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Studying the regression profiles 
of cervical tumours during 
radiotherapy treatment using a 
patient-specific multiscale model
Christos A. Kyroudis, Dimitra D. Dionysiou, Eleni A. Kolokotroni & Georgios S. Stamatakos   

Apart from offering insight into the biomechanisms involved in cancer, many recent mathematical 
modeling efforts aspire to the ultimate goal of clinical translation, wherein models are designed 
to be used in the future as clinical decision support systems in the patient-individualized context. 
Most significant challenges are the integration of multiscale biodata and the patient-specific model 
parameterization. A central aim of this study was the design of a clinically-relevant parameterization 
methodology for a patient-specific computational model of cervical cancer response to radiotherapy 
treatment with concomitant cisplatin, built around a tumour features-based search of the parameter 
space. Additionally, a methodological framework for the predictive use of the model was designed, 
including a scoring method to quantitatively reflect the similarity and bilateral predictive ability of any 
two tumours in terms of their regression profile. The methodology was applied to the datasets of eight 
patients. Tumour scenarios in accordance with the available longitudinal data have been determined. 
Predictive investigations identified three patient cases, anyone of which can be used to predict the 
volumetric evolution throughout therapy of the tumours of the other two with very good results. Our 
observations show that the presented approach is promising in quantifiably differentiating tumours 
with distinct regression profiles.

The contribution of mathematical modelling in cancer research has been ever-increasing1,2. The power of math-
ematical models lies in their ability to describe biological phenomena in the succinct language of mathematics, 
thereby helping to elucidate key mechanisms at play in cancer growth and response to treatment and ultimately 
develop predictive tools. The literature devoted to mathematical models of tumour response to therapy is vast.

Focusing on the specific case of cervical cancer response to treatment, important recent contributions 
include3–6. The main incentive for all these studies has been the fact that the regression rate of cervical tumours 
during radiotherapy treatment has been suggested as an important predictor of local control and long-term sur-
vival. Importantly, there is a considerable variability among patients in the regression profile of their tumours5,6; 
in some cases tumour regression is exponential as a function of time throughout treatment. In others, tumours 
regress more slowly early in the treatment and the relative volume plots are characterized by an initial shoul-
der. Huang et al.6 developed a kinetic model incorporating the radiobiological parameters of radiosensitivity, 
tumour repopulation, and dead cell resolving, and used it to analyze the volume regression data of 80 cervical 
cancer patients as assessed by serial magnetic resonance imaging (MRI). The patients were treated with exter-
nal beam radiation therapy (EBRT) followed by low-dose rate intracavitary brachytherapy. 26 patients received 
cisplatin-based chemotherapy, which was not explicitly modelled. The analysis permitted the estimation of 
tumour radiosensitivity and dead cell resolving time for individual patients. Moreover, since long-term follow-up 
data were available, these parameters were correlated with clinical outcome.

In the study of Lim et al.5 weekly MRI was used to measure tumour volume during EBRT treatment and 
oxymetry with the Eppendorf electrode to assess pre-treatment tumour hypoxic fractions. The radiobiological 
parameters included in the mathematical model were the in vivo surviving proportion of cells after 2 Gy (SP2), 
the cell clearance constant (TC), and the cell doubling time after the onset of accelerated repopulation (Tp). The 
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model was fitted to the MRI-derived tumour volumes of 27 patients. The results indicate that SP2 and TC strongly 
influence the shape of the volume-response curves, while SP2 correlates with the pretreatment measurements of 
hypoxia.

Similarly, Belfatto et al.4 developed a model consisting in two ordinary differential equations to study the 
volume regression profiles of 15 cervical cancer patients, as assessed by computed tomography imaging, and 
performed their analyses both on a cohort- as well as on a patient-specific base. Lately, Arnesen et al.3, utilized 
a previously developed mathematical model of tumour shrinkage during fractionated radiotherapy7 to study 
the regression data of 25 cervical cancer patients. The model was based on similar biological parameters as the 
previous described ones: the doubling time of viable cells, the half time for clearance of doomed cells and the 
radiosensitivity parameter α of the well-known Linear Quadratic (LQ) model. The authors additionally studied 
three different fractionation patterns for dose escalation.

All these studies show the value of exploiting patient specific data through the use of mathematical mod-
els for studying the biological mechanisms regulating cervical cancer response to treatment, with numerous 
potential applications in the future. The applied mathematical models have been kept deliberately simple, and 
the considered radiobiological parameters were limited, in order to facilitate the integration of imaging-derived 
patient-specific data and the correlation analyses. It indeed remains a significant challenge to achieve a satisfac-
tory compromise between the need to describe more realistically the involved biological mechanisms and the 
goal to develop clinically relevant and personalizable mathematical models that integrate multiscale biological 
data1. The incorporation of several biological phenomena in such complex models necessitates a large number 
of parameters with currently unidentified or very large value ranges. This implies the need to search very large 
parameter spaces in order to fit the model to clinical data. The experimental or clinical measurement of several 
parameters may be particularly laborious or currently impossible. An intuitive grasp of the implications of the 
values of such low-level parameters may even be practically infeasible in the clinical setting. Such issues have 
generally hindered the clinical application of multiscale mathematical oncological models.

The CERvical cancer ONCOsimulator (CERONCO), developed within the context of the EU-funded 
DrTherapat project8 is a multiscale computational model of cervical cancer response to radiotherapy treatment in 
the patient-individualized context. The clinical orientation of the model has been a fundamental guiding princi-
ple throughout its development. CERONCO parameters are related to the explicit description of several impor-
tant biological mechanisms. Central aims of this study were to clinically adapt CERONCO by exploiting sets of 
real multi-scale biodata, in a way that the previously described difficulties are minimized, and to demonstrate 
the potential of the model to offer qualitative and quantitative information on the regression profiles of cervical 
tumours, complementary to that of more simple radiobiological models.

For this purpose, a clinically–enhanced model parameterization methodology has been designed. The cen-
tral idea of the proposed methodology lies in a tumour features-based search of the parameter space. The pro-
posed algorithm creates a one-to-many correspondence between a number of user-selected clinically meaningful 
tumour features and CERONCO’s model parameter values. These features do not constitute parameters of the 
mathematical model; instead, based on their values the system automatically assigns adequate values to the model 
parameters. In this way, an interface between the clinical and the mathematical reality of the studied tumours is 
devised, which is expected to significantly facilitate the usage of the model and the interpretation of its results in 
the clinical setting.

Additionally, a methodological framework for the predictive use of the model was designed, which includes 
a scoring method to quantitatively reflect the similarity and bilateral predictive ability of any two tumours in 
terms of their regression profile. In the following sections, this framework is presented along with the results of 
predictive tests that have been performed at this stage of our research, by exploiting the datasets of eight cervical 
cancer patients.

Materials and Methods
Simulation model.  CERONCO is a predominantly discrete multiscale computational model of cervical can-
cer response to treatment (external beam radiotherapy with concomitant weekly cisplatin, followed by pulsed 
dose rate brachytherapy) in the patient-individualized context. It makes use of the available multiscale (e.g. imag-
ing, histological, treatment) longitudinal data of the patient. CERONCO follows a cellular automaton approach.

Core algorithms of the model can be found in our previous publications. These algorithms have been adapted 
and combined as necessary in order to address the particularities of the considered cervical cancer treatment. For 
the general features of the model see9–11 For basic concepts with regards to cisplatin chemotherapy modeling see11 
and with regards to External Beam Radiation Therapy (EBRT) modeling see9,12,13, For related sensitivity analyses 
see10,11, A new simulation module has been developed for Pulsed Dose Rate Brachytherapy (PDR-BT) modeling. 
This module is presented below, along with a basic outline of the main simulation model, to facilitate the under-
standing of the current work.

The region of interest (Gross Tumour Volume, GTV) as derived from the imaging data is represented by a 
three-dimensional discretization mesh. The elementary volume of the mesh is called Geometrical Cell (GC). At 
initialization, each GC accommodates a number of biological cells (defined based on the typical cell density of 109 
cells/cm3, unless more specific information for a particular tumour is available); each cell can belong in any of the 
following five classes: Stem cell; LIMP cell (LImited Mitotic Potential or committed progenitor cell); Terminally 
differentiated cell; Apoptotic cell; Necrotic cell. The cell cycle phases (G1, S, G2, M) and the dormant (G0) phase 
constitute subclasses in which stem or LIMP cells may reside.

Figure 1 depicts CERONCO’s cytokinetic decision calculator, which dictates the transitions between cell states 
(1-hour time step). The cytokinetic model incorporates several cellular-level phenomena: cycling of proliferating 
cells, symmetric and asymmetric stem cell division, terminal differentiation of LIMP cells, transition of prolif-
erating cells to dormancy, reentrance of dormant hypoxic cells into the active cell cycle, necrosis of inadequately 
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nourished tumour cells, spontaneous apoptosis, and cell necrosis and apoptosis due to therapy. Cell kill by EBRT 
is modelled based on the Linear-Quadratic (LQ) model9,12,13 Additive toxicity of radiotherapy and chemotherapy 
is considered14. The model offers the possibility of assigning increased radiosensitivity/chemosensitivity to stem 
cells compared to LIMP cells15–17.

A new module simulating PDR-BT treatment has been developed, based on the modified LQ model with 
correction for incomplete repair17–20. Considering a fraction of PDR-BT consisting of N pulses of dose d and an 
inter-pulse interval on the order of one hour, sub-lethal damage may not be completely repaired and the final 
survival fraction is given by:

- α β= +SF (d) exp[ ( Nd NG d )] (1)N N
2

where GN is the Lea-Catcheside factor, and the α (alpha) and β (beta) parameters are the linear and the quadratic 
radiosensitivity coefficients, respectively, of the irradiated cells.

The LQ model is based on the curvilinear nature of dose-response curves for the log of cell survival21. It con-
siders two cell-killing components: a linear component (alpha component) and a quadratic component (beta 
component). The parameters alpha and beta determine the initial slope and the degree of downward curvature, 
respectively, of the survival curve. According to the most common mechanistic interpretation, the yield of lethal 
lesions is the sum of lethal lesions produced from single radiation tracks (which are linearly related to dose, the 
alpha component) and lethal lesions produced from two radiation tracks (which are quadratically related to dose, 
the beta component); i.e. the latter quantifies the interaction of sublethal events. The dose at which these two 
components of cell killing are equal is the alpha/beta ratio. Since sublethal lesions can be repaired prior to result-
ing in a lethal event, the beta component is modified by the Lea-Catcheside time factor (GN) to take into account 
dependence on dose protraction or fractionation21. Protracting the exposure time potentially allows the first 
lesion to be repaired before the second is produced, and the LQ approach quantifies this effect21. In general, GN is 
determined by the rate of sublethal damage repair and the particular fractionation pattern with which the dose is 
delivered. It is a dimensionless quantity that can take values from 0 to 1. For acute exposures →G 1N , and for very 
long exposures →G 0N  (“acute” and “long” are defined relative to the half -time for sublethal damage repair).

Several studies addressing the issue of GN factor calculation for PDR-BT appear in literature19,22, The compu-
tation of the GN factor is based on the temporal characteristics of the dose (number of pulses, N, pulse duration, 

Figure 1.  Schematic depiction of CERONCO’s cytokinetic decision calculator. The calculator dictates the 
transitions between cell states, which are determined by corresponding model parameters (see Table 1) with a 
time step of 1 h. It incorporates: cycling of proliferating cells through the successive cell cycle phases; symmetric 
and asymmetric modes of stem cell division; terminal differentiation of committed progenitor cells after a 
number of mitotic divisions; transition of proliferating cells to the dormant phase due to inadequate supply of 
oxygen and nutrients; reentering of dormant G0 cells into the active cell cycle due to local restoration of oxygen 
and nutrient supplies, spontaneous apoptosis, necrosis of inadequately nourished tumour cells, irradiation-
induced cell death through necrosis, chemotherapy induced cell death through apoptosis. LIMP: Limited 
Mitotic Potential cells. DIFF: Terminally differentiated cells. G1: Gap 1 phase. S: DNA synthesis phase. G2: Gap 
2 phase. M: Mitosis. G0: dormant phase. Hit: cells lethally hit by irradiation/drug.
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t, inter-pulse interval, x,) and the irradiated cells’ repair half-time T1/2. Repair is assumed to follow first-order 
kinetics and is modelled by a monoexponential function with rate constant μ (see also equation (7) below). The 
derivation of the following equation, used within CERONCO after each successive pulse to compute the survival 
fraction, is presented in the Supplementary Material (Section SA):

α β= − − − − = …−SF d d d iG i G( ) exp( )exp[ ( ( 1) )], i 1, , N (2)i i i
2

1
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Model parameter Description

Literature-based 
approximate value 
range, Typical values

Indicative 
references

Tc (h) Cell cycle duration 16–70
Typical: 24–26

41–43

TG0 (h) G0 duration 96–240 25,44

TN (h) Necrosis duration 34–3456 5,6,45,46

TA (h) Apoptosis duration 0–25 47

NLIMP
Number of LIMP (Limited Mitotic Potential) cell mitoses 
before terminal differentiation Up to 18 46,48

α (Gy−1) Alpha parameter of the LQ model 0.01–0.7
Typical: 0.3

6,14,19,41,49

β (Gy−2) Beta parameter of the LQ model 0.001–0.06
Typical α/β = 10 Gy

49,50

OER Oxygen Enhancement Ratio 1.5–3.0
Typical: 2

14,23

T1/2 (h) Sublethal damage repair half-time 0.26–5.7
Typical: 1.5

19,22,23,49,50

CKR cisplatin Cisplatin Cell Kill Rate (fraction of stem and LIMP cells 
lethally hit at each drug administration) 0–0.86 14,15,51

RA (h−1)
Spontaneous apoptosis rate of stem and LIMP cells 
(fraction of stem and LIMP cells dying through 
spontaneous apoptosis per hour)

0.0004–0.008 48

RNDiff (h−1) Necrosis rate of differentiated cells (fraction of 
differentiated cells dying through necrosis per hour) — —

RADiff (h−1)
Spontaneous apoptosis rate of differentiated cells 
(fraction of differentiated cells dying through 
spontaneous apoptosis per hour)

0.09–0.104 48

PG0toG1 (h−1) Fraction of dormant cells that re-enter cell cycle per hour 0.01–0.06

Psleep
Fraction of stem and LIMP cells entering G0 phase after 
mitosis 0.0–1.0 11,44

Psym
Fraction of stem cells at mitosis that perform symmetric 
division 0.2–0.66 11,46

Tumour characteristic Literature-based approximate value range, Typical values

Tumour Volume Doubling Time Td (days) 20–3750
Typical: 80–300

35,36,42

Growth fraction GF (percentage of 
proliferating tumour cells over total living 
tumour cells) (%)

4.1–97.8%
Typical: 40–50%

26–28

Hypoxic fraction (percentage of hypoxic 
tumour cells over total tumour cells) (%)

0–99.2%
Typical: 30–60%

5,25,26,29,30

Apoptotic fraction (percentage of apoptotic 
tumour cells over all living tumour cells) (%)

0–6.8%
Typical: 1%

27,28,51

Stem cell fraction (percentage of tumour 
stem cells over all living tumour cells) (%)

0.13–7%
Typical: 1%

16,17,52–54

Table 1.  CERONCO tumour dynamics parameters and derived-therefrom tumour features, along with 
literature-defined typical values and plausible value ranges. Citations to indicative articles are provided. “Typical 
values” (when available) refer to the most commonly used values in the relevant literature, and usually (but not 
in all studies) correspond to mean values.
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= µ−K e (6)x

µ =
ln
T

2
(7)1/2

where t is the duration of each pulse, x is the time between pulses without irradiation, μ is the repair rate constant, 
and T1/2 is the half time for sub-lethal damage repair.

For the first pulse the following equation is used23:

µ µ
µ

=
− + −G t t

t
2 [exp( ) 1]

( ) (8)1 2

Equation (8) can be derived from equations (3–7) for i = 1 and x → ∞.
Equation (2) is a modification of the LQ model that can be used after each successive pulse and takes into 

account the current number of living tumour cells. This number is defined by the competing processes of cell 
death (due to radiotherapy, apoptosis, and necrosis) and cell birth as incorporated in the cytokinetic model of 
Fig. 1.

Following tumour initialization (section “The tumour profile concept”), at each subsequent time step the mesh 
is scanned and the spatiotemporal evolution rules are applied. Each complete scan can be viewed as consisting of 
two sequential scans10. The first one updates the state of each GC by applying the rules of the cytokinetic model of 
Fig. 1. The second one deals with the rules governing the movement of cells throughout the tumour region. Τhe 
non-uniform dose distribution of BT renders a spatial handling of the tumours imperative.

A concise description of CERONCO tumour dynamics parameters is given in Table 1. A literature review 
has been performed to retrieve typical parameter values and value ranges for cervical cancer tumours. Table 1 
includes important literature-derived quantitative information about CERONCO parameters and other tumour 
features whose values result from the selection of model parameter values.

Patient data.  Eight patients with squamous cervical carcinoma have been included in our study 
(Supplementary Material Section SB.1). The patients were treated as part of the EMBRACE clinical study24. The 
therapeutic protocol involves EBRT with concomitant cisplatin, followed by two PDR-BT fractions. Follow-up 
data were not available.

The patient-specific imaging data included T2 weighted MRI-derived 3D reconstructions of the Gross 
Tumour Volume for up to five time points:

•	 Pretherapy (before start of EBRT)
•	 Midterm (during EBRT)
•	 BT0 (before start of BT)
•	 BT1 (start of first BT fraction)
•	 BT2 (start of second BT fraction)

These 3D-reconstruction files supply the model with the tumour’s spatial information and correspond to the 
region of interest onto which the discretizing mesh is superimposed. Each GC of the mesh is labeled as tumour 
or non/tumour. BT1 and BT2 spatial dose distribution files (total dose per GC) are provided as well. For a short 
outline of the procedure used to create the above files see Supplementary Material (Section SB.2).

Patient-specific treatment data included:

•	 EBRT schedule: total dose, number of fractions, fractionation scheme (dates for the 5 fractions per week − 1 
fraction per day, no irradiation during weekends)

•	 Cisplatin administration schedule (number of cycles − once per week)
•	 PDR-BT schedule (two fractions of 20 pulses each, inter-pulse interval, pulse duration, date of each fraction 

administration). The GC pulse dose is derived from the total dose distribution file, by dividing the total dose 
to the GC by the number of pulses. The interval between successive pulses is 1 hour and the pulse duration is 
variable (0.2–0.3 hours).

All patient information was given in the context of the EU-FP7 project DrTherapat, Grant agreement no. 
600852. Patient information was obtained with due observance of the rights of all patients involved and in com-
pliance with all applicable laws and regulations, including the Declaration of Helsinki as revised by the World 
Medical Assembly, as well as the applicable procedures and the internal guidelines of the institution. Prior to the 
disclosure of the patient information the clinical institution has obtained appropriate informed consents from all 
the patients involved, or approval from the applicable ethical review board has been obtained, all in compliance 
with Applicable Patient Regulations. The patients were accrued at Aarhus University Hospital and the name of the 
ethical committee is “Videnskabsetisk komité, Region Midt, Denmark”.

The tumour profile concept.  A new virtual tumour initialization and parameter estimation workflow has been 
designed.

The first step is to assign values to the following three salient characteristics of the initial tumour, hereafter 
called “the tumour profile”:
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	 1.	 Growth Fraction
(GF, percentage of proliferating cells over all living tumour cells)

	 2.	 Hypoxic Fraction
(HF, percentage of hypoxic cells, residing outside of the active cell cycle, over all tumour cells)

	 3.	 Dead Fraction
(DF, percentage of dead cells over all tumour cells)
Additionally, the user selects:

	 4.	 A cisplatin cell kill rate (CKR) value, reflecting the chemosensitivity of cancer cells to cisplatin
	 5.	 A tumour volume doubling time (Td) value or a series of Td values.

Subsequently, the algorithm automatically determines sets of model parameter values that conform to these 
initial tumour characteristics. There exists a one-to-many correspondence between these features {GF, HF, DF, 
Td, CKR} and possible sets of model parameter values. In the present study, the algorithm determines 100 sets of 
parameter values; it excludes parameter values lying outside the acceptable value ranges. For the mathematical 
relationships between tumour features and model parameter values see11 and Supplementary Section SC.

In this way, different sets of CERONCO parameter values can be grouped to different solution families, defined 
by the selected values of tumour features. This simulation workflow creates in essence an interface between the 
clinical and the mathematical reality of tumour evolution.

The tumour profile-based search can consider various regions of the parameter space which imply different 
tumour behaviour. Different profiles translate into different initial tumour constitutions in terms of the various 
cell populations (proliferating cells, dormant cells etc.), which in turn are expected to exhibit variable response to 
therapy and long-term evolution.

If the user cannot acquire tangible patient-specific information about the tumour features, then they can 
test candidate scenarios. Otherwise, the available data should be used in order to refine the initialization pro-
cedure. GF and HF estimation in cervical cancer has been intensely researched, e.g. through Ki-67 studies and 
polarographic electrodes, respectively5,25–30, Recently, imaging-based methods have been also reported31–34. DF 
estimation can be based on MRI data, as was the case in our study. Similarly, literature abounds with methods for 
estimation of tumour volume doubling time35,36.

In sharp contrast, information about cisplatin chemosensitivity of cervical cancer cells is rather scarce; some 
efforts have addressed this issue as well14–16. Previous model sensitivity analyses indicate that this tumour feature 
has a profound impact on the result of therapy37. We have therefore decided to expose this crucial tumour charac-
teristic as an adjustable feature of a simulation, in order to offer the possibility of testing several explicit scenarios.

Following initialization, tumour evolution is simulated according to the patient-specific treatment data. When 
the simulation is complete, the algorithm checks whether there is longitudinal volumetric agreement between the 
simulated and the clinical tumour, taking into account possible tumour delineation errors. A solution is a set of 
model parameter values for which the simulated tumour’s Volume Reduction Percentage (VRP)

=








− 







∗VRP
V V

V
100%

(9)
sim

initial
sim

final
sim

initial
sim

differs up to a predefined threshold from the corresponding VRPclin, the latter calculated based on the real 
tumour’s GTV data, at all timepoints for which volumetric data are available. Vinitial

sim  and V final
sim  are the simulated 

initial and final tumour volume, respectively. The initial tumour volume is the pre-therapy volume. The final 
tumour volume can correspond to any of the subsequent time-points for which GTV is available.

The deviation thresholds between the clinical and simulated tumour VRPs have been chosen so as to reflect 
the existence of the abovementioned possible tumour contouring errors. Since the exact magnitude of such errors 
is unknown38, several different criteria for volumetric compliance were tested:

• − ≤VRPVRP 5: VRP 5%, for Midterm, BT0, BT1, BT2 (10)simulated clinical

• − ≤VRPVRP 10: VRP 10%, for Midterm, BT0, BT1, BT2 (11)simulated clinical

• − ≤
− ≤

VRP
and VRP

Mixed: VRP 5%, for Midterm, BT0
VRP 10%, for BT1, BT2 (12)

simulated

simulated

clinical

clinical

•
− ≤ . ∗GTV GTV GTV

40 volume deviation 40 dV% ( % ):
0 4 , for Midterm, BT0, BT1, BT2 (13)simulated clinical clinical

The last criterion has been based on clinical experience with regards to delineation errors for the case of cer-
vical cancer38. Depending on the specific value of a tumour’s volume at a particular timepoint, this criterion may 
be stricter or more lenient than VRP 10.

The described workflow ensures a multi-level compliance of the virtual tumour with: (a) the predefined 
tumour features, (b) longitudinal volumetric data, (c) any tumour characteristics for which clinical data are 
available (e.g. in the studied cases, the diameter of the necrotic component of the initial tumour, which dictates 
the tumour’s DF feature), and (d) biologically plausible value ranges of the model parameters and the derived 
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therefrom tumour characteristics. These have been retrieved from literature for the specific tumour histological 
type whenever possible.

The use of a performance criterion serves for quantitatively representing the agreement of a derived solution 
with the real volumetric data; the error-measure Mean Absolute Error (MAE) was chosen39:

= ∑ −
=MAE

VRP VRP
N

i Midterm BT BT BT, { , 0, 1, 2} (%) (14)solution
i clinical simulated

N: the number of timepoints with tumour volumetric data.
Solutions with lower MAE values imply better agreement with the clinical data.

Predictive use of the model: a new methodological framework Mean value parameter sets: assigning a single repre-
sentative parameter value set to each patient/tumour profile/CKR value combination.  For each patient, and for 
each tumour profile and CKR value, the parameter estimation algorithm typically identifies a large number of 
solutions with tumour doubling times within the acceptable value range, which all belong to a particular solution 
family. We have observed that it is possible to use the members of a specific solution family in order to identify a 
single parameter value set that could be assigned to a specific patient, tumour profile, and CKR-value combina-
tion. This characteristic set is created by assigning to each parameter the mean of the corresponding values in the 
solution family.

New simulation runs have been performed using these mean value parameter sets. Their performance in 
terms of volumetric agreement with the real tumour, and therefore their effectiveness in representing a particular 
tumour profile of a patient, can be quantified by using the Mean Absolute Error (MAE) of equation (14):

= ∑ −

=

‐ ‐MAE
VRP VRP

N
i Midterm BT BT BT

(%)

{ , 0, 1, 2} (15)

patient tumour profile CKR value
i clinical mean value set

, ,

where: N: the number of timepoints with tumour volumetric data, VRPmean-value-set: the VRP for the simulated 
mean value parameter tumour.

The mean value derived from equation (15) for all CKR values characterizes a specific patient and tumour 
profile:

∑= ( )MAE MAE M/ (%) (16)patient tumour profile i
N

patient tumour profile CKR value, , ,

where M is the number of distinct CKR values having retrieved adaptation solutions.
Figure 2 is a flowchart outlining the creation of the mean value parameter sets.

Predictive tests: patient pair methodology.  Since the number of patients was limited, a formal evaluation of the 
predictive ability of CERONCO was out of the scope of our work. Nevertheless, a set of predictive tests has been 
performed. These tests are based on the consideration of patient pairs, wherein the mean value set assigned to 
a specific patient and tumour profile is used to predict the evolution of another patient’s tumour for the same 
tumour profile (and vice versa).

By running simulations for patient B, Profile I, and each CKR value separately, using the corresponding mean 
value parameter sets of patient A, we can compute the ←MAEB A error using equation 16. Similarly, an ←MAEA B 
error characterizes the handling of patient A using patient B parameter values. A total error can be assigned to the 
“A and B clinical case pair”:

=
+

↔
← ←MAE MAE MAE

2
(%) (17)A B

A B B A

When for a particular profile only one of the two clinical cases of a pair has retrieved solutions, then the MAE 
value of the single available run is assigned to the pair error. This simplification involves 2 out of the 8 patients, 
and has been adopted in order to preserve the generality of the pair methodology.

We can expect that the lower MAEA<−>B is, the higher is the similarity in volumetric regression terms between 
A and B and the bilateral predictive ability of A and B. As exemplified in the following sections, through the pair 
methodology the similarity of the regression profiles of any two tumours is reflected quantitatively in their 

↔MAEA B values.

Results
Two tumour profiles have been studied for each patient: {GF = 60%, HF = 30%, DF = 5%} and {GF = 10%, 
HF = 30%, DF = 5%}. These are two characteristically different regions of the profile space and produce tumours 
with very different behaviour (a high proliferative vs a low proliferative one). The dead fraction was kept low, 
since the tumours had no initial necrotic components. The only exception was patient 71, but in this case too the 
MRI-calculated initial necrotic diameter is very small compared to the entire tumour’s equivalent diameter, and 
is well in agreement with a DF value of 5%. Since necrotic regions are typically associated with hypoxic regions40 
we have considered a relatively low HF value. The cell kill rate of cisplatin has been tested from very low to rather 
large values (0.0–0.5). The tumour volume doubling times cover the entire value range reported in literature, with 
an increment of 20 days in the lower Td region, up to 500 days, and an increment of 500 days subsequently.
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Supplementary Table S3 presents the number of solutions identified for each profile. The results indicate the 
potential of CERONCO to distinguish between tumour profiles that are compatible with the actual evolution of 
a clinical tumour from others that are incompatible. For example, for patient 71, only the low proliferative profile 
retrieves solutions, whereas the reverse is true for patient 88. Some patient cases acquire solutions for the whole 
range of CKR values tested (e.g. 68, 71, 86), whereas others only for a subset thereof (e.g. 50, 55, 77).

Each solution represents a distinct tumour scenario compatible with the data of a patient. Different solutions 
imply different constitutions of the initial tumour in terms of the various tumour cell populations. These in turn 
result to variable post-therapy tumour constitutions, which are expected to display variable tumour regrowth 
potential. Such a characteristic example is presented in Supplementary Fig. S2.This observation shows that agree-
ment with clinical data in volumetric terms alone may mask tumours with radically different characteristics and, 
hence, prognosis.

Figure 2.  Simplified flowchart of the creation of mean value parameter sets for a specific tumour profile.
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Supplementary Tables S4–S12 present the value ranges of CERONCO model parameters for each patient 
for the low proliferative profile. The corresponding information for the high proliferative profile is given in 
Supplementary Tables S13–S21. In Supplementary Tables S12 and S21 the range of the mean value of each param-
eter across all tested CKR values is presented for the two profiles. For some cases the retrieved solutions cover 
the entire range of volume doubling times (e.g. 50, 68, 86 for the low proliferative profile), whereas in other cases 
the solutions reside in subsets thereof (e.g. all patients for the high proliferative profile). Similar observations can 
be made with regards to the values of the various model parameters in comparison with the literature-derived 
value ranges. The assignment of values or possible value ranges to the model parameters, under all the constraints 
imposed by the available data, complements the characterization of a tumour in terms of those features for which 
experimental/clinical information is lacking.

Subsequently, the mean value parameter sets were constructed and new simulation runs have been performed, 
in order to test their capability to represent each tumour profile/CKR value combination. Figures 3 and 4 pres-
ent these results, by comparing clinical with simulated VRPs. Table 2 presents the corresponding MAE errors 
(equations (15, 16)). The use of the mean value parameter sets proves to be an efficient way to characterize a 
patient/tumour profile/CKR value combination. In the majority of cases the mean value parameter sets constitute 
themselves solutions. In most cases where a mean value parameter set is rejected based on the formal volumetric 
criteria, the deviations are small as indicated by their MAE values.

A special note should be made about patient 86, for which volumetric data were available for two time points 
only (pre-therapy and BT0) which is equivalent to a more relaxed constraint. As expected, longitudinal model 
fitting in this case is generally easier compared to the cases where more time-points are available. As a result, the 
simulation returns a large number of accepted parameter value sets with very small MAE values. It is expected 
that many of these parameter value sets would be rejected if more time points with volumetric data were available. 
This observation stresses the importance of acquiring longitudinal volumetric and other data, and reveals the 
advantage of modeling approaches able to handle such longitudinal data.

In order to get tumour scenarios compatible with the clinical data, the low proliferative tumour profile 
retrieves in general tumour scenarios of higher radiosensitivity and larger tumour doubling times, compared 
to the high proliferative profile. No important differences are observed with regards to the tumour cell cisplatin 
chemosensitivity (Supplementary Table S22).

The constraint of volumetric data coupled with the choice of the highly proliferative profile leads to radi-
osensitivity values lying close to the lower end of the literature-reported range (range of mean values of the 
alpha parameter of the LQ model: 0.011–0.377 Gy−1) (Supplementary Table S21). On the other hand, the low 
proliferative profile leads to a wider distribution of mean radiosensitivity values (range: 0.007–0.510 Gy−1) 
(Supplementary Table S12). In addition, this low proliferative profile results in an approximate classification of 
the tumours with respect to their radiosensitivity that reflects their comparative regression profiles as depicted 
in Supplementary Fig. S1. To the tumours presenting slower clinical regression (50, 68, 77, 95) are assigned lower 
radiosensitivity mean values compared to the ones with steeper clinical regression “slopes” (55, 71, 86). Another 
interesting observation relates to the values of the cell cycle duration. The low proliferative profile results in mean 
TC values (17–39 h) that are much closer to the mean values reported in literature compared to the high prolifer-
ative one (45–62 h).

Results of predictive tests.  By using the MAE pair error method, a sorting of the all patient pairs has been 
derived, reflecting a quantitative estimation of their similarity and mutual predictive ability in tumour regression 
terms (Table 3). MAE pair errors up to about 10% correspond to very good prediction results. MAE errors in the 
range 0–4% correspond to the Criterion VRP 5 mostly. There are three patients (55, 68, 71) that seem to belong to 
a group of similar patients, for which all pairs that can be formed are characterized by relatively low MAE errors. 
These pairs reside in the upper row of Table 3. An alternative reading is that we can use anyone of these patients 
to predict the evolution of the tumours of the other two with very good results (Fig. 5). The regression profile of 
these three tumours seems very similar as indicated by their tumour volume reduction percentages at all consid-
ered time points (Supplementary Table S1); this has been reflected in their pair MAE errors.

Pairs incorporating cases 50, 77, 88, and 95 are characterized by higher MAE errors. Pairs 77–95 and 50–71 
exhibit low MAE errors for the highly proliferative profile only. The last seven rows of the sorting list complete the 
similarity picture derived by our methodology and are occupied by pairs in which patient 86 participates. These 
are presented separately, because, as explained previously, volumetric data for two time-points only is equivalent 
to a more relaxed constraint.

With the only exception of 50–71 in the highly proliferative profile, all other pairs incorporating case 50 are 
generally characterized by a comparatively very high MAE error. This result can be explained based on the obser-
vation that patient’s 50 regression profile is remarkably different; it displays a limited and practically constant 
tumour regression (with VRPs: midterm: 59.63%, BT0: 60.14%, BT1: 64.07%, BT2: 60.72%).

A similar observation holds true for the vast majority of pairs incorporating cases 77 or 95. These clinical cases 
are exceptional because they practically show no tumour shrinkage at the midterm timepoint (clinical VRPs of 
−3.37% and 0.13%, respectively) and low tumour regression subsequently. This is a highly plausible explanation 
for their relative inadequacy to predict or be predicted by the other clinical cases; particularly so since their 
mutual similarity and predictive ability is high.

The above constitute a strong indication that the pair methodology, through the use of the mean value sets, is 
promising in differentiating in a quantifiable way tumours with different regression profiles. The similarity of the 
regression profiles is reflected in the assigned MAE errors. Pairs formed by cases with similar regression profiles 
are assigned lower MAE errors compared to pairs formed by tumours with highly divergent regression profiles.
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Discussion
One of the main aims of this study was the design of a clinically-meaningful parameterization methodology for 
the CERvical cancer ONCOsimulator. This was accomplished through a tumour features-based search of the 
parameter space. The methodology was applied to eight cervical cancer patients.

For each patient, the simulations retrieve adaptation solutions, i.e. sets of model parameter values that result 
in virtual tumours whose evolution is compliant with: (a) the chosen tumour profile, (b) clinical data (e.g. longi-
tudinal tumour volumetric data), and (c) biologically plausible value ranges of the model parameters and virtual 

Figure 3.  Simulations with mean value parameter sets for the high proliferative tumour profile. Comparison 
of clinical and simulated Volume Reduction Percentages (VRP), for the tumour profile GF = 60%, HF = 30%, 
DF = 5%. The simulated VRP at each time-point is compared to the corresponding clinical VRP. The error bars 
indicate the permitted variability around the clinical VRP value according to the criteria VRP 10 (equation 11) 
and 40% DV (equation (13)). This variability is introduced to reflect possible tumour delineation errors. VRP 
values are computed according to equation (9). Note: For each timepoint (midterm, BT0, BT1, BT2) the VRPs 
for each CKR value are horizontally displaced to facilitate the inspection of the results; this displacement does 
not have temporal meaning.
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tumour features. Each solution belongs to a specific tumour profile family of solutions and represents a distinct 
tumour scenario compatible with the data.

A methodological framework for the predictive use of the model was also sought. As a first step towards this 
direction, we have studied the solutions of each tumour profile for each patient, and new parameter value sets 
were created by assigning to each parameter the mean of the corresponding values in the solution family. This part 
of our study revealed that each profile of each patient can be adequately represented by a single parameter value 
set for each CKR value tested.

Figure 4.  Simulations with mean value parameter sets for the low proliferative tumour profile. Comparison 
of clinical and simulated Volume Reduction Percentages (VRP), for the tumour profile GF = 10%, HF = 30%, 
DF = 5%. The simulated VRP at each time-point is compared to the corresponding clinical VRP. The error bars 
indicate the permitted variability around the clinical VRP value according to the Criteria VRP 10% (equation 
(11)) and 40% DV (equation (13)).This variability is introduced to reflect possible tumour delineation errors. 
VRP values are computed according to equation (9). Note: For each timepoint (midterm, BT0, BT1, BT2) the 
VRPs for each CKR value are horizontally displaced to facilitate the inspection of the results; this displacement 
does not have temporal meaning.
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Patient 50 55 68 71 77 86 88 95

Tumour profile: GF 60%
HF 30%
DF 5%

CKR MAEclinical case tumour profile ckr value, ,  (Equation (15)) (%)

0 — — 2.77 — 4.85 2.22 1.70 8.12

0.05 — — 4.36 — 7.15 2.23 1.48 6.93

0.1 — — 3.88 — 7.19 2.28 2.97 5.83

0.2 9.72 — 3.16 — 5.80 2.28 1.55 7.04

0.3 6.50 — 2.97 — 3.03 2.28 1.54 5.49

0.4 5.46 — 4.74 — 3.60 2.27 — 5.36

0.5 6.68 6.86 4.55 — — 2.23 — 5.13

MAEclinical case tumour profile,  (Equation(16)) (%)

7.09 6.86 3.78 — 5.27 2.26 1.85 6.27

Tumour profile: GF 10%
HF 30%
DF 5%

CKR MAEclinical case tumour profile ckr value, ,  (Equation (15)) (%)

0 — — 3.25 5.25 18.00 2.39 — 13.50

0.05 — — 3.25 6.00 15.33 1.58 — 13.75

0.1 — — 3.25 5.25 16.33 2.13 — 10.50

0.2 — — 4.00 5.25 15.33 1.84 — 11.00

0.3 3.75 6.50 3.75 6.00 13.67 1.91 — 12.25

0.4 27.75 — 5.75 5.00 — 2.15 — —

0.5 17.00 — 5.50 5.50 — 2.07 — —

MAEclinical case tumour profile,  (Equation (16)) (%)

13.5 6.5 4 5.25 15.67 2.01 — 12.25

Table 2.  MAE errors for the simulations performed with the mean value parameter sets.

GF 10% HF 30% DF 5% GF 60% HF 30% DF 5%

Pair 
(A-B)

↔MAEA B(%) 
(Equation (17))

←MAEA B 
(Equation (16))

←MAEB A(%) 
(Equation (16))

Pair 
(A-B)

↔MAEA B(%) 
(Equation (17))

←MAEA B(%) 
(Equation (16))

←MAEB A(%) 
(Equation (16))

55–71 4.6 6.0 3.3 55–68 7.0 8.8 5.3

68–71 7.4 5.3 9.5 77–95 8.8 8.3 9.3

55–68 8.1 10.8 5.5 68–71 9.0 — 9.0

88–68 9.7 9.7 — 50–71 9.3 — 9.3

88–95 10.3 10.3 — 55–71 10.0 — 10.0

88–77 10.7 10.7 — 88–55 12.4 12.3 12.5

88–50 11.0 11.0 — 88–77 13.3 10.3 16.3

88–71 12.0 12.0 — 50–55 13.3 18.5 8.0

77–68 12.9 21.3 4.5 50–68 13.4 20.8 6.0

77–95 13.3 7.0 19.5 77–71 14.3 — 14.3

88–55 13.3 13.3 — 95–88 14.5 12.8 16.3

50–71 13.6 17.8 9.5 88–68 15.9 9.3 22.5

77–55 15.5 21.5 9.3 88–50 17.8 12.0 23.5

77–71 16.1 24.7 7.5 88–71 17.8 — 17.8

50–55 16.4 21.3 11.5 50–77 20.0 22.0 18.0

50–68 16.5 27.0 6 95–68 20.9 22.5 19.3

95–55 16.5 21.0 12.0 77–68 21.5 22.0 21.0

95–71 16.5 23.8 9.25 95–55 21.6 24.0 19.3

95–68 17.1 22.8 11.5 77–55 22.0 32.0 12.0

95–50 19.4 20.3 18.5 95–50 23.1 17.8 28.5

50–77 20.7 22.8 18.7 95–71 23.3 — 23.3

86–68 15.8 21.0 14.5 86–55 14.4 11.8 17.0

86–88 16.0 — 16.0 86–71 18.0 — 18.0

86–71 16.4 18.0 14.8 86–68 18.2 18.1 18.3

86–55 16.9 22.0 11.8 86–88 26.7 33.7 19.7

86–50 28.5 21.0 36.0 86–50 29.2 19.7 38.8

86–77 29.5 21.0 38.0 86–77 41.4 40.5 42.3

86–95 33.1 32.0 34.3 86–95 42.9 48.1 37.8

Table 3.  MAE pair errors in ascending order. A and B denote the first and the second item, respectively, of each 
two-patient pair.
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A series of predictive investigations was subsequently performed. These were based on the consideration of 
patient pairs, wherein the single parameter value set assigned to a specific patient and tumour profile is used to 
predict the volumetric evolution of another patient’s tumour for the same profile (and vice versa). While bearing 
in mind all the shortcomings resulting from the limited number of patients, the methodology permitted a quan-
titative estimation of the tumours’ similarity and bilateral predictive ability in terms of their regression profile. 
Three patients have been identified, anyone of which can be used to predict the evolution of the tumours of the 
other two with very good results. At the same time, clinical cases with “outlier” regression profiles proved inade-
quate for the same purpose, supporting the relevance of the approach. Our observations show that the presented 
approach is promising in differentiating, in a quantifiable way, tumours with different regression profiles, a result 
that supports the model’s use in a predictive setting.

The simulation results indicate the inherent capacity of CERONCO to discern tumour profiles that are com-
patible with the actual evolution of a clinical tumour from incompatible ones, thereby complementing the char-
acterization of a tumour when experimental/clinical information is lacking. When many different scenarios are 
in accordance with the observed tumour behaviour, CERONCO can specify which clinical/experimental infor-
mation could be sought to narrow down the number of compatible tumour scenarios. It can also suggest plausible 
value ranges for currently unidentified parameters.

Figure 5.  Predictive tests with patients 55, 68, 71. Left panel: GF = 10%, HF = 30%, DF = 5%. Right panel: 
GF = 60%, HF = 30%, DF = 5%. Tumour volume time course for patients 55 (1st row), 68 (2nd row) and 71 (3rd 
row) using the mean value sets of the other two patients. 0: pre-therapy timepoint. The error bars indicate the 
permitted variability around the clinical VRP value according to the criterion VRP 10 (equation (11)) for the 
time points pre-therapy, midterm, BT0, BT1, BT2 successively. This variability is introduced to reflect possible 
tumour delineation errors.
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Our results also show that agreement with clinical data in volumetric terms alone may mask tumours with 
radically different characteristics and, hence, prognosis. This can be illustrated intuitively in the form of tumour 
relapse experiments, where tumours of different profiles, all compliant with the longitudinal volumetric data, 
may have a very different constitution in terms of the distinct tumour cell subpopulations having survived the 
treatment. These different post-therapy tumour constitutions are expected to display variable tumour regrowth 
potential. Such studies with CERONCO are ongoing and planned to form the subject of a dedicated publication.

All these observations carry important implications for the future clinical validation of CERONCO. A formal 
validation framework can be briefly outlined as follows:

•	 Parameter estimation:

•	 CERONCO parameter estimation for a subset of patients (training set), using a dense search of the tumour 
profile space. The number of candidate profiles can be reduced if specific information about the tumour 
profile or other features is available, through imaging or other studies, as well as if follow-up data are made 
available.

•	 Identification of a single representative parameter value set for each tumour profile/patient combination of 
the training set (the mean value parameter set is a strong candidate; a special handling has to be devised for 
the transition from the profile/patient/CKR value mean sets to profile/patient ones).

•	 Classifier construction:

Use of machine learning approaches for the identification of features that can define different patient 
classes. The goal will be to derive triple combinations of the form: patient class/tumour profile/assigned 
parameter value set.

•	 Validation:

Use of an independent set of patients (validation set) to evaluate predictive simulations, based on each 
patient’s class (use of the parameter value set identified previously for each profile of a patient class).

Clinical validation of complex multiscale models is a demanding long-term process, presupposing extensive 
interdisciplinary effort to overcome numerous challenges. The presented proof-of-concept results lend support to 
the possibility of using CERONCO for the prediction of response of cervical tumours to the considered treatment 
protocol, provided that rich clinical datasets are made available. It should be noted that the core modeling algo-
rithms and the presented methodology is fairly easily applicable to other types of cancer as well.

Data Availability
All the datasets generated during and/or analysed during the current study, apart from the imaging data, are 
included in the manuscript. Imaging data were used under license for the current study and are available with 
restrictions from Aarhus University, Denmark, upon reasonable request.
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