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Abstract: Many methods have been developed to detect coevolution from aligned sequences. However, all the existing 
methods require a one-to-one mapping of candidate coevolving partners (nucleotides, amino acids) a priori. When two 
families of sequences have distinct duplication and loss histories, finding the one-to-one mapping of coevolving partners 
can be computationally involved. We propose an algorithm to identify the coevolving partners from two families of sequences 
with distinct phylogenetic trees. The algorithm maps each gene tree to a reference species tree, and builds a joint state of 
sequence composition and assignments of coevolving partners for each species tree node. By applying dynamic program-
ming on the joint states, the optimal assignments can be identified. Time complexity is quadratic to the size of the species 
tree, and space complexity is exponential to the maximum number of gene tree nodes mapped to the same species tree node. 
Analysis on both simulated data and Pfam protein domain sequences demonstrates that the paralog coevolution algorithm 
picks up the coevolving partners with 60%–88% accuracy. This algorithm extends phylogeny-based coevolutionary models 
and make them applicable to a wide range of problems such as predicting protein-protein, protein-DNA and DNA-RNA 
interactions of two distinct families of sequences.

Introduction
Coevolution of molecular components has been widely used to study the structures and functions of 
bio-molecules. Selective constraints operate on the entire molecular system, which often require coor-
dinated changes of its components. These coordinated changes are manifested on the covariation of 
their DNA, RNA or protein sequences. In functional RNAs (e.g. ribosomal and transfer RNAs), inter-
acting nucleic acid pairs in the secondary structure undergo compensatory changes between Watson-
Crick (AU and CG) and GU base pairs (Noller and Woese, 1981; Gutell, Noller and Woese, 1986; 
Rzhetsky, 1995; Knudsen and Hein, 1999; Eddy, 2001; Pedersen et al. 2006). Furthermore, coordinated 
changes between non-standard Watson-Crick and GU pairs are found in the tertiary interactions (Noller, 
2005; Dutheil et al. 2005; Yeang et al. 2007). In proteins, previous studies indicate coevolving sites 
within or between proteins are physically interacting (Pollock, Taylor and Goldman, 1999; Atchley 
et al. 2000; Tillier and Liu, 2003), energetically coupled (Lockless and Ranganathan, 1999), and located 
at the functionally important sites (Fares and Travers, 2006; Yeang and Haussler, 2007).

A large number of methods have been proposed to detect coevolving components from multiple 
sequence alignments. These methods fall into two general categories. Non-parametric methods calculate 
various covariation metrics of aligned sequences, including mutual information (Atchley et al. 2000; 
Tillier and Liu, 2003; Ramani and Marcotte, 2003; Gloor et al. 2005), correlation coeffcients (Goh et al. 
2000; Dutheil et al. 2005; Fares and Travers, 2006), and the deviance between marginal and conditional 
distributions (Lockless and Ranganathan, 1999). Alternatively many authors have explicitly adopted 
parametric models of continuous-time Markov processes (CTMP) for sequence substitution and applied 
a hypothesis testing framework to determine coevolution (e.g. Pagel, 1994; Rzhetsky, 1995; Pollock, 
Taylor and Goldman, 1999; Knudsen and Hein, 1999; Barker and Pagel, 2005; Pedersen et al. 2006; 
Yeang et al. 2007). Given the CTMP parameters, aligned sequences and their phylogenetic tree, we can 
calculate the likelihood ratio between the coevolutionary and null models and use it to predict the 
coevolving sites.

Both parametric and non-parametric methods require a one-to-one mapping of candidate coevolving 
partners a priori. This is straightforward for intra-molecular interactions when there is only one family 
of sequences. Problems arise for inter-molecular interactions when two families of homologous mol-
ecules (RNAs, genes, protein domains) have distinct phylogenetic trees. Due to different gene duplica-
tion and loss histories, one molecule may have multiple choices of coevolving partners (when the 
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coevolving partner in the ancestral species 
undergoes one or multiple duplications in the con-
temporary species) or no possible coevolving 
partner at all (when the coevolving partner in the 
ancestral species is lost in the contemporary spe-
cies). Even when there is one gene from each 
family in a contemporary species, they are not 
necessarily coevolved if they belong to the non-
interacting paralogous lineages. Identification of 
the coevolving partners from each species and the 
coevolving joint tree from the individual gene trees 
is computationally non-trivial and has rarely been 
explored by previous methods of coevolutionary 
analysis. Most previous works avoid this problem 
by restricting to intra-molecular coevolution (e.g. 
Tillier and Liu, 2003; Fares and Travers, 2006), 
manually picking the members (e.g. Goh et al. 
2000; Gloor et al. 2005), or adopting simple 
heuristics to choose the paralogous lineages that 
maximize the coverage in the species tree 
(e.g. Yeang and Haussler, 2007). Exhaustive search 
on all possible selections, albeit accurate, is intrac-
table as the number of possible combinations is 
exponential to the number of species.

In this work we propose an algorithm to simul-
taneously identify the coevolving partners and 
compute the likelihood score from two families of 
sequences that have distinct phylogenetic trees. We 
first apply reconciliation to map each gene tree (the 
phylogenetic tree of each family of sequences) to 
a reference species tree (the phylogenetic tree of 
the species where they reside). For each species 
tree node, we define a joint state of the sequence 
composition of gene tree nodes in each family and 
the assignment of the coevolving partners. A 
continuous-time Markov model for the sequence 
substitution of the two families is constructed. The 
coevolving subtree follows a joint coevolutionary 
CTMP model, whereas the remaining members of 
the two families are independently evolved. The 
choice of the coevolving subtree is dictated by the 
assignment of coevolving partners in each node. 
We then recursively apply dynamic programming 
to maximize the likelihood over the selection of 
coevolving partners and sum over possible 
sequence composition. The algorithm guarantees 
to find a maximum likelihood coevolving subtree. 
Time complexity is polynomial in the size of the 
species tree and space complexity is exponential 
in the maximum number of gene tree nodes mapped 
to the same species tree node. Our algorithm 
successfully picks up the coevolving partners on 

simulated data with 60%–88% accuracy. Moreover, 
on Pfam protein domain sequences our algorithm 
accurately identifies the domain pairs belonging to 
the same proteins.

The algorithm extends the power of existing 
CTMP models to two families of sequences with 
distinct phylogenetic trees. This extension is essen-
tial for detecting any inter-molecular interactions 
since almost all gene (protein, protein domain, 
functional RNA) families undergo different dupli-
cation and deletion histories. It can be applied to 
a wide range of problems, such as predicting 
protein-protein, protein-DNA and DNA-RNA 
interactions.

Methods

Overview of the algorithm
The paralog coevolution algorithm is based on the 
following hypotheses. First, both the species tree 
and the gene trees of the two families are correct. 
Second, the mapping from each node of a gene tree 
to the species tree – reconciliation – is correct. 
Third, in each ancestral or contemporary species, 
there is at most one pair of coevolving partners. 
Fourth, coevolving partners are the gene tree chil-
dren of the coevolving partners in their parent 
species, unless they are the roots. Fifth, the 
sequence substitution of the coevolving subtree 
follows a joint CTMP of a given coevolutionary 
model, whereas the sequence substitution of the 
remaining parts of each gene tree follows an inde-
pendent CTMP. Hypothesis 1 is the the premises 
of all phylogenetic tree-based models. Hypothesis 
2 allows us to apply a reconciliation algorithm to 
find the mapping from gene trees to the species 
tree. Hypotheses 3 and 4 simplify the problem and 
make it amenable for dynamic programming. 
Hypothesis 5 is the premises of all CTMP models 
for coevolution.

The inputs of the algorithm include the species 
tree and the gene trees of both families, the 
sequences on the leaves of each gene tree, and the 
substitution rate matrices for single components 
and the pairwise coevolutionary model. Given 
these inputs and an assignment of coevolving 
partners in each species node, the likelihood of the 
data is the product of the likelihoods on the 
coevolving subtree and the independent parts. The 
objective is to find the coevolving partner 
assignment that maximizes the joint likelihood 
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score. The outputs of the algorithm are the 
coevolving partner assignment at each species node 
and the log likelihood ratio between the coevolu-
tionary and the null models.

We construct an augmented CTMP model on 
the species tree. A joint state ( ( ), ( ),S A AN N1 1

π  
S B BN N1 1

( ), ( ))π  of a species node N1 constitutes the 
sequence composition S AN1

( )  and S BN1
( ) of the 

gene tree nodes from families A and B mapped to 
N1, and the assignment ( ( ), ( ))π πN NA B

1 1
 of a pair 

of coevolving partners from these gene tree nodes. 
The evolution of the joint states follows hypoth-
eses 4 and 5. Suppose N2 is a child node of N1 in 
the species tree and (SN2

 (A), π N2
 (A), SN2

 (B), 
π N2

 (B)) its joint state. According to hypothesis 4, 
the partner assignment (π N2

 (A), π N2
 (B)) on node 

N2 is compatible with (π N1
 (A), π N1

 (B)) only if 
π N2

 (A) and π N2
 (B) are the children of π N1

 (A) and 
π N1

 (B) in the gene trees of A and B respectively. 
According to hypothesis 5, the sequence substitu-
tion from the coevolving partners (π N1

 (A), π N1
 (B)) 

on N1 to the coevolving partners (π N2
 (A), π N2

 (B)) 
on N2 follows the joint CTMP model, whereas the 
sequence substitution of the remaining nodes fol-
lows the independent CTMP model.

Similar to the coevolutionary CTMP model on 
a single phylogenetic tree, the likelihood of the 
observed sequences conditioned on the joint state 
of a species node can be recursively expressed by 
the conditional likelihoods of its children 
(equation 9). It maximizes over the assignments 
of coevolving partners and sums over the possible 
sequence states of the internal nodes. A variation 
of the standard dynamic programming algorithm 
(Felsenstein, 1981) can effciently evaluate these 
conditional probabilities. Furthermore, by itera-
tively fixing the assignment on each species node 
and applying dynamic programming conditioned 
on the fixed assignments, we can identify a set of 
optimal assignments. This is similar to finding a 
MAP configuration of loopless factor graph mod-
els using max-product (Kschischang et al. 2001).

Similar to other CTMP models, the input sequences 
of our algorithm are the sequences for a pair of posi-
tions in the two families. In simulation analysis, we 
generated the sequences of 10 position pairs from the 
coevolutionary model, applied the paralog coevolution 
algorithm to the sequences of all position pairs and 
combined these results to determine coevolving part-
ners. In the analysis of real data, we treated each 
position pair independently, since the number of can-
didate position pairs for each domain family pair 

varies substantially and the prediction results may be 
affected by the number of position pairs.

Continuous-time markov models
The sequence composition of a single nucleic or 
amino acid is modeled by a continuous-time 
Markov process (Yang, 1995). Denote by x(t) the 
sequence composition at time t. P(x(t)) is a prob-
ability vector of x(t) and follows a Markov process 
at an infinitesimal time interval:

 
d x t
dt

x tP P Q( ( )) ( ( ))= . (1)

where Q is a substitution rate matrix. Each row of Q 
must sum to 0 in order to make components of P(x(t)) 
sum to 1. We use the HKY model of nucleotide sub-
stitution (Hasegawa, Kishino and Yano, 1985) and 
the Dayhoff matrix of amino acid substitution (Dayoff 
et al. 1978). The transition probability P(x(t) | x(0)) at 
a finite time interval t is given by the matrix expo-
nential eQt, which is the solution of equation 1:

 P x t b x a e a bt( ) = ( ) =( ) =0 Q [ , ].  (2)

Define x(t) = (x1(t), x2(t)) as the joint state of two 
components. The joint rate matrix Q2 is much 
bigger (16 × 16 for nucleotide pairs and 400 × 400 
for amino acid pairs). If two sites are independently 
evolved, then the joint rate matrix Q2 can be derived 
from the rate matrix of single sites (Pagel, 1994):
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





Q if
otherwise.

(3)

Q2
i [(a1, a2), (b1, b2)] specifies the sequence substitu-

tion rate of the independent model from state 
(a1, a2) to state (b1, b2). In Q2

i , the rate of a single 
site change is equal to the corresponding rate in 
the single site rate matrix Q, and the rates of 
double site changes are all zero.

The joint rate matrix of two coupled sites has much 
fewer constraints, thus is diffcult to estimate and 
subject to over-fit the limited data. To capture the 
covariational nature of coevolution we adopt a simple 
reweighting scheme on the joint rate matrix of 
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independent evolution. It penalizes single transitions 
and rewards double transitions in the rate matrix:

by Zmasek and Eddy, 2001. Briefly, it recursively 
maps nodes in the gene tree to nodes in the species 

where  is the penalty for single transitions and r a a( , )1 2  
the reward for double transitions. r a a( , )1 2  is equal for 
all the double transitions from the same state (a1, a2) 
and forces the diagonal entries in Q2

c to be identical 
to the independent model Q2

c. This simple reweight-
ing scheme applies to both nucleotide and protein 
sequences, requires no assumption about the 
coevolving states, and has only one extra free 
parameter (). Previously we successfully detected 
RNA secondary and tertiary interactions (Yeang 
et al. 2007) and protein structural/functional con-
straints (Yeang and Haussler, 2007) using this 
model. Nevertheless, we shall emphasize the choice 
of the CTMP substitution rate matrix is independent 
of the assignment optimization algorithm. The 
assignment optimization algorithm can take any 
consistent substitution rate matrix such as the ones 
used in Pagel, 1994; Rzhetsky, 1995; Pollock, Taylor 
and Goldman, 1999; and Knudsen and Hein, 1999.

Reconciliation and simplification 
of gene-species mapping
The phylogenetic trees of a family of homologous 
genes and the species they reside are often differ-
ent due to the duplication and loss of genes. 
Reconciliation maps each node in the gene tree to 
a node in the species tree, and designates it as a 
duplication or speciation event. We adopt a varia-
tion of the parsimonious reconciliation algorithm 

tree. An internal gene tree node g is mapped to 
species tree node (g), the most recent common 
ancestor of species tree nodes (g1) and (g2) 
mapped from g’s children g1 and g2. g is a duplica-
tion node if (g) = (g1) or (g) = (g2). 
Figure 1.1 illustrates reconciliation. The quality 
of the parsimonious reconciliation has been 
challenged and various alternative approaches 
have been proposed (e.g. Arvestad et al. 2003, 
Berglund-Sonnhammer et al. 2006). We chose the 
parsimonious reconciliation for its simplcity, and 
this choice is again independent of the assignment 
optimization algorithm. Other reconciliation 
methods can be applied to generate the mapping 
from gene trees to the species tree.

A pre-requisite of our algorithm is that 
sequence evolution of nodes in a gene tree can be 
expressed as the joint state transitions of nodes 
in the species tree. When multiple nodes along a 
path of a gene tree are mapped to the same species 
node, the internal transitions of those nodes can-
not be captured by the joint state transitions in 
the species tree (Fig. 1.2). Complex states of 
partner assignments are needed if hierarchies of 
gene tree nodes are mapped to the same species 
tree node. Pairs of nodes, paths, or nodes and 
paths can be selected as coevolving partners. To 
avoid this complexity we have to flatten the hier-
archies mapped to the same species node into one 
layer and update the branch length accordingly 

g1 g2 g3 g4 s1 s2 s3g5 g6

D

S

g3g1 g2 g4 g5 g6
s1

1) 2) 3)

s2 s3
g1 g3 g2 g4 g5 g6
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D

Figure 1. (1)Reconciliation of a gene tree to a species tree. S: speciation. D: duplication. (2) Concate-nated representation of the reconciled 
tree. (3) The sub gene tree mapped to the root of the species tree is collapsed into one node.
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(Fig. 1.3). This is done by the following procedures. 
From bottom of the species tree, identify the “for-
est” of gene tree nodes mapped to the same spe-
cies node, and find the top layer of these gene tree 
nodes. Collapse all the nodes below the top layer, 
such that the top layer gene tree nodes mapped to 
one species node directly link to the top layer 
gene tree nodes mapped to its child species node. 
The branch length between two top layer gene 
tree nodes is the path length between them in the 
uncollapsed tree.

Evaluating marginal likelihoods
We first define the following notations. Let A and B 
be the two families of genes, TA, TB their gene trees, 
and T the species tree. Denote pa(g) and ch(g) as 
the parent and children of g. For each species tree 
node N ∈ T, let N(A) = {g ∈ TA : (g) = N } and 
N(B) = {g ∈ TB : (g) = N }be the gene tree nodes 
mapped to N. Let  be the alphabet set (nucleotides 
or amino acids). For each species tree node N, 
denote SN (A) ∈ | N (A) | and SN (B) ∈ | N (B) | as the 
sequence composition of N(A) and N(B). In addi-
tion, let πN (A) ∈ N (A) ∪ φ and πN (B) ∈ N (B) ∪ φ 
be the assignment of coevolving partners of A and 
B in species tree node N. Define JN = (SN (A), πN (A), 
SN (B), πN (B) the joint state of sequences and 
assignments of the gene tree nodes mapped to N. 
Finally, denote DN  as the sequence composition of 
all the A and B genes mapped to the descendant 
leaves of N, and define Dg of a gene tree node g as 
the sequence composition of g’s descendants leaves 
in the gene tree.

Consider the subtrees in Figure 2. The conditional 
probability P D JN N( )

1 1
|  specifies the likelihood of 

observing the gene sequences in the descendants of 
N1 conditioned on the joint state of N1. It is calcu-
lated by summing over all possible sequences and 
maximizing over all possible assignments of the 
internal nodes connecting N1 and its descendants.

The conditional likelihood can be expressed by 
a recursive formula:

where  denotes that the assignment in a child 
species node is compatible with the assignment in 
its parent. According to hypothesis 4, (π N2

 (A), 
π N2

 (B))  (π N1
 (A), π N1

 (B)) if pa(π N2
 (A)) = π N1

 (A) 

and pa B BN N( ( )) ( )π π
2 1

= , or that π N2
 (A) = φ and 

π N2
 (B) = φ.
Conditional probability P J JN N( | )

2 1
 can be 

factorized as

P J J

P A B A B

P S A S B J

N N

N N N N

N N

( | )

( ( ), ( )| ( ), ( ))

( ( ), ( )|

2 1

2 2 1 1

2 2

= π π π π

NN N NA B
1 2 2
, ( ), ( )).π π

 (6)

where the conditional probability P(π N2
 (A), 

π N2
 (B) | π N1

 (A), π N1
 (B)) is uniform over all 

the compatible assignments (π N2
 (A), π N2

 (B))  

(π N1
 (A), π N1

 (B)) and 0 for incompatible assignments.
Given the assignments of the parent (N1) and 

one child (N2), the N2 part in equation 5 is the 
product of three terms (Fig. 2):

1. The coevolving portion from (π N1
 (A), π N1

 (B)) 
to the descendants of (π N2

 (A), π N2
 (B)).

2. The independent portion of the nodes in 
N A A N B BN N( ) \ ( ) ( ) \ ( )π π

1 1
and .

3. The independent portion of the siblings of 
π N2

 (A) and π N2
 (B) in N2.

Notice the second term is common for both 
N2 and N3 since it is independent of the assignment 
in N2 and N3. It has to be evaluated only once. If 

N1 N1

A B

N2 N2N3 N3

Figure 2. Evaluating the conditional likelihood. Solid: the coevolv-
ing portion. Dashed: the independent portion starting at N1. Dotted: 
the independent portion of the siblings of the coevolving nodes at 
N2 and N3.

P D JN N A B A B S A S BN N N N N N
( | ) max( ( ), ( )) ( ( ), ( )) ( ), ( )1 1 2 2 1 1 2 2

= π π π π

PP J J P D JN N N N

A B A B SN N N N

( | ) ( | )

max( ( ), ( )) ( ( ), ( ))

2 1 2 2

3 3 1 1

∑ ⋅

π π π π NN NA S B N N N NP J J P D J
3 3 3 1 3 3( ), ( ) ( | ) ( | )∑

(5)

π N1 (A) = φ and π N1 (B) = φ , then only the second 
term is valid. If π N1 (A) ≠ φ , π N1 (B) ≠ φ , π N2

 (A) 
= φ and π N2

 (B) = φ , then the second and the third 
terms are valid.
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The first term follows the recursive formula of 
the coevolutionary model:

S A S BN A N B

N A N B N A
P S A S B S A

π π

π π π

2 2

2 2 1

( ) ( )

( ) ( ) ( )

( ), ( )

( ( ), ( )| ( ),

∑ ⋅

SS B

P D S A S B
N B

N A N B N A N BA B

π

π π π π

1

2 2 2 2

( )

( ) ( ) ( ) ( )

( ))

( | ( ), ( ))( ), ( )

⋅

..

 
(7)

Conditional probability P S A S B
N A N B

( ( ), ( )|
( ) ( )π π2 2

  
S A S B

N A N Bπ π1 1( ) ( )
( ), ( )) is calculated using equations 

2 and 4. P D S A S B
N A N B N A N BA B( | ( ), ( ))

( ) ( ) ( ) ( )( ), ( )π π π π2 2 2 1
 

is the coevolving portion of P D JN N( )
2 2
| . It can be 

obtained by dividing P D JN N( )
2 2
|  by the indepen-

dent portion of P D JN N( )
2 2
| . Thus

By applying equation 9 recursively we can 
calculate the conditional likelihood P(DN | JN ) for 
each species tree node.

Finding the optimal assignments
An optimal assignment (π N1

 (A), π N1
 (B), …, π Nn (A), 

π Nn (B)) maximizes the marginal likelihood 
P(D | π N1

 (A), π N1
 (B), …, π Nn (A), π Nn (B)) of the 

observed sequences. The maximum likelihood is 
equal to

max

( ( ), ( )) ( | ).

( ), ( )

( ), ( )

π πNr Nr

r r r r

Nr Nr

A B

N N N N
S A S B

P S A S B P D J

⋅

∑  
(10)

where Nr is the root node of T and P SNr( ) the prior 
probability of sequence composition for gene tree 
nodes mapped to Nr. Thus the optimal assignment 
( π̂

rN  (A), π̂
rN
 (B)) at the root can be obtained by 

maximizing equation 10.
To find the optimal assignments of other nodes, 

we iteratively fix the assignments of ancestral 
nodes and calculate equation 10 conditioned on 
the fixed assignments. This leads to the following 
algorithm:

1. Set current node N = Nr , the root node of T, 
evidence E = φ.

2. Calculate the function y (πΝ  (A), πΝ  (B) | E ) = 
ΣS A S B N N N NNr Nr r r r r

P S A S B P D J E( ), ( ) ( ( ), ( )) ( | , ) 
conditioned on E and each possible assignment 

for any joint state JN2
 where P D JN N( ) .

2 2
0| >  

P D JN N( )
2 2
|  is already computed, and the terms in 

the denominator can be evaluated by standard 
dynamic programming of single components.

The second and third terms in the N2 part of 
equation 5 are the product of the likelihoods of 
single components and can be effciently calculated. 
The evaluation of the N3 part of equation 5 follows 
the same procedure. By combining these terms, 
equation 5 is reduced to
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part and |  |2 ⋅ (nA + nB) multiplications on the 
independent part. n complete message passings 
are required to fix the assignment in each node. 
Hence time complexity is O (|  |6 n2). Time 
complexities of reconciliation and gene tree 
flattening are O (nA + nB) and O(nk) respectively 
and are negligible.

Albeit quadratic in the size of the species tree, 
the computational time is long for protein sequences 
(|  | = 20). We alleviate the problem by quantizing 
branch lengths into a small number of intervals and 
computing the matrix exponentiation on quantized 
branch lengths. The conditional probability 
matrices on quantized branch lengths are pre-
computed, stored and used repetitively along each 
branch in each iteration. This simplification reduces 
the time cost of exponentiation to a constant 
(O (|  |6 ⋅ q), q is the number of quantized intervals), 
and the overall time complexity becomes 
O (|  |4 ⋅ n2). However, the likelihood score is no 
longer accurate since the conditional probabilities 
are approximations.

The algorithm stores P (DN | JN ) for each joint 
state on each species tree node. There are at most 
|  |2k sequence states and k 2 assignment states for 
each node. Space complexity is the number of joint 
states of the species tree and is O (nk 2|  |2k ). The 
space complexity for the pre-computed matrix 
exponentials on quantized branch lengths is 
O(|  |4 ⋅ q) and negligible.

Results
As a proof-of-concept demonstration we applied the 
paralog coevolution algorithm first to a simulated 
dataset and then to aligned protein domain sequences 
from the Pfam database (Bateman et al. 2002). On 
simulated data the paralog coevolution algorithm 
identified the coevolving partners with 73%–88% 
accuracy. More strikingly, on aligned protein domain 
sequences the algorithm identified the domain pairs 
belonging to the same proteins with a similar range 
of accuracy rate. The paralog coevolution algorithm 
significantly outperforms random assignments on 
both simulated and real data.

Analysis on simulation data
We first applied the paralog coevolution algorithm 
on simulated data. A binary species tree and two 
compatible gene trees were generated by branching 
processes. The length between two consecutive 

of πΝ  (A), πΝ  (B). Find ˆ ˆ( ( ), ( ))N NA Bπ π =
arg max ( ), ( )π πN NA B y (πΝ  (A), πΝ  (B) | E ).

3. ˆ ˆ{( ( ), ( ))}π π= N NE E A BÈ . Descend to a child 
Nc of N.

4. Iteratively repeat 2–3 until all nodes are fixed.

y (πΝ  (A), πΝ  (B) | E ) uses the recursive equation 9 
to calculate P D |J EN Nr r

( , ) except fixing the as 
signments in E instead of maximizing them.
Proposition Assignment E obtained from the 
recursive algorithm is an optimal assignment of 
P D A B A BN N N Nr r
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1 1
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Proof Sketch Equation 9 is exact since the model 
structure is a tree. Initially, E = φ is contained in a 
global optimal assignment. At each step of the 
iteration, it can be shown that
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where π \(E È N) denotes the assignments of all 
nodes except the fixed assignments E and the 
current node N. Clearly, if E is contained in a global 
optimal assignment, then the optimal (πN (A), 
πN (B)) obtained from y (πΝ  (A), πΝ  (B) | E ) is also 
contained in a global optimal assignment. 
Otherwise (πN (A), πN (B)) would be replaced by 
the assignment of N in the global optimum. By 
induction the final E obtained from the recursive 
algorithm is a global optimal assignment. Never-
theless, multiple optimal assignments may exist 
and the recursive algorithm can only find one of 
them. Q.E.D.

Time and space complexity
The computational bottlenecks of the algorithm 
are matrix exponentiation and multiplication. We 
apply the Padé polynomial approximation to com-
pute matrix exponentials (Sidje, 1998), whose time 
complexity is cubic to the dimension of the matrix. 
Denote n, nA and nB as the number of nodes in the 
species and gene trees, and k the maximum num-
ber of gene tree nodes mapped to the same species 
tree node. Passing messages of the entire tree 
(equation 9) requires n exponentiation of the joint 
rate matrix (dimension |  |2 × |  |2), nA + nB 
exponentiation of the single rate matrix (dimension 
|  | × |  |), |  |4 ⋅ n multiplications on the coevolving 

y 
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branching events followed an exponential 
distribution with rate 0.01. The root of a gene 
tree was mapped to the root of the species tree. 
Each branching event in a gene tree was ran-
domly determined as either speciation or 
duplication. For speciation the two children of 
a gene tree node were mapped to the two children 
of its species tree node. For duplication the 
children were mapped to the same species tree 
node. The probability ratio of duplication versus 
speciation events was set such that the number 
of genes from each family was about twice as 
the number of species. To reduce computational 
time we used RNA nucleotide alphabets (AUCG). 
The coevolving subtrees of the two families were 
chosen a priori. The sequences of the indepen-
dent portion in each family were generated by a 
single CTMP with the HKY model. The joint 
sequences of the coevolving portion of the two 
families were generated by a coevolving CTMP 
process (equation 4) with  = 0.1. In each trial 
we generated the sequences of 10 position pairs 
independently. The assignments of coevolving 
partners in each species were determined by the 
majority votes of the assignments inferred from 
the sequences of the 10 position pairs. Since the 
co-species genes with identical sequences are 
not distinguishable, we compared the number of 
mismatched sequences (instead of genes) 
between the reference and inferred coevolving 
pairs. As a comparison we randomly selected a 
pair of genes from each species. 100 simulated 
data were generated for 5, 10, 20 and 40 species 
respectively.

Figure 3 shows the mean error rates (the fraction 
of mismatched coevolving sequences) of the 
paralog coevolution algorithm and random 
assignments versus the number of species. Clearly, 
the paralog coevolution algorithm consistently 
outperforms random assignments when the tree 
size varies from 5 to 40. The error rates grow from 
12% to 27% as the number of species increases 
from 5 to 40. This is sensible since the coevolving 
pairs are confounded by more false positives when 
the tree size increases. The error rate gap between 
the paralog coevolution algorithm and random 
assignments also increases with the number of 
species: 6% for 5 species and 13% for 40 species. 
The error rate difference is greater than one 
standard deviation as the number of species 10, 
suggesting the difference is statistically 
significant.

Analysis on Pfam protein domain 
sequences
We then applied the paralog coevolution algorithm 
to pairs of aligned domain family sequences from 
the Pfam database (Bateman et al. 2002). There 
are 8183 domain families, 3722468 domain family 
pairs that co-appear in more than 20 species, and 
more than 1.171 × 1011 inter-domain position pairs. 
Previously we applied a large-scale screening on 
those 0.1 trillion position pairs and identified 3953 
candidate coevolving position pairs from 582 
domain family pairs (Yeang and Haussler, 2007). 
These position pairs passed various filterings of 
sequence covariation and had high scores accord-
ing to the coevolutionary model (using a heuristic 
instead of the paralog coevolution algorithm to 
extract coevolving partners). Furthermore, the 
selected position pairs in the same proteins or 
protein complexes exhibited spatial proximity, and 
many of the coevolving positions were located at 
functionally important sites. Hence they are strong 
candidates for coevolving positions. To save time 
we decided to focus our search on those 3953 posi-
tion pairs. The CTMP parameters were set accord-
ing to the values in Yeang and Haussler, 2007. The 
list of those 3953 candidate position pairs are 
reported in the Supplementary File 1.

There is no gold standard for coevolving 
partners in the real data. Since domains belonging 
to the same proteins are more likely to coevolve, 
we expect to identify the co-protein domains using 
the paralog coevolution algorithm. Three more 
pre-filtering procedures were applied to further 
trim down the data. First, we ruled out the domain 
family pairs which contained co-protein domains 
in less than half of their members. Domain family 
pairs of different proteins are excluded since we 
cannot validate the results. Second, within each 
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species there may exist multiple paralogous 
members of an identical sequence. To avoid 
confusion we only kept one representative from 
this set and removed the others. Third, to relieve 
the computational burden we filtered out the 
position pairs that generated more than 1 million 
joint states in at least one species node. 475 position 
pairs were retained after these filtering criteria.

For each position pair we calculated the optimal 
assignments and log-odds ratio of the aligned 
sequences and counted the fraction of inferred 
coevolving partners belonging to the same protein. 
As a comparison we also performed 1000 random 
assignments and counted the co-protein rate. 
Figure 4.1 shows the accuracy (co-protein) rates 
versus the threshold on the log-odds ratios. Clearly, 
a higher fraction of co-protein domains are 
identified by the paralog coevolution algorithm 
with a more stringent log-odds ratio cutoff. With 
threshold 10.0, 80% of the inferred coevolving 
partners appear in the same proteins. The accuracy 
rate of random assignments is uncorrelated with 
the log-odds ratio cutoff (as expected) and is 
substantially lower than the paralog coevolution 
algorithm. Strikingly, even on the sequences of 
weak coevolutionary scores (large negative values) 
the paralog coevolution algorithm still outperforms 
random assignments.

We also calculated the p-value of each paralog 
coevolution prediction (the fraction of random 
assignments exceeding the accuracy rate of the 
paralog coevolution prediction) and plotted the 
fraction of the predictions with p-value 0.05 
versus the log-odds ratio threshold in Figure 4.2. 
It demonstrates the improvement of the prediction 
significance with an increasing threshold. With 
threshold 10.0 over 80% predictions are statisti-
cally significant.

The price of a stringent threshold is the reduction 
of coverage. Figure 4.3 shows the number of 
predictions passing the thresholds. With threshold 
10.0 only 30 position pairs were retained.

Discussion
As genome-scale sequences of more species 
become available, more information about the 
dependent evolution of multiple loci will be unrav-
eled. Since gene duplication and loss are prevalent 
in every genome, extracting the dependency from 
families of paralogous/orthologous genes is critical 
in studying sequence evolution. Current methods 
of detecting sequence coevolution are primarily 
restricted to single families of genes. We propose 
an algorithm to identify coevolving partners from 
two paralogous families. The method builds a joint 

Figure 4. Prediction results on Pfam data, 1) mean accuracy rate, 2) fraction of statistically significant predictions, 3) number of predictions 
above the threshold.
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state of sequence composition and the assignment 
of coevolving partners, and applies dynamic pro-
gramming to identify the optimal assignments. 
Under certain hypotheses about sequence evolution 
this algorithm guarantees to find the maximum 
likelihood assignments. Time complexity is qua-
dratic to the size of the species tree, whereas space 
complexity is exponential to the maximum number 
of gene tree nodes mapped to the same species tree 
node. The algorithm outperforms random assign-
ments on both simulated RNA and real protein 
sequences. On Pfam protein sequences the algo-
rithm identifies co-protein domain pairs with up to 
80% accuracy.

Despite its advantages, the algorithm has two 
shortcomings. First, time and space complexities 
are large for big trees, especially for protein 
sequences (high |  |6 ) and the species tree with many 
gene tree nodes mapped to the same species node 
(high |  |2k). We alleviated the problem by precom-
puting the matrix exponentials of quantized branch 
lengths. Yet these approximations also reduce the 
accuracy of likelihood scores. Second, the algorithm 
is based on several strong hypotheses about Z trees 
and sequence evolution. In the real data these 
hypotheses may not hold. For instance, reconcilia-
tion may have errors, sequence substitution of single 
or double components may not follow the paramet-
ric models, there may exist multiple pairs of 
coevolving partners in each species. A robust revi-
sion of the current algorithm to reduce space/time 
complexity and the requirement for the strong 
hypotheses are called for in the future.
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