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Abstract

Measles is a highly transmissible disease and is one of the leading causes of death among

young children under 5 globally. While the use of ongoing surveillance data and—recently—

dynamic models offer insight on measles dynamics, both suffer notable shortcomings when

applied to measles outbreak prediction. In this paper, we apply the Sequential Monte Carlo

approach of particle filtering, incorporating reported measles incidence for Saskatchewan

during the pre-vaccination era, using an adaptation of a previously contributed measles

compartmental model. To secure further insight, we also perform particle filtering on an age

structured adaptation of the model in which the population is divided into two interacting age

groups—children and adults. The results indicate that, when used with a suitable dynamic

model, particle filtering can offer high predictive capacity for measles dynamics and out-

break occurrence in a low vaccination context. We have investigated five particle filtering

models in this project. Based on the most competitive model as evaluated by predictive

accuracy, we have performed prediction and outbreak classification analysis. The prediction

results demonstrate that this model could predict measles outbreak evolution and classify

whether there will be an outbreak or not in the next month (Area under the ROC Curve of

0.89). We conclude that anticipating the outbreak dynamics of measles in low vaccination

regions by applying particle filtering with simple measles transmission models, and incorpo-

rating time series of reported case counts, is a valuable technique to assist public health

authorities in estimating risk and magnitude of measles outbreaks. It is to be emphasized

that particle filtering supports estimation of (via sampling from) the entire state of the

dynamic model—both latent and observable—for each point in time. Such approach offers

a particularly strong value proposition for other pathogens with little-known dynamics, critical

latent drivers, and in the context of the growing number of high-velocity electronic data

sources. Strong additional benefits are also likely to be realized from extending the applica-

tion of this technique to highly vaccinated populations.
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Introduction

Measles is a highly contagious viral disease. It remains one of the leading causes of death

among young children globally, and has imposed a significant morbidity and mortality burden

where vaccination coverage is low [1]. About 30% of all cases of measles have one or more

complications including diarrhea, otitis media, pneumonia or encephalitis. Measles mortality

was estimated to be 0.2% in the United States between 1985 and 1992 [2]. Prior to widespread

vaccination, measles caused an estimated 2.6 million deaths each year [1]. In 2016, approxi-

mately 89,780 people died from measles—mostly children under the age of 5 [1]. The Americas

has become the first region in the world to have eliminated measles [3], however importation

of cases from other regions leads to outbreaks in unimmunized and under-immunized popula-

tions. Understanding measles epidemic patterns can aid in forecasting and help public health

agencies to design intervention strategies to prevent and control it, such as setting outbreak

response measures, setting vaccination targets, and allocating financial and human resources,

etc.

In recent years, simulation models [4, 5] have increasingly been used to predict the spread

of measles within the population, and the potential impact of interventions on that spread.

Dynamic modeling has also played a significant role in providing insight to the measles out-

break dynamics [4–14]. Most such contributions employing models seek to incorporate some

aspects of local epidemiology, and often draw on surveillance data. While powerful tool for

investigating counterfactuals, such models also suffer from an essential set of shortcomings.

Firstly, while dynamic models are commonly calibrated to empirical data, this process is typi-

cally undertaken on a one-time basis, and with significant human involvement. It is rare for a

dynamic model to incorporate ongoing arriving ground data; and while systems doing so can

be found for other infectious diseases [15], the authors are not aware of any such support for

dynamic modeling of measles. More profoundly, a dynamic model of necessity represents a

simplified characterization of processes in the real world. Inevitably, such models often omit,

simplify and misestimate some factors. These drawbacks and the infeasibility of anticipating

the realized outcome of factors represented as stochastic in the model will inevitably lead the

model to diverge from ground truth data. While calibration can allow for estimation of model

parameters, it provides weak support for ongoing estimation of latent state needed to keep the

state of a model aligned with observations on an ongoing basis.

This paper seeks to support more accurate estimation and prediction of measles dynamics

by applying a computational statistics technique that combines the best features of insights

from ongoing (although noisy) empirical data and dynamic models (although fraught by sys-

tematic errors, omissions, and stochastic divergence over time) while mitigating important

weaknesses of each. The use of sequential Monte Carlo methods in the form of particle filtering

[16–26] has provided an effective and versatile approach to solving this problem in other infec-

tious diseases, such as the influenza. Specifically, this paper investigates the combination of

particle filtering with a compartmental model—adhering to the SEIR (Susceptible—

Exposure—Infectious—Recovered) structure—of measles to recurrently estimate the latent

state of the population with respect to the natural history of infection with measles, to antici-

pate measles evolution and outbreak transitions in pre-vaccination era.

Materials and methods

The introduction of the mathematical SEIR model

This project employs a measles SEIR model [14] as the disease transmission component of the

state-equation model in particle filtering. A time unit of months is used, so as to be consistent
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with the empirical data [27]. Moreover, while the original model lacks age stratification, we

also explore an age structured variant of the model. The two model variants used in this paper

are introduced as follows.

Re-dimensionalized aggregate model. This model, which can be found in [14], contains

4 state variables: (S-Susceptible, E-Exposure, I-Infectious, R-Recovered). The original model

[14] makes use of a formulation in which each state variable is of unit dimension, representing

a fraction of the entire population. However, for the sake of comparison against empirical

data, the model in this paper is represented in a re-dimensionalized fashion, with the state vari-

ables representing counts of persons. In the first step, we re-dimensionalized the original

model. The resulting aggregate compartmental equations are as follows:

dS
dt
¼ Nv � b

I
N
þ m

� �

S

dE
dt
¼ b

I
N

S � sþ mð ÞE

dI
dt
¼ sE � ðgþ mÞI

dR
dt
¼ gI � mR

ð1Þ

The meaning of the states and parameters are as follows: S, E, I and R are the count of Sus-

ceptible, Exposed, Infectious and Recovered people in the population, respectively. N is the

total number of people, and N = S + E + I + R. v is the birth rate (of unit 1/Month) and μ is the

death rate (also of unit 1/Month). σ−1 and γ−1 are the mean incubation and infectious periods

(in months) of the disease, respectively. β is the rate of effective contact between individuals,

and reflects both the contact rate and transmission probability (β = contact

rate × transmission probability), and is thus of unit 1/Month. The population size N is

obtained from the province Saskatchewan of Canada during the years from 1921 to 1956. We

take the mean of the population across these years to be the value of parameter N. This is asso-

ciated with the empirical dataset [27, 29]. As noted below, while β was treated in [14] as a con-

stant, we take advantage of particle filtering by allowing it to vary over the course of the

timeframe explored. The other values of parameters are obtained from [14].

Re-dimensionalized age structured model. Measles has a severe impact on children’s

health and is one of the leading causes of death among young children globally. Measles trans-

mission pattern may be different among different age groups [8]. For example, the age compo-

sition of daily contacts may be different for different age groups; children may spend more

time with other children and their caregivers, rather than with other adults. Moreover, the

rates of contacts sufficiently close to transmitting infection can differ between age groups, such

as due to hygienic disparities. To capture such differences, beyond the original model, we cre-

ate a version of the SEIR model stratified by two age groups: children and adults.

In this variant of the mathematical model, we use subscripts “c” and “a” for a quantity to

denote the child- and adult-specific values of that quantity, respectively. We further assume in

the demographic model (whose formulation and derivation are introduced in [28]), that the

population of each age group (Nc, Na) does not change. Similar to the parameter of total popu-

lation (N) in the aggregate model, the mean of the population of each age group across the

timeframe in the age pyramid of Saskatchewan [29] is employed as the value of Nc and Na

(where the sum of Nc and Na equals N). The resulting age-structured SEIR model is as follows;
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readers interested in additional detail are referred to S1 Appendix:

dSc

dt
dSa

dt

2

6
6
4

3

7
7
5 ¼

Nava

0

� �

þ
� oSc

oSc

� �

�
bcSc

baSa

� �

�
fcc
fac

fca
faa

� �

�

Ic
Nc
Ia
Na

2

6
6
4

3

7
7
5

0

B
B
@

1

C
C
A �

mcSc

maSa

� �

dEc

dt
dEa

dt

2

6
6
4

3

7
7
5 ¼

� oEc

oEc

� �

þ
bcSc

baSa

� �

�
fcc
fac

fca
faa

� �

�

Ic
Nc
Ia
Na

2

6
6
4

3

7
7
5

0

B
B
@

1

C
C
A � s

Ec

Ea

� �

�
mcEc

maEa

� �

dIc
dt
dIa
dt

2

6
6
4

3

7
7
5 ¼

� oIc
oIc

� �

þ s
Ec

Ea

� �

� g
Ic
Ia

� �

�
mcIc
maIa

� �

dRc

dt
dRa

dt

2

6
6
4

3

7
7
5 ¼

� oRc

oRc

� �

þ g
Ic
Ia

� �

�
mcRc

maRa

� �

ð2Þ

where � indicates the Hadamard (element-wise) product; × indicates matrix multiplication;

bcfcc
bafac

bcfca
bafaa

h i
is the contact matrix: fcc indicates the fraction of children’s infectious contacts that

occur with other children; similarly fca indicates the fraction of children’s infectious contacts

that occur with adults, and fca = 1−fcc; fac indicates the fraction of adult’s infectious contacts

that occur with children; faa = 1 − fac indicates the fraction of adult’s infectious contacts that

occur with other adults; ω is the aging rate out of the age group of children (which carries the

same meaning with c1 in the demographic model in [28]). va is the birth rate for adults, for

children, the birth rate is 0. The other parameters hold the same role and values as in the age-

aggregated model.

The contact matrix model. In the contact matrix bcfcc
bafac

bcfca
bafaa

h i
, as covered more fully in sec-

tion “Particle filter implementation in the base model” below, the parameters βc, βa and fcc are

treated as varying across the model time horizon (like the parameter of β in Eq (1)). Based

upon their values, the other parameters in contact matrix (fca, fac, faa) can be calculated as in Eq

(3); a detailed mathematical deduction of Eq (3) can be found in S2 Appendix:

fca ¼ 1 � fcc

fac ¼

(
Ncbc

Naba
1 � fccð Þ; if

Ncbc

Naba
1 � fccð Þ

� �

< 1:0

1:0; if
Ncbc

Naba
1 � fccð Þ

� �

� 1:0

faa ¼ 1 � fac

ð3Þ

The equilibrium demographic model. The population model is listed as follows [28]:

dNc

dt
¼ Nava � mcNc � oNc

dNa

dt
¼ oNc � maNa

ð4Þ
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Where Nc is the population of the child age group; Na is the population of the adult age

group; va is the birth rate (applying only to adults); μc is the death rate of child age group; μa is

the death rate of the adult age group.

While measles infection can be lethal, for simplicity, the death rates of all states in the mod-

els of this paper are the same; the interested reader is referred to S3 Appendix for additional

commentary.

As a result of the assumption of an invariant population size, it follows that death rates for

children and adults are as follows; the interested readers are referred to S4 Appendix for a

detailed mathematical derivation.

mc ¼
Na

Nc
va � o

ma ¼
Nc

Na
o

ð5Þ

Introduction to particle filter

Particle filtering is a modern methodology that fits into the broader “statistical filtering” tradi-

tion that, as time passes, combines estimates generated by a dynamic model (a model that sim-

ulates the evolution of a system over time) with arriving empirical observations. As new data

arrives, statistical filtering methods provide a means of arriving at a sort of “consensus esti-

mate” for the current state of the system (as represented by the simulation model)—an esti-

mate that recognizes and balances uncertainty associated with the model (on the one hand)

with uncertainty with regards to the observations (on the other). Particle filtering is a very well

established contemporary statistical filtering method [30] that is widely employed in fields

such as robotics but comparatively new in the sphere of health modeling [16, 17, 23, 25].

Each of the states in the distribution for a given time can be seen as representing a compet-

ing hypothesis concerning the underlying state of the system at that time, and the Particle Fil-

tering itself can be viewed as undertaking a “survival of the fittest” of these hypotheses, with

fitness determined by the consistency between the expectations of the hypothesis as to what

should be observed at observations times, and what is in fact observed at each of those times.

Drawing on the theory of Sequential Importance Sampling [16, 30, 31], this distribution is

characterized as a collection of importance-weighted samples, each of which is termed a “parti-

cle”. At an intuitive level, a particle’s weight at the current time represents an approximation

to the probability of the state represented by that particle in fact obtaining at that time. This

weight is, in turn, determined by the consistency of the state being hypothesized by that parti-

cle with the observations, as quantified by a likelihood function specifying the likelihood of

making a given observation in light of the state captured by the particle.

Interested readers are referred to more detailed treatment in [16, 30–32].

Classifying outbreak occurrence

In this paper, we also investigate the effectiveness of using the particle filtering model in pre-

dicting the outbreak of measles in the next time unit (Month). The goal of this classification is

to map from the reported cases of measles predicted by particle filtering model in the next

month to the class of outbreak or non-outbreak. This mapping can be represented by the fol-

lowing equation [30]:

zk ¼ f ðIðiÞrpkÞ ð6Þ
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where ffIðiÞrpkg
Ns

i¼1
g

Tf

k¼1
indicates the matrix of the reported cases of measles predicted by the par-

ticle filtering model of particle i (1� i� Ns) at time k (1� k� Tf). Tf is the total running time

of the model. fzkg
Tf
k¼1 is the vector of the predicted classes—zk 2 {0, 1}, where 0 indicates non-

outbreak, and 1 indicates outbreak. The value Irpk is generated by the particle filtering models.

Specifically, the Irpk equals Irmk in the aggregated particle filtering model (see Eq (11)), and

equals Irmck + Irmak in the two age groups structured model (see Eq (15)).

Two processes are then used to perform the classification analysis of the results from parti-

cle filtering models. In the first process, we define a threshold (θik) of a particle i at time k
above which to consider that particle as positing an outbreak. In the second process, we define

a threshold of fraction (θk) of particles required to posit an outbreak at time k for us to consider

there as being an outbreak. Then, the vector of determining whether there is an outbreak of

measles in each month—zk—is calculated.

We further denote fylkg
Tf
k¼1 as the empirical vector of whether a measles outbreak indeed

obtained at time k, ylk 2 {0, 1}. The calculation method of ylk is similar to that of each particle.

If the measles reported cases is greater or equal than the threshold θik, the related element in

vector ylk is labeled to be outbreak (the value is 1). Otherwise, non-outbreak (the value is 0).

Finally, to summarize the performance of the classifier, we employ metrics such as the con-

fusion matrix, area under the Receiver Operating Characteristic (ROC) curve, etc. Readers

interested in additional detail are referred to S5 Appendix.

The algorithm of particle filter with next month prediction output

In light of the brief introduction to particle filtering above, the generic particle filter algorithm

that we employed in this paper is given as follows [16, 31, 32]:

1. At time k = 0:

1. Sample XNðiÞ
0 from q0ðxN

0
Þ;

2. Compute a weight for each particle wðiÞ0 ¼
1

Ns
. It indicates that the weight at initial time

follows the uniform distribution.

2. At time k� 1, perform a recursive update as follows:

1. Advance the sampled state by sampling XNðiÞ
k � qkðxN

k jyk;X
NðiÞ
0:k� 1Þ and set

XNðiÞ
0:k ¼ ðX

NðiÞ
0:k� 1;X

NðiÞ
k Þ;

2. To support classification, output IðiÞrpk by importance sampling, where IðiÞrpk is the sum of all

the age groups in the age structured model;

3. Update the weights to reflect the probabilistic and state update models as follows:

wðiÞk ¼WðiÞ
k� 1

pðyM
k jX

NðiÞ
k ÞpðX

NðiÞ
k jX

NðiÞ
k� 1 Þ

qðXNðiÞ
k jX

NðiÞ
k� 1 ; yM

k Þ
:

Normalize the weights WðiÞ
k ¼

wðiÞkPNs
i¼1

wðiÞk

4. Calculate the effective sample size Seff : 1PNs
i¼1
ðwðiÞk Þ

2
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5. If Seff< ST (ST is the minimum effective sample size—the threshold of resampling), per-

form resampling to get a new set of XNðiÞ
k . And set the weight of the new particles as 1

Ns
.

Particle filter implementation in the base model

The state-space model. The SEIR model is employed as the governing equations underly-

ing the state space model (denoted as gk) of particle filtering, which is introduced in Eqs (1)–

(5). Then each particle at time k, noted as XNðiÞ
k , represents a complete copy of the system states

at that point of time. Except for the basic states in the SEIR model (S, E, I, R), models of infec-

tion transmission are often related to more complex dynamics—such as parameters evolving

according to stochastic processes.

Aggregate model. In the aggregate model (i.e., the model not stratified by age), three

essential stochastic processes are considered. Firstly, we consider changes in the transmissible

contact rate linking infectious and susceptible persons, which is represented by the parameter

β. A second area in which we consider parameter evolution is with respect to the disease

reporting process. Specifically, to simulate this process, a parameter Cr—representing the

probability that a given measles infectious case is reported, and a state Im—calculating the

accumulative measles infectious cases per unit time (per Month in this paper)—are imple-

mented. Finally, the model includes a stochastic process (specifically, a Poisson process) asso-

ciated with incidence of infection. This process reflects the small number of cases that occur

over each small unit of time (Δt). The stochastics associated with these factors represents a

composite of two factors. Firstly, there is expected to both be stochastic variability in the mea-

sles infection processes and some evolution in the underlying transmission dynamics in terms

of changes in reporting rate, and changes in mixing. Secondly, such stochastic variability

allows characterization of uncertainty associated with respect to model dynamics—reflecting

the fact that both the observations and the model dynamics share a high degree of fallability.

Given an otherwise deterministic simulation model such as that considered here, there is a

particular need to incorporate added stochastic variability in parameters and flows capture the

uncertainty in simulation results.

To estimate the changing values of these two stochastic parameters (β and Cr) and to inves-

tigate the capacity of the particle filter to adapt to parameters whose effective values evolve

over simulation, the state associated with each particle includes the contact transmission rate β
and reported rate Cr. Thus, each particle in this project is associated with a state vector x = [S,

E, I, R, β, Cr, Im]T.

Reflecting the fact that the transmissible contact rate β varies over the entire range of posi-

tive real numbers, we treat the natural logarithm of the transmissible contact rate (denoted by

β) as undergoing a random walk according to a Wiener Process (Brownian Motion) [33, 34].

The stochastic differential equation of transmissible contact rate can thus be described accord-

ing to Stratonovich notation as:

dlnðbÞ ¼ sbdWt ð7Þ

where dWt is a standard Wiener process following the normal distribution with 0 of mean and

unit rate of variance. Then, dln(β) follows the normal distribution with 0 of mean and variance

sβ2. In this paper, we selected an initial value of β following a uniform distribution in the inter-

val [40, 160) across all particles. Unless otherwise noted, the constant value of the diffusion

coefficient sβ used is 0.8.

Over the multi-decadal model time horizon, and particularly on account of shifting risk

perception, there can be notable evolution in the degree to which infected individuals or their

Particle filtering in compartmental models of measles
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guardians seek care. To capture this evolution, we consider evolution in the fraction of under-

lying measles cases that are reported (denoted by Cr). Reflective of the fact that Cr varies over

the range [0,1], we characterize the logit of Cr as also undergoing Brownian Motion according

to Stratonovich notation as:

dðlogitðCrÞÞ ¼ d ln
Cr

1 � Cr

� �� �

¼ srdWt ð8Þ

where the initial value of Cr among particles follows a uniform distribution in the interval

[0.11, 0.15). The diffusion coefficient (sr) associated with the perturbations to the logit of Cr is

selected to be a constant 0.03 across all particles in this paper.

To incorporate the empirical data, we further implement a convenience state Im with

respect to the cumulative count of infectious cases per unit time (Month). The state Im is differ-

ent from the state I. Specifically, the state of an cumulative count of infectious cases per unit

time Im only considers all the inflows to the infectious state and without all the outflows, to

simulate the same process of reporting the measles cases in the real world. The cumulative

infectious cases Im of measles at time k is:

Imk ¼

Z k

k� 1

ðsEÞdt ð9Þ

Then, the reported cases at time k calculated by the model would be:

Irmk ¼ ImkCr ð10Þ

In total, the compartmental model without age stratification is the combination of the clas-

sic SEIR model and these three stochastic processes:

dS
dt
¼ Nv � A1 � mS

dE
dt
¼ A1 � ðsþ mÞE

dI
dt
¼ sE � gþ mð ÞI

dR
dt
¼ gI � mR

dðlnbÞ ¼ sbdWt

d ln
Cr

1 � Cr

� �

¼ srdWt

�

Imk ¼

Z k

k� 1

ðsEÞdt

Irmk ¼ ImkCr

A1 ¼

Poisson b
I
N

SDt
� �

Dt

ð11Þ

Fig 1 displays the mathematical structure of the particle filtering aggregate model. To

solve the system above, we made use of Euler integration with a time step of 0.01 Month (i.e.,

Particle filtering in compartmental models of measles
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Δt = 0.01 Month in Eq (11)). The same approach was also used in the stratified system pre-

sented in Eq (15) below.

Age stratified model. In the age stratified model, four stochastic parameters and two

extra states are considered dynamically, compared with the original SEIR model (Eqs (2)–(5)).

The stochastic process—a Poisson process—related to incidence of infection is also considered

in the age structured state space model, as in the aggregated model above (Eq (11)). The first

stochastic parameter is the same as in the aggregate group model: the disease reporting process

parameter (Cr), whose dynamics is characterized according to Eq (8). The second is the rate of

transmissible contacts between infectious persons and susceptible persons of child age group,

which is represented by the parameter (βc) in the age structured model—Eq (2). The equation

and chosen values of (βc) are the same with Eq (7). The third stochastic parameter (Ma) repre-

sents the ratio of the adult age group’s transmissible contact rate (βa) to that of the child age

group (βc). And we have βa = Maβc. Reflecting the fact that this parameter represents a non-

negative real number, similar to the rate of transmissible contacts (β) in the aggregate state

space model, we treat the natural logarithm of Ma as undergoing a random walk according to a

Brownian motion:

dðlnMaÞ ¼ sMa
dWt ð12Þ

It is a widespread perception that because of limited hygienic awareness and other factors,

children are subject to a higher rate of transmissible contacts than adults. This would suggest

that the value of the multiplier Ma normally less than 1.0. Thus, we elected to impose an initial

value of Ma across all particles as drawn from a uniform distribution with support [0.2, 1).

And, the diffusion coefficient (sMa
) associated with the evolution of d(lnMa) is chosen to be a

constant value of 0.5 among all particles.

The fourth stochastic parameter in the stratified model is the fraction of the contact of chil-

dren that occurs with other children, denoted as fcc. This parameter appears in the contact

matrix, and varies over the range from 0 to 1. As a result, the dynamic process for fcc is similar

to the disease report rating Cr with the Eq (8), specifically:

d ln
fcc

1 � fcc

� �� �

¼ sccdWt ð13Þ

The initial value of fcc we employed follows a uniform distribution in the interval [0.2, 1.0).

We assumed a constant value of 0.2 as the diffusion coefficient (scc) associated with the logit

of fcc.
Finally, the new state of cumulative infectious count per unit time is implemented similar

to aggregate model (Eq (9)), except for its division into two distinct states according to stratifi-

cation into two age groups (Imc and Ima). The discrete time equations of Imc and Ima and

reported infectious count per unit time in model Irmc and Irma at time k are as follows:

Imck ¼
R k
k� 1
ðsEcÞdt

Imak ¼
R k
k� 1
ðsEaÞdt

Irmck

Irmak

� �

¼ Cr
Imck

Imak

� �
ð14Þ

The state vector xN is [Sc, Sa, Ec, Ea, Ic, Ia, Rc, Ra, βc, Ma, fcc, Cr, Imc, Ima]
T in the age stratified

model, and N equals 14. The complete set of state equation for the age-stratified model is given
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in (15):
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dt
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¼ sccdWt
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dWt
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d ln
Cr
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� �� �
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Fig 2 displays the mathematical structure of the particle filtering age stratified model.

Reflective of the structure of the age group stratification in available data, it is notable that we

have considered two different age group configurations in this paper: one where the child age

group includes those up to 5 years old (Mage_5) and another where it includes those up to 15

years old (Mage_15).

The measurement model. As introduced in particle filtering tutorials [31, 32], the mea-

surement model characterizes the relationship between the measured data and the model. In

this paper, we denote the measurement vector as yM
k , where M indicates the length of the mea-

surement vector.

Aggregate model. In the aggregate model, the measurement vector yM
k is one-dimensional

(representing empirical dataset of monthly reported measles infected cases), that is, M equals

1. We denote the value of empirically reported cases as Iem. Then, at time k, the measurement

model can be represented as:

Iemk ¼ Irmk þ nmk ð16Þ

where Irmk is calculated by the state space model of Eq (11), and nmk is the measurement noise

related to the monthly reported cases.

Fig 1. The mathematical structure of the particle filtering aggregate model.

https://doi.org/10.1371/journal.pone.0206529.g001

Fig 2. The mathematical structure of the particle filtering age stratified model.

https://doi.org/10.1371/journal.pone.0206529.g002
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Age stratified model. In the age stratified model, empirical observations can include

three components. Thus, in the measurement vector yM
k , M is 3 in age stratified model. In addi-

tion to the empirical data associated with monthly reported cases, empirical data further

include annual reported cases for each of the two age groups (children and adults). The mea-

surement model of age stratified model in this paper can thus be represented as:

Iemk ¼ ðIrmak þ IrmckÞ þ nmk

Ieycky ¼ Iycky þ nycky

Ieyaky ¼ Iyaky þ nyaky

ð17Þ

where Iemk is the same as in the aggregate model in Eq (16); Irmak and Irmck are calculated in the

state space model of the age stratified model in Eq (15); Ieycky consists of the annual measured

cases of child age group, while Ieyaky represents the annual measured cases of adult age group;

Iycky and Iyaky are the annual reported cases calculated by the state space model of Eq (15) of

child and adult age group, respectively; nycky
and nyaky

are the measurement noise associated

with these two age groups.

It is notable that the subscript ky indicates annual time points, while the unit of time in the

models in this paper is month. Thus Iycky and Iyaky could be obtained by the sum of Irmak and

Irmck in the model each year.

The proposal distribution

The Condensation Algorithm [30, 35] is applied in this project to implement the particle filter

model. It is the simplest and most widely used proposal algorithm, making use of the prior as

the proposal distribution [30, 31].

The likelihood function

In this project, the observed data is of two types—the monthly reported incidence case count

of measles and annual reported cases within different age groups. As previously introduced,

the measured data is the reported cases of measles in this paper. The likelihood function

pðyM
k jx

N
k Þ describes such a reporting process, and specifies the probability that a given measles

case in the dynamic model will be measured. We followed several past contributions [16, 17,

19, 36] in selecting the negative binomial distribution as the basis for the likelihood function,

which allows for greater robustness than the classic binomial distribution. Readers interested

in additional detail are referred to S6 Appendix.

The equation associated with the likelihood function is thus as follows:

pðykjxkÞ ¼
yk þ r � 1

yk

� �

pykð1 � pÞr ð18Þ

where yk is the empirical data (reported measles cases) at time k, p ¼ xk
xkþr representing the

probability that a given measured reported case is in fact a true reported incident case, and xk
is the (integer rounded) incident cases resulting from the dynamic model at time k. r is the dis-

persion parameter associated with the negative binomial distribution. In all scenarios reported

in this paper, the value of r is chosen to be 10.

Aggregate model. In the aggregate model, because the model lacks the capacity to distin-

guish between individuals within different age groups as necessary to compare to the yearly

age-stratified reported values, the measured data is a one-dimensional vector consisting of the
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monthly reported cases. It indicates that the weight update rule (likelihood function) of the

aggregate model could simply achieved by calculating the value of p(ymk|Irmk), where ymk is the

empirical data as given by the monthly reported measles cases at time k, and Irmk is the

reported cases calculated by the dynamic model.

Age stratified model. In the age stratified model, the weight update rule is similar to that

in the aggregate model, except for the update associated with the close of each year. Specifi-

cally, the weights of particles associated with the age stratified model from January to Novem-

ber are only updated by the monthly empirical data—monthly measles reported cases at each

time (using the likelihood function given in Eq (18)). However, the weight at the end of the

last month (December) of each year is updated by the combination of three parts. The likeli-

hood formulation of age stratified model is listed as follows:

LAgeStructuredModel ¼ Lmonth � LyearlyChild � LyearlyAdult

Lmonth ¼ pðymkjðIrmak þ IrmckÞÞ

LyearlyChild ¼

(
1; if ðk mod 12Þ 6¼ 0

pðyyckjIryckÞ; if ðk mod 12Þ ¼ 0

LyearlyAdult ¼

(
1; if ðk mod 12Þ 6¼ 0

pðyyakjIryakÞ; if ðk mod 12Þ ¼ 0

ð19Þ

where Lmonth is the likelihood function based on the monthly empirical data for the total popu-

lation. The other two likelihood functions reflect the fact that annual totals are available on an

age-specific basis at year end. LyearlyChild is the likelihood function based on the yearly empirical

data for the child age group. LyearlyAdult is the likelihood function based on the yearly empirical

data of the adult age group.

Evaluating particle filter performance

To assess the accuracy of particle filtering for robust estimation of model states, it is essential

to evaluate the estimation and predictive capacity of the particle filtered models. In this project,

we therefore sought to calculate the discrepancy at each observation time (Month in this

paper) [16] between the model generated data and empirical data, using a linear measure.

Reflecting the dual sources of data employed, the discrepancy includes monthly discrepancy

and yearly discrepancy, with the total discrepancy representing the sum of these quantities.

Typically, there will be thousands of particles included in each model run. To calculate the

discrepancy of particle filter results by incorporating empirical data across all time points, we

sample n particles by importance sampling for each such time. The monthly discrepancy of

each time is simply the Root Mean Squared error (RMSE) between the monthly empirical data

at that time and the related data calculated by the particle filtering model [16, 21]. To get the

yearly discrepancy of each time (here, successive Months), the RMSE was calculated for each

age group of each year (similary to monthly discrepancy). Then the yearly discrepancy is the

sum across all age groups of the yearly RMSE over 12 (to convert the unit to Month).

Moreover, to investigate the predictive capability and efficiency of particle filter model, we

defined a variable “Prediction Start Time”, denoted by T�; it indicates the time 1� k< T� up

to which the weights of particles are updated based on the observed data. When k� T�, the

particle filtering ceases—the weights of particles are no longer updated and no further re-sam-

pling occurs. During that period (i.e., following the Prediction Start Time), particles simply

continue to evolve according to the state space model shown in Eqs (11) or (15) (depending on
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whether an age-specific model is being applied). For such a Prediction Start Time T�, the

model calculated a prediction discrepancy using a simple variant of the strategy of the discrep-

ancy used in considering all the time frame, but limited to considering only times T� and

larger.

Empirical dataset

Measles reported cases. In this project, the empirical data consists of the time series from

1921 to 1956 of reported measles cases for the mid-western Canadian province of Saskatche-

wan. These aggregate data are obtained from Annual Report of the Saskatchewan Department

of Public Health [27]. We have employed two datasets: monthly reported measles cases aggre-

gated across the total population and yearly reported cases in each of different age groups. In

the empirical yearly dataset, these yearly reported cases are split into different age groups. In a

small minority of years (from 1926 to 1941), the age categories present in the reported data do

not correspond neatly to the age group categories in the models (considering children as being

those within their first 5 years or first 15 years). For these cases, we split them into the age cate-

gories of the models proportionally. Readers interested in additional detail are referred to

S7 Appendix.

We consider the pre-vaccination era of measles within Saskatchewan to study the natural

dynamics of measles in low vaccination areas. The time of the monthly empirical data is from

Jan. 1921 to Dec. 1956, with the monthly dataset offering a total of 432 records. The yearly age

specific data are from 1925 to 1956, reflecting the fact that reporting of age specific data is only

started in 1925. Every record contains three features—date, measles reported cases and popula-

tion size. To make them consistent with the total population size of the dynamic model

(863,545), the empirical data are normalized to the same population size of the model. The

normalized monthly empirical data are shown in Fig 3; it can be readily appreciated that the

time series demonstrates the classic patterns of waxing and waning incorporating both sto-

chastics and regularities characteristic of many childhood infectious diseases in the pre-vacci-

nation era.

Population introduction. In this project, the parameters of the population play a signifi-

cant role in the models (Eqs (1)–(5)). The parameters (N, Nc, Na) related to the population are

Fig 3. The monthly reported measles cases in Saskatchewan from 1921 to 1956. The values given are normalized by the

population employed in the model (863,545).

https://doi.org/10.1371/journal.pone.0206529.g003
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abstracted from the empirical population data of Saskatchewan from 1921 to 1956 [29]. From

1921 to 1956, the empirical population lies in the interval from 757,000 to 932,000. And the

empirical total population of Saskatchewan in these years does not exhibit drastic fluctuation

[29]. Thus, we let the model population remain constant at 863,545, which represents the

mean population over that interval. Also, the monthly total and yearly age groups’ empirical

measles reported cases are normalized to the model population. It is notable that we employ

an equilibrium population model—the total population and population among each age group

will stay the same, rather than change. Similarly, the values of the population in each age group

also employ the average population among 1921 to 1956 in their age group as given by the age

pyramid [29].

Parameters. The important fixed parameters in the models are γ−1, σ−1, v, μ, va, N, Nc15,

Na15, Nc5, Na5. The values of birth rate are also estimated from the Annual Report of the Sas-

katchewan Department of Public Health [27]. The values of parameters of γ−1 and σ−1 are as

given by [14]. Moreover, to compare the results, we have built two types of age structured

models—one where the lower age group consists of children below 5 years of age (with

population in child age group denoted as Nc5, and population of adult age group denoted as

Na5), and another in which children consist of individuals below 15 years of age (population

of age groups denoted as Nc15 and Na15, respectively). Thus, the birth rates are different

among these two types of models (denoted as va5 and va15 respectively), to let all the models

have a similar birth population per unit time. Finally, all the compartmental parameters are

specified at Table 1. The initial value of all stocks in the particle filtering models are given in

S1 Table.

Model characterization

To research on the performance of incorporating particle filtering into the compartmental

model, we have built 7 models, including 1 normal deterministic model, 1 calibration model

and 5 particle filtering models. In the particle filtering models, the number of particles are all

5000. These models respectively listed as follows:

1. Pureaggregate. It is simply the deterministic SEIR model with aggregate population, see the

Eq (1). The value of the initial infectious population is 90, the initial susceptible population

is 89910, the initial exposure population is 0, and the initial recovered population is 773545.

The values of β and reporting rate Cr are 50 and 0.11, respectively.

Table 1. Table showing the value of parameters.

Parameter Value Units

γ−1 5 Day

v 0.03 1/Year

μ 0.03 1/Year

N 863,545 Person

σ−1 8 Day

va15 0.045 1/Year

va5 0.034 1/Year

Nc5 98,743 Person

Na5 764,802 Person

Nc15 286,537 Person

Na15 577,008 Person

https://doi.org/10.1371/journal.pone.0206529.t001
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2. Calibratedaggregate. It is the calibration model of the SEIR model with aggregate population.

The relatively uncertain and stochastic parameters, including initial infectious population,

initial susceptible population, the parameter β and reporting rate Cr are obtained by calibra-

tion. Finally, they are relatively 930, 89070, 49.598 and 0.119. The initial exposure popula-

tion is 0, and the initial recovered population is 773545.

3. PFaggregate. The particle filtering model with homogeneous mixing of all population.

4. PFage_5_monthly. The age structure model where the child age group includes those less than

5 years old, and only incorporated with the monthly reported empirical data.

5. PFage_5_both. The age structure model where the child age group includes those less than 5

years old, and incorporated with both the monthly reported and yearly reported age group

empirical data.

6. PFage_15_monthly. The age structure model where the child age group includes those less than

15 years old, and only incorporated with the monthly reported empirical data.

7. PFage_15_both. The age structure model where the child age group includes those less than 15

years old, and incorporated with both the monthly reported and yearly reported age group

empirical data.

By comparing the discrepancy of these models, we sought to identify the model offering the

greatest predictive validity. We then used the most favorable model to perform prediction

analysis. To assess model results, each of the five particle filtering models is run 5 times with

random seeds generated from the same set. We then calculate the average and 95% confidence

intervals of the mean discrepancy.

Results

Discrepancy comparison

Table 2 and Fig 4 show the comparison of the discrepancy among the seven models by incor-

porating empirical data across all observation points. It is notable that the yearly discrepancy is

not available for the aggregated population models. The results demonstrate that the particle

filtering models strongly decrease the model discrepancy. This indicates that incorporating

particle filtering in the compartmental model of measles could help to improve the simulation

accuracy. Secondly, the results suggest that the age structure particle filtering models perform

better (as measured by discrepancy) than the aggregated population model, because the

monthly discrepancy of all the four stratified age group models are smaller than the aggregated

Table 2. Comparison of the average discrepancy of all seven models by incorporating empirical data across all observation points.

Model Monthly Yearly in Month Total

Pureaggregate 249.0 NONE NONE

Calibratedaggregate 207.5 NONE NONE

PFaggregate 104.6 (99.4, 109.9) NONE NONE

PFage_5_monthly 96.1 (91.5, 100.7) 179.5 (160.6, 198.3) 275.5 (260.2, 290.9)

PFage_5_both 97.8 (94.1, 101.5) 144.8 (112.5, 177.1) 242.6 (210.2, 275.1)

PFage_15_monthly 95.7 (89.8, 101.6) 45.9 (39.9, 51.9) 141.6 (133.8, 149.4)

PFage_15_both 96.1 (91.6, 100.5) 39.9 (34.3, 45.6) 136.0 (127.6, 144.5)

Each of the five particle filtering models is run 5 times (the random seed generated from the same set). Shown here are the average and 95% confidence intervals (in

parentheses) of the mean discrepancy for each model variant.

https://doi.org/10.1371/journal.pone.0206529.t002
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population model. Thirdly, an appropriate splitting of the age groups is also important in

improving the simulation results of the models. Table 2 and Fig 4 indicate that the discrepancy

of stratified age group models splitting the age group at age 15 years are all smaller than the

models splitting the age group at age 5 years. Finally, results suggest that incorporating both

the monthly empirical reported cases and yearly empirical data of each age group may be also

helpful in improving the simulation accuracy of the models, but further realizations are

required to confirm these results. The results suggest that the model PFage_15_both offers the

minimum discrepancy. It is notable that while aggregate population models cannot be com-

pared directly against the other models in terms of total discrepancy, it suffers from the least

favorable score in terms of the metric by which comparisons can be made (the monthly

discrepancy).

Results analysis of the minimal discrepancy model

To depict the particle filter results, 2D histograms of reported measles cases calculated by the

models and empirical data are plotted. To let the 2D histogram plot characterize the model’s

output data with proper weighting in accordance with the principles of importance sampling,

we plot the results of the particles sampled by weights. The resulting plot thus represents an

approximation to the probability distribution of reported measles cases characterized by the

model. It is notable that the number of particles performed, the number of particles sampled

in 2D histograms and the number of particles sampled (also by weight) in calculating the dis-

crepancy in all the models in this paper are all 5000, except where otherwise noted.

Figs 5 and 6 display the prior and posterior results of the particle filtering model PFage_15_both

for the entire timeframe, respectively. The results include the 2D histogram of monthly reported

measles count and the 2D histogram of yearly reported count of each age group. It is notable

that because the weights of particles are updated at each month, the 2D histogram plot giving

the prior in Fig 5 is not suitable for the yearly result. Values of empirical data points are shown

in red. From them we can see that most of the empirical data are located at the range where the

particles exhibit high posterior probability. This reflects the fact that the particles could suitably

track the oscillation of the epidemic pattern of measles, given the combination of model predic-

tion and observation-based updating that forms the basis for the particle filter.

Fig 4. Box plots of monthly and yearly discrepancy of all models by incorporating empirical data across all observation points.

Each of the five particle filtering models is run 5 times (the random seed generated from the same set). Then the average monthly

and yearly discrepancy among these five runs at each time between the particle filtering models and the empirical data are plotted.

https://doi.org/10.1371/journal.pone.0206529.g004
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Fig 5. 2D histogram prior result of total timeframe of the minimum discrepancy model (monthly).

https://doi.org/10.1371/journal.pone.0206529.g005

Fig 6. 2D histogram posterior result of total timeframe of the minimum discrepancy model. (a) the monthly particle filtering

result across all population. (b) the yearly particle filtering result of the child and adult age groups.

https://doi.org/10.1371/journal.pone.0206529.g006
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Fig 7. 2D histogram results for the S, E, I, R stocks with different age groups of the minimum discrepancy model

with splitting the age groups at 15 years by incorporating the empirical data across all timeframe. The results

shown consider both the yearly and monthly empirical data, with monthly discrepancy 90.7, the sum of all age groups

discrepancy in Month is 36.9. (a) across all population. (b) the child age group (those within their first 15 years of life).

(c) the adult age group (years 15 and up).

https://doi.org/10.1371/journal.pone.0206529.g007
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It bears emphasis that the results of the particle filtering model sampled in Fig 5 are before

the weight update process in each step, while the results in Fig 6 are after the weight update

process in each step. The values of sampled particles of Fig 5 spread in a wider range, com-

pared with Fig 6. This difference in dispersion indicates that the weight update process of par-

ticle filtering algorithm in this paper has the capability to combine the empirical data to the

particle filtering model to constrain the particles in a tighter range as suggested by the empiri-

cal data.

Particle filtering models can contribute to the estimation of model states and aid in estimat-

ing dynamic model parameters. It is notable that, as is widely the case in dynamic models, the

states in the compartmental models are latent (e.g., Susceptible (S), Exposure (E), Infectious (I)

and Recovered (R) stocks in the SEIR model Eqs (1)–(5) of measles). What can be empirically

observed is the noisy reported measles cases related to the Infectious (I) state. However, the

methodology of particle filter provides an approach to estimate (via sampling from) the distri-

bution of values of these latent states. This ability to estimate the values of latent states—such

as the reservoir of susceptible people—can aid researchers and public health agencies to in

terms of understanding the underlying epidemiological situation from multiple lines of evi-

dence, as constrained by understanding of the structure of the system, as characterized by a

dynamic model. To illustrate this, we employ a similar method to the above to plot the 2D his-

togram of the stocks of susceptible, infectious, exposure and recovered sampled according to

importance sampling principles. Fig 7 shows the results of the plots. These plots indicate that

most of the susceptible, exposure and infectious people are located in the child (less than 15

years) age group, while most of the recovered population are located in the adult (equal and

greater than 15 years) age group. This lies in accordance with the expectations for measles

transmission in the real world and builds confidence in the capacity of the model to meaning-

fully estimate latent state. As noted below, estimation of latent state can be an important

enabler for understanding of the effects of interventions.

Prediction results of the minimal discrepancy model

In this section, we assess the predictive capacity of the minimal discrepancy model identified

in the previous section. This minimal discrepancy model is still the minimum one among the

group of models PFage_15_both. By changing different Prediction Start Time of T�, we have per-

formed the prediction from different archetypal situations. These situations are listed as

follows:

1. Prediction started from the first or second time point of an outbreak.

2. Prediction started before the next outbreak.

3. Prediction started from the peak of an outbreak.

4. Prediction started from the end of an outbreak.

Figs 8, 9, 10 and 11 display the prediction results of these situations with the monthly 2D

histogram of reported cases of the total population. The empirical data having been considered

in the particle filtering process are shown in red (incorporated in training the model), while

the empirical data having not been considered in the particle filtering process (only displayed

to compared with the results of the model) are shown in black. These prediction results suggest

that the particle filter model offers the capacity to probabilistically anticipate measles dynamics

with a fair degree of accuracy. From the 2D histogram plots, empirical data lying after Predic-

tion Start Time over coming several months– and thus not considered by the particle filtering

machinery—mostly lie within the high-density range of the particles. Notably, in such
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examples, the particle filter model appears to be able to accurately anticipate a high likelihood

of a coming outbreak and non-outbreak. Such an ability could offer substantial value for

informing the public health agencies with accurate predictions of the anticipated evolution of

measles over coming months.

Prediction results of classifying outbreak occurrence of the minimal

discrepancy model

By incorporating the prediction results of the lowest discrepancy particle filter model

PFage_15_both, we could perform a classification-based prediction of whether the measles will

break out or not in the next month. Fig 12 displays the ROC curve showing the prediction

results. The Area Under the Curve (AUC) of the ROC curve is 0.89, indicating a favourable

classification ability. The confusion matrix at the fixed threshold θk = 0.5 is listed in Table 3:

The confusion matrix—Table 3 indicates that across the total timeframe (432 months),

there are 33 months that are labeled measles outbreak in empirical dataset. Among these 33

data points, 18 data points are predicted as indicating an outbreak, while 15 data points are

predicted as non-outbreak. Similarly, among the 399 data points labeled non-outbreak in

Fig 8. 2D histogram of predicting from the first or second time point of an outbreak of the minimum discrepancy model. (a)

predicted from the month 121, with monthly prediction discrepancy 306.0, and the sum of yearly prediction discrepancy of all age

groups per month is 246.7. (b) predicted from the month 190, with monthly prediction discrepancy 320.4, and the sum of yearly

prediction discrepancy of all age groups per month is 237.2.

https://doi.org/10.1371/journal.pone.0206529.g008
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empirical dataset, 381 data points are predicted as non-outbreak, while 18 data points are pre-

dicted as indicating an outbreak.

Fig 13 displays the scatter plot between the monthly empirical data and the mean and

median of the model predicted next month results over all sampled particles. The scatter plot

further depicts the results of a linear regression, where x indicates the monthly empirical data,

and the ymean and ymedian specify values calculated from model results. The slopes of these two

regression lines are 0.80 and 0.78. Theoretically, the best slope is 1.0—that is, one would hope

for the model predictions of case count in the next month to very closely match the empirically

reported case count for that month.

Discussion

In this paper we present a new method for tracking the epidemic pattern of measles in low vac-

cination regions by applying particle filtering with simple measles transmission models, and

incorporating noisy monitored data. Particle filtering offers many attractive features for epide-

miological models. Firstly, it relaxes the stiff assumptions of normality with respect to the pro-

cess and observation noise required by older statistical filtering techniques (such as Kalman

Fig 9. 2D histogram of predicting from the peak of an outbreak of the minimum discrepancy model. (a) predicted from the

month 242, with monthly prediction discrepancy 305.7, and the sum of yearly prediction discrepancy of all age groups per month is

205.2. (b) predicted from the month 312, with monthly prediction discrepancy 306.9, and the sum of yearly prediction discrepancy

of all age groups per month is 201.6.

https://doi.org/10.1371/journal.pone.0206529.g009
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Filtering); such assumptions are often particularly problematic in epidemiological contexts

with small sample counts. Secondly, particle filtering is especially well suited to non-linear

models such as that used here, because it foregoes focus on a single Maximum Likelihood Esti-

mate seen in the Kalman Filter—which can be particularly problematic in the context of state

uncertainty that can span multiple basins of attraction—and instead samples from a distribu-

tion of possible states for a given time-point.

In our study, the particle filtering algorithm has mitigated significant weaknesses and sim-

plifications associated with aggregate compartmental models and noisy empirical data. By

incorporating ongoing arriving empirical data, the particle filter model has the capability to

correct for distortions that accompany compartmental model aggregation, such as assump-

tions of random mixing and homogeneity. In this dataset, the particle filter offered strong per-

formance in estimating the outbreak pattern of measles and predicting future trends.

Specifically, five particle filter models are investigated in this project. By comparing the

results, the strongest predictive performance emerged from the age stratified model whose

child age group is defined as including those up to 15 years old, and considering both monthly

empirical data of total population and yearly reported cases of each age group. However,

Fig 10. 2D histogram of predicting from the end of an outbreak of the minimum discrepancy model. (a) predicted from the

month 138, with monthly prediction discrepancy 302.6, and the sum of yearly prediction discrepancy of all age groups per month is

248.0. (b) predicted from the month 201, with monthly prediction discrepancy 316.7, and the sum of yearly prediction discrepancy

of all age groups per month is 217.3.

https://doi.org/10.1371/journal.pone.0206529.g010
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testing the models over additional realizations is required in order to validate these results.

Finally, we perform prediction analysis based on this best model. The results suggest that parti-

cle filtering approaches offer notable strengths in predicting of occurrence of measles outbreak

in the subsequent month.

A key benefit of particle filtering lies in its capacity to estimate the latent state of the

system—state that cannot be directly measured, but which is jointly implied by the combina-

tion of empirical time series and the hypthesized structure of the system, as captured in the

mathematical model. It is important to stress that a key motivation for conducting particle fil-

tering to infer latent state in this way lies in the fact that reliable understanding of such latent

state is important for estimating the impact of interventions enacted at that point. By estimat-

ing the latent state of the system using particle filtering, we can then conduct “what if” scenar-

ios forward from that point, each of which characterize the effects of interventions. Accurate

estimation of the state of the system prior to initiation of different intervention strategies will

frequently be an important enabler for accurately assessing the differential effects of those

interventions. It is to be emphasized that particle filtering supports estimation of (via sampling

Fig 11. 2D histogram of predicting before the next outbreak of the minimum discrepancy model. (a) predicted from the month

52, with monthly prediction discrepancy 324.9, and the sum of yearly prediction discrepancy of all age groups per month is 198.8. (b)

predicted from the month 150, with monthly prediction discrepancy 353.0, and the sum of yearly prediction discrepancy of all age

groups per month is 268.5. It is notable that the values of two parameters have been selected differently, to get a more certain predict

result—the diffusion coefficient of the transmission rate of child age group sbc is 0.12, and the particle number of sampling to plot the

2D histogram is 1000 in this two cases.

https://doi.org/10.1371/journal.pone.0206529.g011
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from) the entire state of the dynamic model—both latent and observable—for each point in

time.

The particle filtering algorithm in general also has important limitations, such as informa-

tion loss and particle collapse [18] during the evolutionary process of the particles. These limi-

tations are also inherited in the algorithm applying in this paper that combines particle

filtering with a compartmental transmission models. Moreover, the treatment here suffers

from some further challenges. For simplicity, the condensation algorithm is employed in cal-

culating the proposal distribution. However, this algorithm may contribute to a loss of the

diversity of particle filtering models. These limitations could be relieved by taking more parti-

cles during the calculation, or restricting the particles in appropriate range of changes by

selecting the values of parameters in more tightly informed ranges. Finally, a key limitation in

Fig 12. The ROC curve of the prediction classification result of the minimum discrepancy model. The AUC is 0.893.

https://doi.org/10.1371/journal.pone.0206529.g012

Table 3. The confusion matrix of classifying outbreak occurrence at threshold θk = 0.5.

432 months Predicted outbreak Predicted non-outbreak

Actual outbreak 18 15

Actual non-outbreak 18 381

The threshold θk = 0.5 indicates that if there are greater and equal than 50% of particles predict outbreak at each time,

then this time is labeled as being in an outbreak status. Otherwise, it is classified as a non-outbreak.

https://doi.org/10.1371/journal.pone.0206529.t003
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terms of practical implications the findings in the developed world reflects the fact that we

have focused on prediction in a non-vaccine context; there remains a key uncertainty as to the

degree to which the approach proposed here will offer high predictive capacity in the context

of sporadic, low attack rate outbreaks characteristic of measles epidemiology in developed

countries within the vaccination era.

Much work remains to be undertaken. While particle filtering techniques we investigated

in this paper have immediate application in populations with low vaccine coverage (including

isolated pockets of population or individuals who refuse vaccination in jurisdictions with oth-

erwise high vaccination coverage), in the future, we will consider vaccination state in the mea-

sles particle filter model, to simulate the measles outbreak pattern in high vaccination regions

in the vaccination era more broadly. Such a model could be helpful for predicting the outbreak

of measles in regions suffering from borderline or waning vaccination rates due to vaccine hes-

itancy, health disparities or other causes. We further plan to apply more powerful techniques,

such as Particle Markov Chain Monte Carlo methods that can allow for jointly estimating the

latent state of the model and static parameters whose values are poorly known. Finally, we also

plan to investigate more sophisticated means of predicting outbreak occurrence based on par-

ticle filtering results. It appears likely that such refinements will further enhance the already

strong advantages conferred by particle filtering methods and variants in measles transmission

modeling.

Fig 13. Scatter plot and regression result of the empirical data vs. mean and median of the model predicted next month results

over all sampled particles with the minimum discrepancy model of measles. The regression result is: ymean = 0.80x + 84.80, ymedian
= 0.78x + 72.31.

https://doi.org/10.1371/journal.pone.0206529.g013
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We conclude that anticipating the outbreak pattern of measles in low vaccination regions

by applying particle filtering with simple measles transmission models so as to recurrently

incorporate successive elements of time series of reported case counts is a valuable technique

to assist public health authorities in estimating risk and magnitude of measles outbreaks. Such

approaches offer particularly strong value proposition for other pathogens with little-known

dynamics, critical latent drivers, and in the context of the growing emergence of high-velocity

electronic data sources. Additional strong benefits will be realized by extending the application

of this technique to highly vaccinated populations.
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