Matsuzaki and Shitamukai, 2015; Kalebic
and Namba, 2021). Hence, it is not surprising that the proteins
implicated in the function of the mitotic spindle are often
found mutated in microcephaly (Bond and Woods, 2006; Sun
and Hevner, 2014) (Figure 2A). A notable example is ASPM
(abnormal spindle-like microcephaly-associated protein), whose
mutations are the most common cause of primary microcephaly
(Bond et al., 2002; Thornton and Woods, 2009). Depletion of
Aspm from mouse cortex results in a reduction of vertical
symmetric proliferative division of apical progenitors (NECs and
aRG) and subsequent depletion of the progenitor pool (Fish
et al., 2006; Pulvers et al., 2010). However, the phenotypes
observed in mutant mice were poorly recapitulating the extent
of microcephaly in human patients (Pulvers et al., 2010) likely
because mouse neural progenitors are less proliferative than the
human progenitors. Interestingly, a knockout (KO) of Aspm in
the developing ferret neocortex led to a premature detachment
of aRG and generation of bRG, which in turn led to a severe
microcephaly, similarly to what was observed in human patients
(Johnson et al., 2018).

The second most common cause of primary microcephaly
are mutations in WDR62 (WD repeat domain 62, also known
as MCPH2), a scaffold protein associated with the spindle
pole (Bilguvar et al., 2010; Nicholas et al., 2010). WDR62
mutants fail to localize to the spindle pole and cells transiently
arrest in mitosis (Nicholas et al., 2010; Farag et al., 2013;
Chen et al., 2014; Sgourdou et al., 2017). Depletion of Wdr62
in mice lead to microcephaly due to reduced proliferation
of neural progenitors, spindle instability and abnormalities in
centrosome inheritance (Chen et al., 2014; Sgourdou et al., 2017).
Mechanistically, WDR62 has been shown to interact with JNK1/2
(c-Jun N-terminal kinase) and AURKA (Aurora kinase A) as
well as AURKB (Aurora kinase B), which is likely regulating
its localization to the spindle pole and cell cycle progression in
neocortical progenitors (Chen et al., 2014; Lim N. R. et al., 2015;
Sgourdou et al., 2017). Mutations in MCPH1 (microcephalin
1) are another notable cause of primary microcephaly (Jackson
et al., 2002). Disruption of Mcph1 in mice leads to a mitotic
spindle misalignment and a premature shift from symmetric
to asymmetric cell divisions (Gruber et al., 2011). Importantly,
MCPH1 is further involved in chromatin condensation and DNA
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FIGURE 2 | Cell biological processes and molecules involved in the onset of MCDs. Schematic representation of proteins involved in MCDs. Most of the proteins are
related to the precise regulation of mitosis (A) and maintaining correct cell polarity (B). (A) During mitosis the MCD-involved proteins are mainly operating at the
centrosome and astral microtubules (upper inset) or at the kinetochore (lower inset). (B) In interphase, MCD-involved proteins are operating at the basal endfoot (first
inset from the top), intracellular trafficking (second inset from the top), adherens junctions (third inset from the top) and apical endfoot including cilium (the lowest
inset) to maintain cell polarity.

damage repair with effects that span beyond the neocortex (Zhou
et al., 2013; Pulvers et al., 2015; Houlard et al., 2021).

Various genes encoding for centrosomal proteins were found
mutated in primary microcephaly (Figure 2A) (Bond et al.,
2005; Gilmore and Walsh, 2013; Bizzotto and Francis, 2015).
CDK5RAP2 (Cyclin Dependent Kinase 5 Regulatory Subunit
Associated Protein 2; MCPH3) and CENPJ (Centromere protein
J; MCPH6) are two notable examples (Bond et al., 2005).
CDK5RAP2 mutant mice show thinning of the cerebral cortex
with a reduction in late-born neurons, as a consequence of
an early depletion of the progenitor pool due to the abnormal
orientation of the mitotic spindle which leads to increased
horizontal and reduced vertical cleavage planes (Lizarraga
et al., 2010). CENPJ deletion in mice embryo also leads to a
microcephaly, which in this case is a consequence of a progressive
loss of centrioles in aRG and the subsequent detachment of
progenitor cells from the VZ. Those detached progenitors
continue proliferating, but exhibit a mitotic delay, which leads
to an induction of apoptosis and a subsequent reduction in the
number of progenitors (Insolera et al., 2014).

Similarly, TCOF1/TREACLE (Treacher Collins syndrome
protein) is a centrosome- and kinetochore-associated protein
that is required for mitotic progression and its mutation have
been identified in patients with Treacher Collins syndrome who
can exhibit microcephaly (Sakai et al., 2012). Tcof1 mutant
mice show abnormal spindle orientation, increased asymmetric
cell division and defects in cell proliferation resulting in a
smaller progenitor pool, fewer neurons and decreased brain size
(Sakai et al., 2012). CENPE (Centromere protein E) is a core
kinetochore component required for spindle microtubule capture
and attachment at the kinetochore (Abrieu et al., 2000; Yao
et al., 2000). Mutations in CENPE alter spindle dynamics and
chromosome segregation leading to delayed mitotic progression
and finally resulting in a microcephaly with a simplified gyral
pattern (Mirzaa et al., 2014b).

During mitosis microtubules are generated by the centrosomal
nucleation, chromatin-mediated nucleation and by nucleation
from the surface of other microtubules (Meunier and Vernos,
2016). The latter mechanism is mediated by augmin that binds to
the microtubule lattice, upon its generation by the centrosome-
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and chromatin-dependant pathways, and promotes the growth
of new microtubules as branches (Kamasaki et al., 2013).
Conditional knockout of the augmin subunit Haus6 in aRG
leads to spindle assembly defects, p53-mediated apoptosis and
an increase in DNA damage, which in turn leads to a reduction
of neurogenesis, disruption of tissue integrity and finally an
abortion of the brain development (Viais et al., 2021).

Mutations in genes that encode for proteins involved in
microtubule dynamics can also lead to abnormal spindle
orientation and subsequent MCDs (Figure 2A). EML1
(echinoderm microtubule associated protein-like 1) is a
microtubule-associated protein whose mutation leads to complex
cortical malformations characterized by megalencephaly with
a ribbon-like heterotopia and callosal agenesis (Kielar et al.,
2014; Oegema et al., 2019). The spontaneously arisen mutant
mice (HeCo mice) and KO mouse models recapitulate the
heterotopia phenotype (Kielar et al., 2014; Collins et al., 2019).
HeCo mice are characterized by a perturbation of microtubule
dynamics and an increase in oblique cleavage orientations of
aRG, that lead to ectopic proliferation of progenitor cells in
IZ and CP (Kielar et al., 2014; Bizzotto et al., 2017). NDE1
(nudE neurodevelopment protein 1), whose mutations in human
patients can lead to a severe microcephaly with lissencephaly,
is involved in centrosome duplication and mitotic spindle
assembly, attachment of microtubules to kinetochores and
proper neuronal migration (Feng and Walsh, 2004; Vergnolle
and Taylor, 2007; Alkuraya et al., 2011). Its ablation in the mouse
neocortex induces microcephaly, due to abnormal orientation of
cleavage plane, aberrant chromosome localization, mitotic delay
and premature cell cycle exit (Feng and Walsh, 2004). Similarly,
mutations observed in patients truncate the C-terminal domain,
which is involved in the localization to the centrosome (Alkuraya
et al., 2011). Consequently, they dysregulate cytoskeletal
dynamics in mitosis, leading to spindle-structure defects that
include tripolar spindles, misaligned mitotic chromosomes,
nuclear fragmentation and abnormal microtubule organizations
(Alkuraya et al., 2011). Deletion or mutations of LIS1
(Lissencephaly 1 protein; encoded by PAFAH1B1, Platelet
activating factor acetylhydrolase 1b regulatory subunit 1) are
the major cause of classical lissencephaly in humans (Reiner
et al., 1993; Romero et al., 2018). Different rodent models have
shown that LIS1 is important for both progenitor proliferation
and neuronal migration (Cahana et al., 2001; Gambello et al.,
2003; Tsai et al., 2005). LIS1 deletion leads to proliferation
defects of apical progenitors due to misorientation of the mitotic
spindle, reduced and weakened astral microtubules and increased
apoptosis (Yingling et al., 2008). Mechanistically, Lis1 operates
with Nde1 to target the cytoplasmic dynein complex, whereas
the complex Lis1/Ndel1 (Nde1 like)/dynein is important for
microtubule stability and cortical capture (Feng and Walsh,
2004; Yingling et al., 2008; McKenney et al., 2010; Moon et al.,
2020). Lis1 and dynein are connected to the nuclear envelope
through their interaction with the SUN- and KASH-domain
proteins, SUN1/2 and Syne/Nesprin-1/2, which have a critical
role in nuclear movement during neurogenesis and neuronal
migration, as their ablation in mice leads to defects in cortical
lamination and reduced brain size (Zhang et al., 2009).

Another protein involved in microtubule dynamics at mitosis,
KATNB1 (B1 subunit of the microtubule severing enzyme
katanin), has been associated with severe microcephaly with
lissencephaly (Mishra-Gorur et al., 2015). KATNB1 plays an
important role at the spindle pole together with cytoplasmic
dynein and NuMA (nuclear mitotic apparatus protein), which
tethers spindles at the poles and is fundamental for microtubule
aster formation (Mishra-Gorur et al., 2015; Jin et al., 2017).
Studies of various proteins involved in spindle positioning
in both Drosophila neuroblasts and mammalian neocortical
progenitors suggest an important role of spindle orientation for
determination of cell fate, notably in generation of BPs (Lancaster
and Knoblich, 2012; Matsuzaki and Shitamukai, 2015). For
example, overexpression of Insc (Inscuteable) or a KO of LGN
lead to an increase in BPs, that in case of LGN KO exhibit
characteristics of bRG (Konno et al., 2008; Postiglione et al.,
2011). Considering the importance of BPs, and in particular bRG,
for the human cortical development, it is important to examine
the mechanisms of bRG generation in order to better understand
the MCD aetiology.

Actin Cytoskeleton and Cell Division
Several actin-binding proteins implicated in MCDs operate
during the cell division of neural progenitors. Mutations in
FLNA (Filamin A), which crosslinks actin filaments and links
them to membrane proteins, can be a cause of periventricular
heterotopia (Fox et al., 1998; Sheen et al., 2005). Knockout of
FLNA in mice leads to prolongation of the cell cycle length
by delaying the onset and progression through mitosis due to
impaired regulation of cyclin B1 degradation which results in a
decline in the progenitor numbers and a reduction of the brain
size (Lian et al., 2012). Other actin-binding proteins were shown
to be implicated in the neural progenitor division. For example,
depletion of n-cofilin, which is involved in depolymerization of
actin filaments, leads to an increased cell cycle exit of neural
progenitors and a depletion of the progenitor pool (Bellenchi
et al., 2007). PFN1 (Profilin-1) regulates actin polymerization and
is associated with Miller–Dieker syndrome which is characterized
by a lissencephaly (Kwiatkowski et al., 1990). In mutant mice
model, absence of PFN1 leads to a change in cleavage plane
orientation with an increase in horizontal divisions (Kullmann
et al., 2020). This in turn led to an increase in bRG abundance and
neuronal production during mid-neurogenesis and a formation
of rudimentary neocortical folds. It hence remains important
to examine the role of PFN1 and other actin-binding proteins
for the proliferation of BPs in the developing human neocortex.
Interestingly, a small GTPase Rac1 (Ras-related C3 botulinum
toxin substrate 1), which regulates many cellular processes
including cytoskeletal organization, is required for survival
of neural progenitors and for the normal proliferation and
differentiation of BPs, specifically (Leone et al., 2010). Deletion of
Rac1 in telencephalon results in microcephaly with reduced size
of both cerebral cortex and striatum (Chen et al., 2009), whereas
its ablation in the progenitors situated in medial ganglionic
eminence impairs their transition from G1 to S phase and leads
to an impairment of GABAergic interneurons migration into the
cortex (Vidaki et al., 2012).
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Actin rearranges at the cell cortex and enhances cell
membrane rigidity, which is important for proper anchorage
of astral microtubules (Heng and Koh, 2010). DIAPH3
(Diaphanous three) is a member of the formin protein family
that nucleate and elongate actin filaments and has a role in
spindle assembly and cytokinesis. Two clinical studies point to
DIAPH3 as an autism susceptibility gene (Vorstman et al., 2011;
Xie et al., 2016). DIAPH3 deficiency in mice induces centrosome
abnormalities, disrupts the spindle and astral microtubules and
leads to a loss of cortical progenitors, microcephaly, and autistic-
like behavior (Lau et al., 2021). Depletion of DIAPH3 leads
to downregulation of SPAG5, a kinetochore- and centrosome-
associated protein that controls sister chromatid cohesion and
recruitment of CDK5RAP2 to centrosome (Kodani et al.,
2015). Knockdown of SPAG5 induces similar mitotic errors
as the depletion of DIAPH3 and its overexpression rescues
DIAPH3 knockdown phenotype (Kodani et al., 2015; Lau et al.,
2021), emphasizing the importance of cooperation of actin and
microtubule associated proteins in mitotic progression.

Cytokinesis
Cytokinesis is the final step in the mitosis. Cleavage furrow of
aRG starts on the basal side and ingresses toward the apical
membrane, a process which is mediated by anillin and actin-
based cortex (Kosodo et al., 2008; Kosodo and Huttner, 2009).
The midbody is formed at the end of the furrow as a structure that
contains compacted microtubules. The midbody often relocates
to the daughter cells containing the apical processes and is
subsequently released into the ventricle (Dubreuil et al., 2007;
Ettinger et al., 2011). Among the proteins involved in abscission
are members of Kinesin-6 family. Interestingly, one of them,
Kif20b, was found to be mutated in magoo mouse mutant which
exhibits a fully penetrant microcephaly (Janisch et al., 2013).
Kif20b mutants show changes in the midbody number, shape and
position resulting in the disruption of the abscission step, which
in turn causes apoptosis of neural progenitors and leads to a small
cerebral cortex (Janisch et al., 2013).

Interphase Centrosome and Cilia
During interphase centrosomes are positioned in the apical
endfeet of aRG, where they contribute to cell polarity, ciliogenesis
and cell attachment (Taverna et al., 2014). Centrosome consists
of two centrioles and upon a cell division, the older centriole
is typically inherited by the proliferative daughter cell that
remains an aRG, whereas the daughter centriole is inherited
by the differentiating daughter cells (neuron or BP) (Wang
et al., 2009). Previously mentioned microcephaly proteins ASPM
and WDR62 during interphase localize to mother centrioles
where they physically interact (Jayaraman et al., 2016). Loss of
either of them or both leads to a defective centriole duplication
and impaired cilia, resulting in premature delamination of
progenitors and microcephaly (Jayaraman et al., 2016). It was
shown recently that the mother centriole in aRG contains
distal appendages that anchor it to the apical membrane and
that CEP83 (centrosomal protein 83), a protein implicated
in intellectual disabilities, is required for their maintenance
(Figure 2B) (Shao et al., 2020). The elimination of CEP83 led to

expansion of the progenitor pool which resulted in macrocephaly
with abnormal folding. The rigidity of the apical membrane
was affected, and the mechanically sensitive YAP (yes-associated
protein) was activated, hence promoting progenitor proliferation
(Shao et al., 2020). YAP was shown to promote proliferation of
BPs in humans and ferrets, and it would hence be interesting
to explore a possible role of this mechanism in human MCDs
pertinent to BPs (Kostic et al., 2019). Importantly, AKNA,
another protein that associates to mother centrioles, was shown
to play a role not only in generation of BPs, but also in retaining
cells in the SVZ, which again suggests to examine the role of
centrosome-associated proteins in the context of BP cell biology
(Camargo Ortega et al., 2019).

The mother centriole forms the basal body, a structure that
makes the base of the primary cilium, an organelle involved
in signaling, mechanotransduction and cell fate (Taverna et al.,
2014). Interestingly, the ciliary membrane, which is endocytosed
at the onset of mitosis along with the mother centriole, also
tends to be inherited by the proliferative daughter cell (Paridaen
et al., 2013). Perturbations of ciliary structure or function leads to
ciliopathies such as Joubert and Bardet–Biedl syndromes, which
can result in cortical disorganization and intellectual disabilities
(Taverna et al., 2014; Bizzotto and Francis, 2015). Mutation in
centrosomal proteins CENPJ and CEP290 (centrosomal protein
290) have been associated with ciliary phenotypes (Figure 2B).
CEP290, which can be mutated in Joubert syndrome, is required
for the function of Rab8, a protein involved in ciliogenesis
(Valente et al., 2006; Kim et al., 2008). CENPJ has an important
role in regulating cilia disassembly as its loss causes alterations
in length of cilia, leading to delayed cell cycle, reduced cell
proliferation, and increased cell apoptosis, all together resulting
in microcephaly (Ding et al., 2019). ARL13B, mutated in Joubert
syndrome, is a small GTPase specifically enriched in the cilium
and required for ciliary structure and function. Knockout mice
show inverted cell polarity with the cell body located on the pial
surface and the basal endfoot positioned on the ventricular side
(Higginbotham et al., 2013).

Cell Polarity
Cell polarity is a fundamental feature of neural progenitor
cells. Whereas aRG exhibit a classical apicobasal polarity, with
the apical pole lining the ventricular surface and the basal
side contacting the pia, BPs show a greater heterogeneity in
their cell polarities (Taverna et al., 2014; Kalebic et al., 2017).
bIPs typically exhibit multipolar morphology in interphase,
whereas bRG show polarized morphology, often containing the
basal process contacting the pia, but not the apical polarity
domain which can hence be termed pseudo-apicobasal polarity
(Kalebic and Namba, 2021).

Apical progenitors contain a specialized apical polarity
complex, which is fundamental for cell polarity, and it contains
Par3 (Partitioning defective protein 3), Par6 (Partitioning
defective protein 6), and aPKC (atypical protein kinase C) (Costa
et al., 2008; Bultje et al., 2009; Hansen et al., 2017; Kalebic and
Namba, 2021). Par-complex proteins are important for regulating
aRG proliferation and differentiation in the developing cerebral
cortex, as the inheritance of the apical domain is associated with
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maintenance of stemness. Par complex contributes to regulating
Notch signaling by enriching Notch on the plasma membrane of
the daughter cells that inherited the apical domain and thereby
enables that cell to maintain its stemness (Bultje et al., 2009;
Kandachar and Roegiers, 2012). Overexpression of both Par3
and Par6 promoted generation of proliferative progenitors in the
developing mouse neocortex (Costa et al., 2008). Loss of Par3 in
developing mouse cortex causes severe MCD including increased
volume and massive ribbon-like heterotopia (Liu et al., 2018).
This was caused by temporally different progenitor behaviors
in response to HIPPO and NOTCH signaling. During early
phase of neurogenesis, the progenitor proliferation was increased
at the expenses of production of deep-layer neurons, whereas
at later stages the differentiation was increased leading to an
increased production of upper layer neurons (Liu et al., 2018).
The megalencephaly and heterotopia phenotypes were rescued
by a simultaneous removal of the HIPPO pathway effectors
YAP and TAZ (transcriptional coactivator with PDZ-binding
motif), underlining again an important role of HIPPO pathway
in cortical development (Liu et al., 2018).

Adherens Junctions
Adherens junctions play a key role in maintaining aRG polarity
and VZ cohesion. Their disruption or instability can affect
aRG morphology and lead to detrimental consequences on
the cortical lamination and neuronal migration (Figure 2B)
(Veeraval et al., 2020). The conditional knockout mouse of
N-cadherin, a key junctional protein, displays a complete loss
of cortical organization with mitotic and postmitotic cells
scattered throughout the cortex and aRG that could not grow
their processes (Kadowaki et al., 2007). Deletion of α-E-catenin
in mouse cerebral cortex causes an uncoupling of adherens
junctions with the intracellular actin fibers, which results in
a loss of tissue polarity and formation of large subcortical
band heterotopia, as migrating neurons fail to reach the
cortical plate and accumulate in ectopic positions (Schmid
et al., 2014). Similarly, inactivation of CDH2 (cadherin 2) or
afadin, a junctional adaptor protein, results in a disruption of
adherens junctions and an increase in progenitor proliferation,
which again leads to a phenotype resembling subcortical band
heterotopia (Gil-Sanz et al., 2014; Rakotomamonjy et al., 2017).
Maintenance of cadherin-based adherens junctions requires
Numb and Numbl (Numb-like) which localize to the apical
end-foot. Their inactivation disrupts adherens junctions, causes
premature progenitor depletion, abnormal progenitor dispersion
and disorganized cortical lamination (Li et al., 2003; Petersen
et al., 2004; Rasin et al., 2007).

Mutations in the receptor-ligand cadherin pair DCHS1
(Dachsous cadherin-related 1) and FAT4 (FAT Atypical Cadherin
4) have been associated with the Van Maldergem syndrome,
which is characterized by a periventricular neuronal heterotopia
(Figure 2B) (Cappello et al., 2013). Knockdown of those
genes in the developing mouse neocortex results in increased
progenitor cell numbers and reduced neuronal differentiation,
which in turn leads to a heterotopic accumulation of cells
below the neuronal layers (Cappello et al., 2013). Cerebral
organoids derived from induced pluripotent stem cells (iPSCs)

of patients with mutations in DCHS1 and FAT4 recapitulate the
heterotopic phenotype, however, without a change in progenitor
proliferation, highlighting the inter-species differences (Klaus
et al., 2019). The phenotype of mutant organoids is due
to a combination of changes in the morphology of neural
progenitor cells and altered navigational system of some neurons,
underscoring the importance of the neural progenitor cell biology
for the neuronal migration also in the human model system
(Klaus et al., 2019).

Rho GTPases are fundamental regulators of cytoskeleton
organization and cell polarity during neocortical development.
Conditional deletion of RhoA (Ras homolog family member
A) in neural progenitors leads to the disruption of apical
anchoring and mis-orientation of aRG processes which results
in heterotopia underneath a thinner cortex, reminiscent of
cobblestone lissencephaly (Cappello et al., 2012). Conditional
deletion of Cdc42 (Cell Division Cycle 42) in mice leads to a
gradual loss of adherens junctions, impairing the apically directed
interkinetic nuclear migration, which results in progenitors
undergoing mitoses at basal positions and acquiring the
neurogenic fate of BPs (Cappello et al., 2006). Further, mice
deficient in both DIAPH1 and 3, actin nucleators and Rho
effectors, develop a periventricular dysplastic mass due to
disruption of apical adherens junctions in aRG and impaired
cell polarity (Thumkeo et al., 2011). Interestingly, a mutation in
RhoA activator, PLEKHG6 (Pleckstrin homology and RhoGEF
domain containing G6), was found in human heterotopia and
it leads to the loss of a primate-specific isoform of this protein
(O’Neill et al., 2018). Modulation of PLEKHG6 isoform in human
cerebral organoids once again highlights the relevance of BPs and
in particular bRG for the aetiology of human MCDs. Similarly,
downregulation of another plecstrin homology domain protein,
PLEKHA7 (Pleckstrin homology domain containing A7), which
is adherens junction belt-specific, results in delamination of
neural progenitors from the ventricular surface and conversion
of aRG to bRG (Tavano et al., 2018). Furthermore, LGALS3BP
(Galectin 3 binding protein), a secreted protein that interacts with
components of the extracellular matrix, has been found mutated
in patients with altered local gyrification and cortical thickness
(Kyrousi et al., 2021). Analysis in electroporated mouse embryos
and human organoids suggests that LGALS3BP, which is involved
in the apical anchoring, is mediating BP delamination that in turn
is critical for the proper neuronal migration and cortical folding
(Kyrousi et al., 2021).

Intracellular Trafficking
Cell polarity is highly dependent on traffic through the
secretory pathway and, interestingly, the pathological
endoplasmic reticulum (ER) and the Golgi apparatus stress
have been associated with MCDs, in particular microcephaly
(Figure 2B) (Passemard et al., 2019). Some patients affected
by microcephaly and periventricular heterotopia present
mutations in the ARFGEF2 (ADP-ribosylation factor guanine
nucleotide-exchange factor-2), encoding for BIG2 [brefeldin A
(BFA)-inhibited GEF2 protein]. BIG2 promotes the activation of
ARF (ADP-ribosylation factor) proteins by guanine-nucleotide
exchange, regulating Golgi vesicular budding and uncoating.
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In vitro experiments show that inhibition of BIG2 decreases cell
proliferation of mouse neural progenitors, possibly due to the
aberrant intracellular localization of E-cadherin and β-catenin
(Sheen et al., 2004). The other principal gene implicated
in periventricular heterotopia, FLNA, is also implicated in
intracellular trafficking, as it has been shown that FLNA
facilitates trafficking of β1 integrin to the cell membrane (Kim
et al., 2010). Further, deletion of BIG2 promotes phosphorylation
of FLNA which in turn affects FLNA-actin binding affinity and
changes the localization of FLNA, suggesting a cooperative
action between actin and vesicle trafficking in the assembly of
membrane proteins (Zhang et al., 2012, 2013). Considering the
recently revealed novel features of the Golgi apparatus in apical
versus basal progenitors and the differential contribution of
Golgi to the apical versus basal process of the neural progenitors
(Taverna et al., 2016; Taverna and Huttner, 2019), it is important
in the future to better assess the importance of intracellular
trafficking for the onset of MCDs.

Basal Attachment
Migration of newborn neurons from the site of their generation
in GZ to their final position in the CP occurs along the basal
processes of aRG and bRG that make a radial scaffold (Rakic,
2009; Geschwind and Rakic, 2013; Fernandez et al., 2016). In
lissencephalic species, such as mouse, this scaffold is simpler, it
consists mainly of the basal processes of aRG, as bRG are very rare
in mouse, and it enables a radial migration of newborn neurons.
In gyrencephalic species, such as human, ferret or macaque,
this scaffold is more complex and apart of the radial migration,
it enables also the tangential dispersion of neurons, which is
required for correct folding (Fernandez et al., 2016; Kalebic
and Huttner, 2020; Del Valle Anton and Borrell, 2021; Kalebic
and Namba, 2021). Such complexity might be facilitated by the
existence of bRG morphotypes with two basal processes, which
were described in humans and ferrets, but not in mice (Kalebic
et al., 2019). Further, at mid-neurogenic period human aRG
become truncated, loose their basal processes and the migration
of the late-born neurons is mediated only by the bRG-generated
scaffold (Nowakowski et al., 2016).

Various cytoskeletal molecules have been implicated in
maintenance of the basal processes. The attachment of the
basal endfoot to the pia is mediated by various receptors
and extracellular matrix (ECM) components. Many of these
molecules have been associated with MCDs, most commonly
because the defective radial scaffold leads to impairments
in the migration of neurons (Figure 2B). Knockout mice
for Marcks (myristoylated alanine-rich substrate protein), an
actin cross-linking protein, disrupted basal end feet and led
to a disorganization of the radial scaffold, which resulted in
displacement of progenitors and heterotopia (Blackshear et al.,
1997; Weimer et al., 2009). A deletion in the regulatory region
of GPR56 [guanine nucleotide-binding protein (G protein)-
coupled receptor 56], was found in patients with polymicrogyria
surrounding bilaterally the Sylvian fissure including Broca’s
area, the primary language area (Bae et al., 2014). Knockout
mice show reduced cortical thickness and irregular cortical
organization due to the defect in the progenitor proliferation

(Bae et al., 2014). GPR56 localizes to the basal endfeet and binds
to ECM components in the basal lamina, such as collagen III,
which is considered to promote the proliferation of aRG and
bRG (Singer et al., 2013). GPR56 functions together with α3β1
integrin, another major receptor of the ECM components (Jeong
et al., 2013). The role of integrins in progenitor proliferation
has been particularly highlighted in the context of BPs, and in
particular bRG, in the gyrencephalic species (Fietz et al., 2010;
Stenzel et al., 2014; Kalebic et al., 2019). Hence the disruption
of the basal process is often linked to the perturbation of
proliferation, in addition to migrational defects (Bizzotto and
Francis, 2015; Kalebic and Huttner, 2020).

The most frequent cause of cobblestone lissencephaly are
the mutations in genes which are required for the functional
maturation of α-dystroglycan, another major ECM receptor
(Devisme et al., 2012; Bizzotto and Francis, 2015). These
genes include POMT1 and 2 (Protein O-mannosyltransferase
1 and 2) (Beltran-Valero de Bernabe et al., 2002; van
Reeuwijk et al., 2005), POMGNT1 (Protein O-linked mannose
N-acetylglucosaminyltransferase 1) (Yoshida et al., 2001),
LARGE (LARGE xylosyl-and glucuronyltransferase 1) (van
Reeuwijk et al., 2007), TMEM5 (Transmembrane protein 5),
ISPD (Isoprenoid synthase domain containing) (Vuillaumier-
Barrot et al., 2012) and others. Finally, one-third of the cases
of cobblestone lissencephaly are still unexplained, suggesting
that other genes and pathways are involved (Devisme et al.,
2012). Mutations in the transmembrane protein TMTC3
(transmembrane and tetratricopeptide repeat containing 3),
which does not contain obvious functional connections to
α-dystroglycan, have been found in patients with cobblestone
lissencephaly (Jerber et al., 2016).

Mutations in the genes encoding for the components of
the ECM can also lead to MCDs (Figure 2B). A notable
example is LAMB1 (laminin subunit β1) whose mutations
were found in patients with cobblestone lissencephaly with
severe cerebellar dysplasia, brainstem hypoplasia, and occipital
encephalocele (Radmanesh et al., 2013). Enzymes involved in
the production of ECM components have been associated with
MCDs. ECE2 (endothelin-converting enzyme-2) has recently
been found mutated in patients with periventricular heterotopia
(Buchsbaum et al., 2020). Genetic manipulation in embryonic
mouse neocortex and human cerebral organoids revealed that
ECE2 is important for apicobasal cell polarity, apical belt
integrity, actin and microtubule cytoskeleton dynamics and
production of ECM components (Buchsbaum et al., 2020).

Pro-proliferative Signaling
Various signaling pathways are involved in promoting
proliferation of neural progenitor cells. Notch, Shh, Wnt,
PDGF, FGF, ECM-integrin, ERK, Hippo, PI3K-AKT, and mTOR
are some of the most notable examples (Penisson et al., 2019;
Ferent et al., 2020; Kalebic and Huttner, 2020). Many of the
components of those pathways have been implicated in MCDs.
Among the receptor tyrosine kinases, fibroblast growth factor
receptors (FGFRs), are particularly relevant associated with
the syndromes characterized by brain malformations. Apert
syndrome, in which brain malformation is considered secondary
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to the cranial abnormalities, is caused by mutations in FGFR2
(Aldridge et al., 2010). Instead, a mutation in FGFR3, which leads
to a constitutive activity of the receptor, causes thanatophoric
dysplasia (Hevner, 2005; Pannier et al., 2009). This disease is
characterized by a combination of cortical abnormalities, which
affects most severely the temporal lobe (Hevner, 2005). Mouse
model of the thanatophoric dysplasia successfully recapitulated
the megalencephaly phenotype, but not the other abnormalities
(Lin et al., 2003). Instead the ferret model recapitulated
all the other phenotypes found in human patients, such as
polymicrogyria (Masuda et al., 2015), periventricular nodular
heterotopia (Matsumoto et al., 2017a) and leptomeningeal
glioneuronal heterotopia (Matsumoto et al., 2018). Similarly to
FGF signaling, insulin growth factor (IGF) signaling through
IGF1R (type 1 IGF receptor) stimulates progenitor proliferation
and mutations in IGF1R were detected in patients with brain
overgrowth (Faivre et al., 2002; Joseph D’Ercole and Ye, 2008).

Notch signaling pathway plays an essential role in
neurogenesis through the process of lateral inhibition (Fortini,
2009; Pierfelice et al., 2011). In mammalian neocortex, Notch
ligands are expressed by neurons and intermediate progenitors
which signal back to aRG and bRG (Hansen et al., 2010; Nelson
et al., 2013). The different combinations of Notch signaling
molecules are involved in maintenance and likely diversification
of the progenitor pool (Nelson et al., 2013). Further, Notch
signaling can be amplified by reelin, a glycoprotein secreted
by Cajal–Retzius cells. In addition to controlling neuronal
migration and neocortical lamination, reelin promotes
symmetric proliferative division of radial glia modulating
thus the rate of neurogenesis (Lakoma et al., 2011; Hirota
and Nakajima, 2017). Mutation in RELN, the gene encoding
for reelin, have been shown to be associated with autosomal
recessive lissencephaly as well as various neuropsychiatric
disorders, such as schizophrenia (Hong et al., 2000; Fatemi, 2001;
Ishii et al., 2016).

Recent studies have shown that diverse forms of brain
overgrowth are often caused by mutations in the PI3K
(phosphatidylinositol-3-kinase)–AKT signaling pathway
(Hevner, 2015). Activating mutations of PI3K-AKT can cause
hemimegalencephaly, dysplastic megalencephaly, heterotopia,
polymicrogyria, pachygyria, and focal aggregates of small
undifferentiated cells. Mildly activating variants, that are
usually constitutional or germline, are associated with
diffuse megalencephaly with intellectual disability and/or
autism spectrum disorder, while moderately and strongly
activating variants emerge as mosaic mutations and they are
associated with mosaic megalencephaly, hemimegalencephaly
and focal cortical dysplasia (Lee et al., 2012; Poduri et al.,
2012; Riviere et al., 2012; Hevner, 2015; Jansen et al., 2015;
Alcantara et al., 2017; Dobyns and Mirzaa, 2019). Mouse
mutants for Akt3 and Pten (phosphatase and tensin homolog)
showed significant enlargement of the brain, but could not
recapitulate the phenotypes pertinent to cortical folding
(Groszer et al., 2001; Tokuda et al., 2011). Interestingly,
when PTEN was deleted in human brain organoids, the
subsequent activation of the PI3K-AKT pathway and
increased proliferation of neural progenitors led to an
increase in organoid size and the onset of organoid folding

(Li et al., 2017). Mutations in the small GTPase gene RAB39b
are associated with macrocephaly, autism spectrum disorder
and intellectual disability (Woodbury-Smith et al., 2017).
Deletion of RAB39b promotes PI3K–AKT signaling and leads to
increased progenitor proliferation and macrocephaly in mouse
model and increased organoid size in human in vitro model
(Zhang et al., 2020).

PI3K-AKT signaling inhibits the activity of GSK3 (glycogen
synthase kinase 3), a fundamental regulator of radial glia polarity.
GSK3 inhibition in mouse aRG disrupts the radial organization
of cell processes impairing thus the scaffold system that allows
neuronal migration and affecting the progenitor proliferation
(Yokota et al., 2010). Similarly, chronic inhibition of GSK3
in human cortical organoids increased the proliferation of
neural progenitors (Lopez-Tobon et al., 2019). Some cases of
megalencephaly and polymicrogyria are caused by mutations
in CCND2 (cyclin D2), a protein implicated in the cell cycle
progression and a target of GSK3 (Kida et al., 2007; Mirzaa
et al., 2014a). In utero electroporation of mutant CCND2 into
embryonic mouse cortex resulted in an increase in neural
progenitor proliferation, likely explaining the brain enlargement
of human patients (Mirzaa et al., 2014a).

Mammalian target of rapamycin (mTOR) signaling, also
modulated by PI3K-AKT, is on the most important biological
pathways and it is implicated in various diseases ranging from
cancer to neurodevelopmental pathologies (Dobyns and Mirzaa,
2019). Mutations that affect mTOR are a common cause of
focal cortical dysplasia and brain overgrowth along with the
associated intellectual disabilities (Mirzaa et al., 2016; Marsan
and Baulac, 2018; Kumari et al., 2020). Focal cortical dysplasia
type II, which is the main cause of refractory epilepsy, is
often caused by brain somatic mutations in mTOR kinase that
lead to its hyperactivation (Lim J. S. et al., 2015). Indeed,
overexpression of mutant mTOR by in utero electroporation
in mice disrupts neuronal migration and causes spontaneous
seizures, whereas the inhibition of mTOR can supress the seizures
(Lim J. S. et al., 2015). Somatic mutations in genes involved in
mTOR pathway, that occur in an early cell cycle of neocortical
progenitors can lead to a more detrimental phenotype, that
is hemimegalencephaly (Sarnat and Flores-Sarnat, 2014). The
pathological phenotype can be a consequence of either a rare
disruptive event causing hyperactivation of the pathway, or
through the collective effects of many common alleles (Reijnders
et al., 2017). Such activation of the pathway typically leads to
over-proliferation of neural progenitors and subsequent increase
in brain size (Dobyns and Mirzaa, 2019).

The pathway PI3K-AKT-mTOR is particularly interesting as
mTOR pathway seem to be enriched in bRG (Nowakowski
et al., 2017; Andrews et al., 2020) and PI3K-AKT is highly
upregulated upon forced proliferation of mouse BPs (Kalebic
et al., 2019). This suggests that PI3K-AKT-mTOR might play a
specific role in promoting proliferation of BPs in species with an
expanded cortex, such as human, and that the perturbations of
its activity could have particularly relevant consequences for the
proliferation of human bRG. Hence, a better understanding of
the cellular processes impaired by PI3K-AKT-mTOR mutation
would be fundamental for providing early diagnosis and
appropriate therapy based on pathway inhibitors.
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Cell Metabolism
Neocortical progenitor metabolism is emerging as an important
player for progenitor proliferation and cortical expansion and its
dysregulation can lead to various neurodevelopmental disorders
(Namba et al., 2021). Mitochondrial activity has a fundamental
role in regulating the proliferation of progenitors and the
deficiency of mitochondrial function can cause MCDs. For
example, Amish lethal microcephaly is caused by a mutation
of the SLC25A19 (Solute carrier family 25 member 19),
coding for a mitochondrial thiamine pyrophosphate carrier,
which is a coenzyme for α-ketoglutarate dehydrogenase that
operates in the TCA (tricarboxylic acid) cycle, (Kelley et al.,
2002; Rosenberg et al., 2002). Interestingly, it appears that
glutaminolysis, which provides α-ketoglutarate, is required for
the proliferation of neural progenitors. MCPH1, which can
be located also on the mitochondria, interacts with VDAC1,
an ion channel on the outer membrane, and stimulates
the mitochondrial activity via glutaminolysis, increasing the
mitochondrial calcium concentration (Journiac et al., 2020).
When MCPH1 is mutated, the defects in mitochondrial structure
and metabolism lead to a reduction in cell proliferation and
survival and finally to microcephaly (Journiac et al., 2020).
Furthermore, glutaminolysis has been identified as the principal
mechanism that the human-specific ARHGAP11B utilizes to
promote BP proliferation (Namba et al., 2020). Together, this
suggests that the glutaminolysis might have an important role in
both brain evolution and the onset of MCDs. Enzymes involved
in asparagine and serine synthesis have been also implicated in
microcephaly (Ruzzo et al., 2013; Acuna-Hidalgo et al., 2014).
For example, mutations in ASNS, which encodes asparagine
synthetase, have also been identified in patients characterized
by congenital microcephaly, intellectual disability, progressive
cerebral atrophy and intractable seizures (Ruzzo et al., 2013).
ASNS mutant mice have structural brain abnormalities, including
enlarged ventricles, reduced cortical thickness, deficits in learning
and memory (Ruzzo et al., 2013).

In addition, defects in fatty acid metabolism and transport
have been shown to cause microcephaly. A microcephalic patient
has been identified carrying a deletion of BBOX1 (butyrobetaine-
gamma 2-oxoglutarate dioxygenase 1), that encodes an enzyme
involved in carnitine synthesis (Rashidi-Nezhad et al., 2014).
Carnitine shuttle system is required for the transport of
long-chain fatty acids into mitochondria. Cpt1a (carnitine
palmitoyltransferase 1A), an essential protein in the carnitine
shuttle system, is involved in maintaining the proliferation of
neural progenitors (Knobloch et al., 2017). MFSD2A (major
facilitator superfamily domain–containing 2a) is a transporter
required for the uptake of docosahexanoic acid (DHA) in
the brain. Inactivating mutations in this gene cause a lethal
microcephaly syndrome due to inadequate uptake of the
essential omega-3 fatty acid (Guemez-Gamboa et al., 2015). Lipid
metabolism might be particularly important for the proliferation
of BPs since palmitoylation, a reversible lipidation with profound
roles in the development and function of the nervous system
(Fukata and Fukata, 2010), has been recently shown to be
required for maintaining the proliferation of BPs in the human
cortical tissue (Kalebic et al., 2019).

DISCUSSION

Genetic linkage studies have been the basis for understanding
the mechanisms underlying the MCDs so far. In contrast, their
diagnosis and classification are mainly based on the neurological
outcomes at the tissue and organ levels. Hence, understanding
the cell biological context in which these molecules operate is key
in order to improve the mechanistic knowledge and better bridge
between genes and phenotypes. This is particularly relevant for
the neural progenitors, as their cell biology often appears to be
the fons et origo of many MCDs. Disrupted proliferation of neural
progenitors can lead to microcephaly and macrocephaly, whereas
impaired polarity and/or detachment from the apical and basal
pole of the tissue can lead to lissencephaly or heterotopia. The
situation, however, is more complex since various cell types,
principally migrating neurons, can have a dominant role in
specific MCDs. It is further known that mutations in the same
genes can exert different roles in progenitors and neurons.
Further complexity of MCDs is characteristic of the genetic
and phenotypic levels. MCDs can have both monogenic and
polygenic causes, whereas genetic mutations can have both
convergent and divergent relations with the final phenotypes
(Klingler et al., 2021). In addition to genomic mutations, there
are various environmental factors that have been implicated in
MCDs: alcohol, stress, nicotine, cocaine, hypoxia, and various
viral infections, notably ZIKA and SARS-Cov-2 (Luhmann, 2016;
Sarieva and Mayer, 2021). To tackle the mechanisms through
which all of these contribute to the onset of MCDs, it is
important to understand the affected features at the cell biological
level. For example, prenatal exposure to alcohol can cause
impaired neuronal migration, reduced proliferation and altered
morphology of neural progenitors (Hirai et al., 1999; Mooney
et al., 2004; Cuzon et al., 2008; Luhmann, 2016). Particularly
strong effects were observed on production and migration of
GABAergic interneurons (Cuzon et al., 2008; Boa-Amponsem
et al., 2020). ZIKA virus causes microcephaly by reducing neural
progenitor proliferation and inducing cell death. The phenotypes
were recapitulated in both mouse models and cerebral organoids
with the organoids revealing a potentially key role of bRG in this
process (Faizan et al., 2016; Qian et al., 2016; Watanabe et al.,
2017; Sutarjono, 2019).

We have above listed key cell biological features in neural
progenitors implicated in the emergence of MCDs and we can
broadly split them into two groups: (1) fine regulation of mitosis
and (2) maintenance of the correct cell polarity (Figure 2).
Mitosis and notably the orientation of the mitotic spindle are
important in determining the fate of the daughter cells, whereas
the correct polarity (i) allows the access to the pro-proliferative
signals at the apical and basal sides of the tissue and (ii) it enables
the neuronal migration along the basal fibers of aRG and bRG.
It is important to note that in addition to those principal groups
various other cell biological processes are implicated. We have
discussed some of the key signaling pathways and the emerging
role of the cell metabolism in the onset of MCDs. Importantly,
various molecules involved in the regulation of gene expression
have been implicated in the emergence of MCD. Transcription
factors, notably PAX6, TBR2, EMX2, FOXG1, ARX, DMRTA2,
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and others (Mallamaci et al., 2000; Kitamura et al., 2002; Ligon
et al., 2003; Baala et al., 2007; Asami et al., 2011; Baek et al.,
2015; Urquhart et al., 2016), as well as epigenetic mechanisms,
including histone modifications, chromatin remodeling and
RNA-level regulation, have been shown to play an important role
in the onset of MCDs (Qiao et al., 2016; Silver, 2016; Albert and
Huttner, 2018; Doan et al., 2018; Gabriele et al., 2018; Franz et al.,
2019; Ciptasari and van Bokhoven, 2020; Vaid and Huttner, 2020;
Reichard and Zimmer-Bensch, 2021; Wilson et al., 2021).

In light of the fact that the BPs, and in particular bRG, are
the key cell type implicated in the development and evolution
of the human brain (Lui et al., 2011; Borrell and Reillo, 2012;
Florio and Huttner, 2014; Dehay et al., 2015; Llinares-Benadero
and Borrell, 2019; Kalebic and Huttner, 2020), it is becoming
increasingly important to examine the emergence of MCDs
particularly in the context of those cells. As discussed above,
the recent efforts suggest that both in the context of mitosis
and especially of cell polarity, BPs might have specific roles with
a substantial influence on the emergence of MCDs. To better
understand those mechanisms, it is vital to use model systems
that faithfully recapitulate both the phenotypes of diseases and
the cell biological underpinnings. Mouse, and to a much lesser
extent rat, have been very helpful in understanding the basic
molecular roles of genes involved in MCDs. They, however, do
not faithfully recapitulate certain phenotypic characteristics of
MCDs that are pertinent to an expanded cortex, such as cortical
folding, nor some of the developmental features that might
have a key role in the disease, such as presence of the outer
subventricular zone with a high abundance of proliferative bRG.
To overcome those limitations two main directions have been
undertaken: (i) use of human in vitro models, such as cerebral
organoids and (ii) use of animals with the expanded cortex, such
as macaques and ferrets.

Cerebral organoids, together with the recently developed
assembloids, are three-dimensional in vitro structures that show
great potential for investigating complex human genetic states
and modeling aspects of human neurodevelopmental pathologies
(Quadrato and Arlotta, 2017; Chiaradia and Lancaster, 2020;
Sidhaye and Knoblich, 2021). Organoid models of human
MCDs can be generated either by introducing the disease-
causing mutations into otherwise wild type IPSCs or by
directly using patient-derived IPSCs (Adegbola et al., 2017;
Iefremova et al., 2017; Li et al., 2017; Fiddes et al., 2018;
Klaus et al., 2019; Lopez-Tobon et al., 2019; Dhaliwal et al.,
2021; Kyrousi et al., 2021; Wegscheid et al., 2021), with the
latter being instrumental in personalized medicine. Among the
animal models, macaques are particularly interesting as they
recapitulate many of the cell biological features of human
BPs (Betizeau et al., 2013). First transgenic macaques, with
mutated MCPH1 and modeling human microcephaly, have
been recently generated (Ke et al., 2016; Shi et al., 2019).
Ferrets are ethically and logistically a more suitable model for
various human diseases including some MCDs (Gilardi and
Kalebic, 2021). Ferrets well recapitulate the key features of the
expanded cortex such as folding and the presence of the outer
subventricular zone and proliferative bRG (Borrell and Reillo,
2012; Kawasaki, 2014; Gilardi and Kalebic, 2021). Ferret models

of MCDs can be generated through a pharmacological or genetic
manipulation, with the latter being possible through in utero
electroporation and transgenesis. Pharmacological inhibition
of mitosis is used to generate a ferret model of cortical
dysplasia (Noctor et al., 1999, 2001). In utero electroporation
of ferrets (Kawasaki et al., 2012, 2013; Kalebic et al., 2020),
which has been used to deliver human-specific genes and
thereby further enforce ferret’s potential to model human
brain characteristics (Kalebic et al., 2018), has been used to
model lissencephaly (Shinmyo et al., 2017) and thanatophoric
dysplasia (Masuda et al., 2015; Matsumoto et al., 2017a,b, 2018).
Transgenic ferrets with a germline knockout of Aspm were
generated as a model for microcephaly (Johnson et al., 2018).
In addition to recapitulating the human microcephaly better
than the mouse modes, Aspm KO ferrets show a displacement
of aRG to the oSVZ where they resemble bRG, suggesting
an evolutionary mechanism by which ASPM regulates cortical
expansion by controlling the ratio between aRG and bRG
(Johnson et al., 2018).

Because bRG are emerging as important in both the aetiology
of MCDs and the evolution of the mammalian brain, it is
tempting to discuss the co-evolution of MCD genes and the
mammalian brain evolution. This is particularly relevant for
the genes associated with microcephaly that display a strong
signature of adaptive evolution in primates, cetaceans, and other
mammalian orders with expanded brains (Montgomery and
Mundy, 2014; Doan et al., 2018). For example, MCPH1 has been
positively selected in the primate lineage (Pulvers et al., 2015),
whereas in anthropoid primates (monkeys and apes), the rates of
evolution of ASPM and CDK5RAP2 are associated with variation
in brain size (Montgomery and Mundy, 2014). However, a recent
study could not detect any human-specific adaptive evolution of
microcephaly genes (Pervaiz et al., 2021).

In conclusion, the multi-level complexity of MCDs is a key
factor preventing a better link between the genes and phenotypes,
which in turn is fundamental to provide the patients with better
diagnostic and therapeutic perspectives. Addressing some of this
complexity at the cell biological level of neural progenitor cells
is highly needed. The current efforts in utilizing more suitable
model systems, that faithfully recapitulate key cell biological
features of the disease onset, are an important step forward in
creating improved diagnostic and therapeutic options and the
personalized approaches.
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