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Abstract: Assessment of physical performance by standard clinical tests such as the 30-s Chair Stand
(30CST) and the Timed Up and Go (TUG) may allow early detection of functional decline, even in
high-functioning populations, and facilitate preventive interventions. Inertial sensors are emerging to
obtain instrumented measures that can provide subtle details regarding the quality of the movement
while performing such tests. We compared standard clinical with instrumented measures of physical
performance in their ability to distinguish between high and very high functional status, stratified
by the Late-Life Function and Disability Instrument (LLFDI). We assessed 160 participants from the
PreventIT study (66.3 ± 2.4 years, 87 females, median LLFDI 72.31, range: 44.33–100) performing
the 30CST and TUG while a smartphone was attached to their lower back. The number of 30CST
repetitions and the stopwatch-based TUG duration were recorded. Instrumented features were
computed from the smartphone embedded inertial sensors. Four logistic regression models were
fitted and the Areas Under the Receiver Operating Curve (AUC) were calculated and compared
using the DeLong test. Standard clinical and instrumented measures of 30CST both showed equal
moderate discriminative ability of 0.68 (95%CI 0.60–0.76), p = 0.97. Similarly, for TUG: AUC was 0.68
(95%CI 0.60–0.77) and 0.65 (95%CI 0.56–0.73), respectively, p = 0.26. In conclusion, both clinical and
instrumented measures, recorded through a smartphone, can discriminate early functional decline in
healthy adults aged 61–70 years.
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1. Introduction

Early identification of people at risk of functional decline is essential for targeting preventive
interventions for the ones at risk. Physical function is one’s ability to carry out discrete actions or
activities of daily living [1] and can be reliably assessed with questionnaires such as the Late-Life
Function and Disability Instrument (LLFDI) [2,3]. Although the application of these instruments
is recommended and clinically useful to identify people at risk or assess changes over time, they
have some limitations. For instance, they may suffer from floor or ceiling effects, and since they are
self-reports, the accuracy of the data collected could be affected by social desirability or response
biases [4].

Physical performance is one domain of physical function that can be objectively measured using
standard clinical tests, such as counting repetitions in the 30-s Chair Stand Test (30CST) and timing
duration of a Timed up and Go test (TUG) [5–7]. Although the standard clinical outcomes of these
physical performance tests are commonly used assessing older or patient populations [5,6], their ability
to detect early signs of functional decline in relatively healthy and fit older adults is not clear.

Instrumented assessments with the use of inertial sensors allow objective measurements of the
quality of the task and its (sub-)movements while performing such physical performance tests [8].
Recent studies demonstrated that features obtained with inertial sensors, alone or in combination with
the standard clinical outcome, can be of added value for identification or prediction of physical function,
without compromising the simplicity of testing [9,10]. Furthermore, it was shown that instrumented
physical performance tests were more strongly related to health status, functional status, and daily
physical activity compared to the manually recorded version of the tests [11]. Still, the potential ability
of such features to detect slight changes in functional status for an early detection of functional decline,
when preventive and/or protective actions can be put in place, needs further investigation.

The aim of this study was to assess whether standard clinical measures of physical performance and
instrumented measures collected through a smartphone during 30CST and TUG tests, can distinguish
between older individuals with a High and Very High Functional Status, stratified by the LLFDI.

2. Materials and Methods

2.1. Population

To investigate the potential of standard clinical and instrumented measures in discriminating
at high functional status, data from the baseline cohort of the H2020 PreventIT project [12] were
analyzed. PreventIT [13] is a three-armed multicenter trial with three centers in Trondheim (Norway),
Amsterdam (The Netherlands), and Stuttgart (Germany). The treatment arms include two behavior
change exercise programs and a control group. It makes use of a new ICT-based behavioral change
approach for young older adults for preventing functional decline and for motivating people to take
care of their own health. Participants were invited by a random draw from local registries and included
if they were (i) aged between 61 and 70 years, (ii) retired for more than six months, (iii) home-dwelling,
(iv) able to read newspaper or text on smartphone (SP), (v) able to walk 500 m without walking aids,
(vi) without cognitive impairments (Montreal Cognitive Assessment, MoCA > 24 points [14]), and (vii)
they were excluded if they participated in exercise classes more than once a week or did sport for more
than 150 min per week.

Within the larger PreventIT cohort, 160 participants (mean age 66.3 ± 2.4 years, 87 females) who
met the inclusion/exclusion criteria also performed both the instrumented 30CST and TUG tests.
During the baseline assessment, participants filled questionnaires about age, gender, body mass index
(BMI), physical activity (PA), hand grip strength (HAND [15]), and cognitive status (MoCA [14]).

2.2. Outcome

The Late-Life Function and Disability Instrument (LLFDI) was used to measure the functional
status of participants [16]. The LLFDI evaluates both function and disability, assessing the poor
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ability to perform specific physical tasks encountered in daily routines. The function component,
which was used in this study, evaluates self-reported difficulty to perform 32 activities in daily living
consisting of three dimensions: upper extremity, basic lower extremity, and advanced lower extremity.
Questions are phrased, “How much difficulty do you have doing a particular activity without the help
of someone else and without the use of assistive devices?” with a rating scale from 1 to 5 (the higher
the scoring category, the less difficulty the person has in doing activities). The overall function raw
score is obtained adding the scores of all the 32 items [2].

As no validated cut-off has been described in literature to distinguish between people with
different levels of functional status, we dichotomized the scaled scores (ranged 0 to 100) of the function
domain of the LLFDI based on the median value to classify the people in our cohort as high (HFS) and
very high (VHFS) functional status.

2.3. Standard Clinical Physical Performance Tests

The physical performance of participants was objectively assessed by two physical performance
tests under standard instructions given by the assessors: the 30CST and the TUG. During the 30CST,
participants started seated, on the command “go”, they stood up and sat down repeatedly for 30 s as
quickly as they could. The total number of repetitions performed during the 30CST were counted by the
assessors as standard clinical outcome of the 30CST. During the TUG, participants started seated on a
chair, on the command “go”, they rose from the chair, walked three meters ahead at a comfortable and
safe pace, made a 180◦ turn, walked back to the chair, and sat down again. The stopwatch-based total
time needed to perform the TUG test was recorded by assessors as standard clinical outcome of the TUG.

2.4. Instrumented Physical Performance Tests

While performing the two physical performance tests, participants were instrumented with
a smartphone on their lower back (at the level of the 5th lumbar spine) through a waist-worn elastic
belt. The smartphone-based system was developed within the FARSEEING project [17]. A custom
Android application [18] running on the smartphone (Galaxy SIII, Samsung, sampling frequency
100 Hz, accelerometer ± 2 g, gyroscope ± 250 ◦/s) was used for recording the Triaxial components
of inertial signals: Antero-Posterior (AP), Medio-Lateral (ML), and Vertical (V). The instrumented
features computed from the collected inertial signals were used as instrumented outcome of the
physical performance tests. Triaxial inertial signals were processed using MATLAB [19] to extract a set
of instrumented features [20].

Signals recorded during the 30CST were first segmented into two subphases: Sit-to-Stand and
Stand-to-Sit transitions (Figure 1a). The AP acceleration signal and the angular velocity about the ML
axis were used to identify postural transitions [21]. Twenty-one instrumented features were extracted
from the 30CST test [21–23], including durations, measures of the intensity (Root Mean Square, RMS,
m/s2) and smoothness (Normalized Jerk Score, NJS, m) in AP, ML, and V direction of each repetition.
The features were computed for each Stand-to-Sit/Sit-to-Stand transition and then averaged over the
Sit-to-Stand/Stand-to-Sit subphases (see Table 1).

The TUG was divided into four subphases: Sit-to-Walk, Walk, 180Turn, and Turn-to-Sit (Figure 1b).
The AP acceleration and the angular velocity on the ML axis were used to identify postural transitions
and the walking phase, and the angular velocity around the V axis was used to identify turns [21].
Walking features were derived from the AP, ML, and V signals, excluding postural transitions and
the turning phase, and concatenating the two episodes of straight walk [24]. Twenty-eight features
were extracted from the TUG test [21–23,25–28] including durations, intensity (RMS), and smoothness
(NJS) of each subphase, as well as the mean and maximum angular velocity during the turns and the
number of steps performed while walking and turning (see Table 2).



Sensors 2019, 19, 449 4 of 12

Table 1. Instrumented features extracted from the 30-s Chair Stand (30CST) test.

Feature Sensor (Sub)Phases Description

Repetitions
[number]

Accelerometer/
Gyroscope Total Total number of repetitions

SD Duration Accelerometer/
Gyroscope

Sit-to-Stand,
Stand-to-Sit
subphases

Standard deviation of the duration of each subphase of
the 30CST

Duration [s] Accelerometer/
Gyroscope

Sit-to-Stand,
Stand-to-Sit
subphases

Duration of each subphase of the 30CST

NJS
AP ML V [m] Accelerometer

Sit-to-Stand,
Stand-to-Sit
subphases

Time-normalized Jerk Score of the acceleration:

NJS =
√

T5

2
∫ Tend

Tstart (
.
a)2dt

where T is the duration (Tend-Tstart) of the considered
submovement and a is the acceleration measured in
m/s2.

RMS
AP, ML, V [m/s2], [◦/s]

Accelerometer,
Gyroscope

Sit-to-Stand,
Stand-to-Sit
subphases

Root Mean Square of the signal, s, during the considered
submovement (hence a measure of dispersion):

RMS =

√
1
N

N
∑

i=1
(si −m)2

where N is the total number of points of the signal s, and
m is the mean value:

ACRONYMS: AP: Antero-Posterior; ML: Medio-Lateral; V: Vertical

Table 2. Instrumented features extracted from the Timed Up and Go (TUG) test.

Feature Sensor (Sub)Phases Description

Duration [s] Accelerometer/
Gyroscope

Total, Sit-to-Walk,
Walk, 180Turn,

Turn-to-Sit
Total duration and duration of each subphase of the TUG

Number of Steps Accelerometer/
Gyroscope 180Turn, Walk Number of steps during each subphase of the TUG

RMS
AP, ML, V [m/s2] Accelerometer

Sit-to-Walk,
Walk,

Turn-to-Sit

Root Mean Square of the signal, s, during the considered
subphase (hence a measure of dispersion):

RMS =

√
1
N

N
∑

i=1
(s

i
−m)2

where N is the total number of points of the signal s, and m
is the mean value: mean(s)

NJS
AP, ML, V [m] Accelerometer Sit-to-Walk,

Turn-to-Sit

Time-Normalized Jerk Score of the acceleration:

NJS =
√

T5

2
∫ Tend

Tstart (
.
a)2dt

where T is the turn duration (Tend-Tstart) of the considered
subphase, a is the acceleration measured in m/s2.

NJS
V [-] Gyroscope 180Turn,

Turn-to-Sit Turning

Normalized angular Jerk Score:

NJS =
√

T5

2TA2

∫ Tend
Tstart (

..
ω)

2dt;
where T is the turn duration (Tend-Tstart) of the considered
component, ω is the angular velocity ◦/s, and TA is the
Turning Angle in ◦.
TA =

∫ Tend
Tstart ωdt

Mean Velocity
[◦/s] Gyroscope 180Turn,

Turn-to-Sit Turning

Mean Velocity, as the mean value of the angular velocity
along the vertical axis during the turn:

Mean Velocity = 1
NE−NS

i=NS
∑
NE

ω(i)

where ω is the angular velocity in ◦/s; NE and NS are the
index of the end and the index of the beginning of the turn,
respectively.

Maximum
Velocity [◦/s] Gyroscope 180Turn,

Turn-to-Sit Turning

Maximum Velocity as the maximum value of the angular
velocity along the vertical axis during the turn:
Maximum Velocity = max(ω)NE

NS
where ω is the angular velocity in ◦/s; NE and NS are the
index of the end and the index of the beginning of the turn,
respectively.

ACRONYMS: AP: Antero-Posterior; ML: Medio-Lateral; V: Vertical



Sensors 2019, 19, 449 5 of 12

Figure 1. Time series of acceleration and angular velocity of the two instrumented physical performance
tests. (a) Time series of acceleration and angular velocity over the Sit-to-Stand (↑) and Stand-to-Sit (↓)
subphases of the 30CST and (b) time series of acceleration and angular velocity over the subphases of
the TUG cycles.

2.5. Statistical Analysis

Statistical analyses were performed in R for Windows version 3.4.3 [29]. Four logistic regression
models were fitted and the area under the ROC Curve were compared to assess the performances of
30CST and TUG standard clinical and instrumented outcome measures in distinguishing between HFS
and VHFS.
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For each physical performance test, first a univariable logistic regression was fitted with the
standard clinical measure as input (number of repetitions counted by assessor for 30CST and
stopwatch-based total time in s for TUG). Secondly, a step-wise backward multivariable logistic
regression with the instrumented features as input was fitted. Note that for the comparison between
models, we excluded the standard measures (number of repetitions for 30CST or total duration
for TUG, obtained with inertial sensors) from the analyses for the instrumented models, as this
allowed evaluation of the discriminative ability of purely the more detailed features. To do so, the
instrumented features were pre-processed with the same procedure for both 30CST and TUG. The jerk
scores (NJS for all the subphases in AP, ML, and V direction), which were not normally distributed,
were log-transformed and all the instrumented features were normalized to compare measures by
z-scores. The linearity of each instrumented measure was assessed by fitting a restricted cubic spline
function (using the R package “Hmisc” [30] with three knots at 0.1, 0.5, and 0.9 quantiles) in the
logistic regression model. Usually, in order to avoid overfitting, the assessment of multicollinearity
is recommended before fitting the multivariable logistic regression on the dataset. Furthermore, the
validity of the multivariable logistic regression model becomes problematic when the ratio of the
numbers of subjects per variable inserted in the model is less than 10 [31]. We addressed these issues
by following the next steps. Firstly, the multicollinearity between instrumented features was assessed
(R package “mctest” [32]). To detect and deal with multicollinearity (i) the Variance Inflation Factor
(VIF) was computed on the entire dataset; (ii) the instrumented measure with highest VIF was selected
and removed from the dataset; and (iii) the VIF was computed on the new subset of measures. The
procedure was repeated until no collinearity was found (i.e., all the elements in the VIF vector were
below 10). Starting from the obtained subset of instrumented feature, we selected those features that
better discriminate between participants with HFS and VHFS (p ≤ 0.15) fitting one univariable logistic
regression for each instrumented feature. The resulting subset of instrumented features was entered
into a step-wise backward multivariable logistic regression. The features with p ≤ 0.05 were selected
to fit the final model.

To compare the standard clinical and instrumented models for both physical performance tests,
the discriminative ability of the resulting models was assessed by comparing the Area Under the
Receiver Operating Curve (AUC). We used the DeLong test to assess differences between AUC of the
models [33] (p ≤ 0.05 was considered statistically significant). A bootstrapping method with backward
step-down variable deletion (R package “rms” [34]) was applied to internally validate each model and
assess the impact of outliers.

Finally, to compare the added value of the instrumented features to the standard clinical measures,
a sensitivity analysis was conducted for both the 30CST and TUG tests on the discriminative ability
in distinguishing between HFS and VHFS of the following three models: (i) standard clinical model,
obtained from the standard clinical measure (30CST number of repetitions or TUG duration); (ii)
instrumented model, obtained from the selected subset of instrumented features; and (iii) combined
model, obtained by including the instrumented 30CST number of repetitions or TUG duration in the
instrumented model.

3. Results

The baseline cohort consisted of n = 160 (age 66.3 ± 2.4 years, 87 females) strong and active
(HAND 33.41 ± 11.19 kg, 90% declared a PA level ≥ 3) participants. The population was divided
into two groups, based on the median value of the LLFDI score: HFS (LLFDI range: 44.33–71.33) and
VHFS (LLFDI range: 72–100). Demographics of the total population and of both groups are reported
in Table 3.
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Table 3. Description of the population stratified by High Functional Status (HFS) and Very High
Functional Status (VHFS).

Total Population
N = 160

HFS
N = 78

VHFS
N = 82

Gender, Female 87 (54.38%) 52 (66.67%) 35 (42.68%)
Age, years 66.29 (2.40) 66.13 (2.44) 66.45 (2.37)
Height, cm 170.94 (9.35) 169.32 (9.86) 172.49 (8.63)
Weight, kg 79.49 (15.61) 79.97 (16.35) 79.04 (14.95)
Handgrip strength, kg 34.41 (11.19) 31.06 (10.75) 37.61 (10.71)
Gait speed, m/s 2.05 (0.46) 1.82 (0.41) 2.27 (0.40)
30CST, number of repetitions 13.41 (3.29) 12.36 (3.13) 14.40 (3.14)
TUG duration, s 8.70 (1.60) 9.25 (1.85) 8.17 (1.10)
PA >=3 144 (90%) 71 (91.03%) 73 (89.02%)
Falls, number >=2 23 (14.38%) 15 (19.23%) 8 (9.76%)
MoCA, points 27.08 (1.85) 27.06 (1.89) 27.09 (1.83)
Medications, number >=4 44 (27.50%) 29 (37.18%) 15 (18.29%)
LLFDI, points, median [range] 72.31 [44.33 100] 65.57 [44.33 71.33] 79.35 [72.31 100]

Values are presented as mean (SD) or number (%) unless otherwise indicated. ACRONYMS: 30CST: 30-s Chair Stand
test; HFS: High Functional Status; LLFDI: Late-Life Function and Disability Instrument; MoCA: Montreal Cognitive
Assessment; PA: declared physical activity level; TUG: Timed Up and Go test; VHFS: Very High Functional Status.

3.1. Standard Clinical Physical Performance Measures

The number of repetitions for the 30CST was higher in the VHFS than in the HFS (Table 3),
with the discriminative ability, expressed as odds ratio (OR), determined by the univariable logistic
regression of OR = 1.29 (95%CI [1.15–1.46]), p < 0.001).

For the TUG, the VHFS were faster than the HFS (Table 3), with a discriminative ability of OR
0.58, 95%CI [0.43–0.75] and p < 0.001).

3.2. Instrumented Physical Performance Measures

For the instrumented 30CST, six of the 21 features were excluded from the original datasets to
avoid multicollinearity (Supplementary Table S1), resulting in 15 features for further analysis. From
the univariable logistic regression, four features were selected (p ≤ 0.15) (Supplementary Table S2).
Step-wise backward multivariable logistic regression analysis resulted in a model with three features
with significant discriminative ability: “mean Stand-to-Sit G RMS MLs” (OR = 0.71, 95%CI [0.49 0.98],
p = 0.045), “mean Duration Sit-to-Stand” (OR = 0.69, 95%CI [0.48 0.98], p = 0.041), and “SD Duration
Sit-to-Stand” (OR = 0.62, 95%CI [0.41 0.89], p = 0.014).

For the instrumented TUG, four of the 29 features were excluded from the original datasets to
avoid multicollinearity (Supplementary Table S3), resulting in 25 features for further analysis. From
the univariable logistic regression analyses, nine features were selected (p ≤ 0.15) (Supplementary
Table S4). Step-wise backward multivariable logistic regression analysis resulted in a model with
two features with significant discriminative ability: “Walk duration” (OR = 0.59, 95%CI [0.38–0.86],
p = 0.045) and “Turn-to-Sit Turning maximum velocity” (OR = 1.50, 95%CI [1.05–2.18], p = 0.031).

3.3. Comparison of AUC of Models with Standard Clinical, Instrumented, and Combined Measures

Discriminative ability (AUC values) of each model is presented in Figure 2 and Table 4.
The internal validation of each of the models was assessed by applying a bootstrapping method
with backward step-down variable deletion (Supplementary Table S5). The original AUC and
optimism-corrected AUCs were in the same range (with differences less than 0.04), indicating
confirmation of the internal validity of the models.
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Figure 2. Discriminative ability (AUC and DeLong test) of standard clinical (black line), instrumented
(blue line), and combined (red line) measures of the 30CST and TUG test.

Table 4. Sensitivity analysis.

AUC 95% CI p-Value of the DeLong Test

30CST
Standard clinical 0.68 [0.60–0.76] Standard

clinical—Instrumented 0.97

Instrumented 0.68 [0.60–0.76] Instrumented—Combined 0.74
Combined 0.69 [0.61–0.77] Standard clinical—Combined 0.48

TUG
Standard clinical 0.68 [0.60–0.77] Standard

clinical—Instrumented 0.26

Instrumented 0.65 [0.56–0.73] Instrumented—Combined 0.94
Combined 0.69 [0.60–0.77] Standard clinical—Combined 0.12

Standard clinical or instrumented measures showed moderate discriminative ability with an
equal AUC of 0.68 (95%CI [0.60–0.76], p = 0.97). Similar results were obtained for both models with
either standard clinical or instrumented measures of TUG: AUC of 0.68, 95%CI [0.60–0.77] and AUC of
0.65, 95%CI [0.56–0.73], respectively, p = 0.26.

The sensitivity analyses including the combined models of standard and instrumented features
showed that no significant differences could be found between the standard clinical, instrumented or
combined models (p-values all > 0.05), indicating equal ability to discriminate VHFS from HFS.

4. Discussion

This study aimed to compare the discriminative ability of standard clinical with instrumented
measures of physical performance assessments in distinguishing between HFS and VHFS in a relatively
healthy population of community-dwelling adults aged 61–70 years. The 30CST number of repetitions
and TUG duration (recorded with stopwatch as well as by the smartphone) showed moderate
discriminative ability. These two types of measurement showed similar performances in the univariable
logistic regressions. The results suggest that identification of minor differences in functional status is
possible in this relatively healthy population, either by standard clinical or instrumented measures
recorded through a smartphone. Physical performance assessments instrumented by means of a
smartphone allow us to collect a number of additional features beyond the number of repetitions
(30CST) or total duration (TUG). These features could have the potential to add more detailed
information on the participants’ functional status.

For the 30CST assessment, three of the 30CST instrumented features were entered as input to fit
the final model: “mean Duration Sit-to-Stand”, “SD Duration Sit-to-Stand”, and “mean Stand-to-Sit G
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RMS ML”. The 30CST, by definition, is a measure of lower limbs strength and endurance. The time
needed to stand up from a sitting position represents the dynamic balance and can be considered as an
index of the power generated from muscles to stand up against gravity. The shorter the duration, the
higher the strength. The standard deviation (SD) of the duration is a measure of variability; the higher
the SD, the higher the difference between the duration of this task among the repetitions. Indeed, high
SD of the standing duration could be related to fatigue and weakness. The Stand-to-Sit G RMS in ML
direction is a measure of the intensity of the forward trunk rotation while sitting. The sitting phase
requires dynamic balance and lower limbs strength to control the lowering of the body to the seated
position. A more intense trunk rotation during the Stand-to-Sit phase could be related to less muscle
strength, as demonstrated in a recent study for the Sit-to-Stand phase [35].

The final model of the TUG included two instrumented features: “Walk duration” and “Turn-to-Sit
Turning maximum velocity”. The duration of the straight walk is a predictor of health status in old age,
and as such gait speed is commonly recorded to assess individuals’ functional abilities [36]. Difficulty
in turning, i.e., slower turning velocity, has been associated with mild cognitive impairment in old
age [37]. The turn before sitting differs from the 180Turn as it involves cognition, motor planning and
visual capacities in preparation for sitting [37].

The DeLong test between the standard clinical and instrumented assessments did not result
in significant differences between the types of assessments, suggesting that these two types of
measurement have a similar discriminative ability. Yet, in contrast to the standard clinical measures,
the instrumented features allow to objectively measure the participants’ capacities while performing
specific (sub-) tasks, such as walking, turning, or sitting. Furthermore, the discriminative ability
slightly increased, albeit not significantly, when the standard clinical and instrumented measures were
combined, suggesting that the two types of assessment have small additional value in our target group.
These results are in agreement with a recent study in which was demonstrate that standard clinical and
instrumented measures of physical performance are associated with similar effect size to age-related
changes in physical performance [38].

This study does have some limitations to consider. First, we included a rather homogeneous
population, characterized by a highly skewed distribution of relatively high LLFDI scores, which may
have led to a decrease in the discriminative ability of the models. Yet, even in this homogeneous and
healthy population, we found discriminative value of both types of assessments for as well 30CST as
TUG. The second limitation was our dichotomization based on the median value of the LLFDI scores,
in absence of a validated cut-off for discriminating between different LLFDI levels. A valid cut-off
score can be helpful to identify people at risk of developing functional decline. This aspect might be the
subject of future studies. Despite these limitations, instrumented 30CST and TUG features proved to be
comparable to the standard clinical measures, with moderate discriminative ability, in detecting even
small differences of LLFDI in this homogeneous population of highly functioning individuals. It is
reasonable to assume that the detection of differences in the functional status would also be possible in
less fit and more heterogeneous population of older adults, yet this needs to be confirmed in future
studies. For future perspectives, the potential of instrumented assessments may be preferred over
standard clinical assessments for example in the context of self-management or Active Assisted Living
Programmes. Therefore, we recommend further investigation of the sensitivity to changes over time of
instrumented features, as well as of their correlations with measures of functional status and health
obtained by other systems for monitoring activities of daily living, such as daily life gait speed.

5. Conclusions

In a relatively healthy population of adults aged 61–70 years, standard clinical and instrumented
measures recorded through a smartphone can distinguish between HFS and VHFS, albeit with
moderate discriminative ability.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/3/449/s1,
Table S1: Collinearity analysis of the 30CST instrumented physical performance measures; Table S2: Univariable

http://www.mdpi.com/1424-8220/19/3/449/s1
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and multivariable analysis of the 30CST instrumented physical performance measures; Table S3: Collinearity
analysis of the TUG instrumented physical performance measures; Table S4: Univariable and multivariable
analysis of the TUG instrumented physical performance measures; Table S5: Bootstrapping validation of the
30CST and TUG models.
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