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Abstract: The concept of “trained innate immunity” is understood as the ability of innate immune
cells to remember invading agents and to respond nonspecifically to reinfection with increased
strength. Trained immunity is orchestrated by epigenetic modifications leading to changes in gene
expression and cell physiology. Although this phenomenon was originally seen mainly as a beneficial
effect, since it confers broad immunological protection, enhanced immune response of reprogrammed
innate immune cells might result in the development or persistence of chronic metabolic, autoimmune
or neuroinfalmmatory disorders. This paper overviews several examples where the induction of
trained immunity may be essential in the development of diseases characterized by flawed innate
immune response.
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1. Introduction

For decades, it was believed that the innate immunity arm of the immune system was less
sophisticated than the adaptive immunity arm. The primary criterion for such an assessment was the
ability of B and T cells, which represent the adaptive immunity, to mount immunological memory [1].
The phenomenon of memory response is at the heart of protective immunization. Interestingly, with
the introduction of large-scale vaccination, some effects have been seen that exceeded the intended
purpose of immunization. The first observations suggesting nonspecific beneficial effects of vaccination
were already related to the smallpox vaccine, when, beyond the desired protective effect against the
pathogenic virus, some improvements in the case of e.g., atopic diseases, measles or even syphilis were
observed in the vaccine recipients [1–3]. Similarly, some nonspecific effects were reported with regard
to the BCG (Bacillus Calmette-Guérin) vaccine. As early the 1930s, it was suggested that this vaccine
protected not only against tuberculosis but also against other infectious diseases, which could explain
the infant survival improvement that exceeded the disease burden of tuberculosis [4]. Studies carried
out over the past few decades have shown that certain adaptations connected with innate immune
cells (monocyte/macrophages, NK (Natural Killer) cells) are responsible for the nonspecific effects of
vaccination [5,6]. In 2011, Netea et al. proposed the term “trained immunity” to describe the ability
of innate immune cells to nonspecifically adapt after primary stimulation (e.g., infection or vaccine)
and remain at the increased “standby status” for a significant amount of time to be protective against
secondary challenge, involving pathogens unrelated to the priming stimuli [7]. It was found that
epigenetic reprogramming, mostly connected with histone methylation or acetylation, lies behind the
innate immune training [8,9]. Unfortunately, an increasing number of studies provide evidence that
epigenetic reprogramming leading to functional and transcriptional changes in the innate immune
cells may play a significant role in the maintenance of different disorders.
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2. Atherosclerosis

It is postulated that trained innate immunity can contribute to the development of some
diseases, particularly cardiovascular diseases [10]. In that context, the main attention is focused
on atherosclerosis, a pathologically persistent and low-grade inflammation process of the arterial
wall and on monocytes/macrophages, the most widely represented immune cells in plaques. The
studies conducted by Bekkering et al. (2016) showed that circulating monocytes isolated from patients
with symptomatic atherosclerosis, contrary to monocytes of asymptomatic subjects, possessed a
pro-inflammatory phenotype characterized by an increased production of interleukin (IL)-6, IL-1β, IL-8,
TNF-α (tumor necrosis factor), MCP-1 (monocyte chemoattractant protein-1) after stimulation with
LPS (lipopolysaccharide) or Pam3Cys - ligands of Toll-like receptor (TLR)4 and TLR2, respectively [11].
It was found that monocyte reprogramming was expressed by epigenetic modifications related
to the downregulation of H3K4me3 on the promoters of pro-inflammatory cytokines, particularly
TNF-α, in which case lower H3K27me3 was also noticed. Furthermore, the enhanced cytokine
responsiveness was associated with the metabolic shift towards increased glycolysis. These findings
have given rise to hypotheses about the engagement of trained innate immunity in the progression of
asymptomatic atherosclerotic plaques conversion towards symptomatic disease [11]. The modulations
in cell functionality could be the effect of the atherogenic lipid oxidized low-density lipoprotein
(oxLDL) induction [12]. Oxidized LDL has been reported to be the inducer of enhanced cytokine
production and foam cell formation via epigenetic reprogramming of monocytes. Studies have
shown that monocyte pre-exposure to a low concentration of oxLDL followed by stimulation with
TLR4/TLR2-agonists results in the amplified expression of numerous proatherogenic proteins, such
as IL-6, IL-8, IL-18, TNF-α, MCP-1, as well as metalloproteinase (MMP) 2 and MMP-9. It has been
demonstrated that the oxLDL-induced training fails when the monocytes have been pretreated with
the histone methyltransferase inhibitor methylthioadenosine. That points to the role of epigenetic
modifications in the long-lasting proatherogenetic macrophage phenotype development through
oxLDL-induced monocyte training [13].

A better understanding of the epigenetic background of the mechanisms underlying some
pathological processes could potentially turn into novel therapeutic strategies, including the treatment
of atherosclerosis [14]. In that context, the histone-modifying enzymes seem to be an attractive new
target. A few groups of enzymes are the subject of particular interest: histone methyltransferases (HMT)
responsible for both lysine and arginine residues methylation, histone demethylases (HDMs) exhibiting
opposite activity, and histone deacetylases (HDAC), which counteract acetyltransferases (HAT) activity
by removing acetyl-groups from histones [14,15]. It has been demonstrated that through the use of
pharmacological inhibitors H3K27me3 demethylases Jmjd3 and Utx, the suppression of LPS-induced
production of TNF-α in human monocytes/macrophages is possible. Further, the pre-treatment of
monocytes with the methyltransferase inhibitor MTA has been found to disable the oxLDL-derived
cell reprogramming. Some expectations are also raised by the use of trichostatin A (TSA), which is a
broad-spectrum HDAC inhibitor. Although some results have highlighted its beneficial properties
which are characterized by macrophage pro-inflammatory phenotype inhibition, the undesirable effects
of the TSA use have also been reported. For instance, the escalation of atherosclerotic lesion formation
in LDL-receptor (Ldlr)–/– mouse model of atherosclerosis was noticed after the use of TSA due to the
unexpected increase in histone acetylation at the promoter region of cluster of differentiation (CD)36.
Thus, the inhibition of particular HDAC enzymes appears to be a better option. It has been described
that systemic and bone marrow deletion of HDAC9 is correlated with atherosclerosis limitation in
Ldlr–/– mouse model. HDAC9 deletion in macrophages causes the reduction of pro-inflammatory gene
expression. Additionally, the enhanced cholesterol efflux and decreased foam cell formation due to the
increased expression of cholesterol transporters possessing ATP-binding cassettes for active transport:
ABCA1 (cholesterol efflux regulatory protein), ABCG1 (intracellular cholesterol transporting protein),
as well as PPARG1 (peroxisome proliferator-activated receptor gamma) have been observed [10,15].
Also, the inhibition of another enzyme from the same group, namely DHAC3, which promotes
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macrophage polarization toward M1 phenotype, seems to be an interesting solution. In macrophages
lacking histone deacetylase 3, the deficiencies in pro-inflammatory activity are observed, which leads to
the development of M2-like phenotype of these cells. The silencing of inflammatory responsiveness of
monocyte/macrophages could be beneficial in the context of atherosclerosis. It has been demonstrated
that it is possible to influence the atherosclerotic plaque formation by HDAC3 manipulation. Although
HDAC3 deletion results in the increase in the lesion size, the phenotype of the lesion becomes more
stable and is characterized by a collagen-rich fibrous cap, a decreased lipid content and a reduced
amount of plaque macrophages [10,15]. Pharmacological, cell-specific intervention to target HDAC3
might be beneficial also in other diseases, including diabetes as it was reviewed by Meier et al. [16].

3. Diabetes Mellitus

Diabetes is a complex disease encompassing a wide range of metabolic disorders. Traditionally
diabetes mellitus has been divided into type-1 and type-2 diabetes (T1D and T2D, respectively). In the
case of the former, one the crucial role is played by the autoimmune response of adaptive immunity
(more similar genetically to other autoimmune diseases, particularly to juvenile idiopathic arthritis),
while the latter is characterized by insufficient secretion of insulin from pancreatic β-cells, whereby the
increase in the production of glucagon by pancreatic α-cells is frequently observed [17,18]. Many factors
are indicated to influence the development of diabetes; beyond environment and genetic background,
epigenetic modifications have been identified as prominent determinants of the disease outcome.
The study with the use of genome-wide DNA methylation quantitative trait locus (mQTL) analysis
identified several hundred cytosine-phosphate-guanine (CpG) sites, including known diabetes loci,
e.g., ADCY5, KCNJ11, HLA-DQA1, INS, PDX1, GRB10, showing significant association with the insulin
secretion and diabetes risk [17]. Functional analyses revealed that the pivotal biological processes such
as proliferation and apoptosis in pancreatic β-cells could be under direct influence of some genes:
GPX7, GSTT1, SNX19 [17]. In the epigenome-wide association study with the participation of 52
monozygotic twin pairs selected in terms of the discordancy for TD1 occurrence in the immune effector
cells such as CD4+ T cells, CD19+ B cells and CD14+CD16- monocytes the remarkable concordance
between twins of each pair consistent with a strong shared genetic and non-genetic effect on CpG
methylation in strongly inherited DNA promoter regions was shown [17]. Miao et al. demonstrated a
significant increase in H3K9me2 in a subset of genes in lymphocytes but not in monocytes isolated
from T1D patients compared to the healthy subjects indicating the association between T1D and altered
histone methylation of genes playing a crucial role in the processes related to the T1D outcomes [19].
Differences between T1D patients and control individuals were observed also in the acetylation
levels of histones H4 and H3K9, and in the level of H3K9me2 in the T1D-related gene CTLA4 [20].
There are strong indications to believe that epigenetic modifications could also be key players in the
T2D-related pathways/events as can be seen by the hypermethylation of promoter regions of several
genes (INS—encoding insuline, PDX-1—playing an important role in the development of pancreas and
in β-cell function, PPARGC1A—participating in the energy homeostasis, GLP1R—regulating insulin
secretion) in islets from T2D-donors compared to islets from control subjects [18]. Further, it was shown
that hypermethylation and overexpression of HDAC7 (encoding histone deacetylase, HDAC) in islets
from T2D-patients can be linked with the impaired mitochondrial function and insulin secretion [18].
Analysis of DNA methylation in samples of liver tissue, visceral and subcutaneous adipose tissues, and
peripheral blood from individuals with obesity, with and without T2D conducted by Bajaras-Olmos
et al., provided additional evidence that aberrant DNA methylation of genes involved in pathways
related to metabolic processes could be a crucial influencer in T2D pathogenesis [21]. In patients with
T2D, elevated histone H3 acetylation of TNF-α encoding gene and COX-2 in the blood mononuclear
cells, as well as an increase in H3K9me2 near promoter of IL-1A, and PTEN coding regions and
Set7-dependent monomethylation of lysine 4 of histone 3 on promoter genes were detected [20].

Cardiovascular disorders are among the most frequently reported complications associated with
diabetes mellitus. It is suggested that hyperglycemia could play a role of a long-term activating factor
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that affects the cellular metabolism of monocytes and macrophages. Epigenetic reprogramming alters
the cell functional program to “pro-inflammatory mode”, which has important implications for the
occurrence of diabetes complications, including the development of atherosclerosis [22]. It has been
shown that monocytes treated with high glucose doses respond with excessive production of IL-1β
and IL-6. The secretion of other cytokines, such as interferon (IFN)-γ, IL-17 and IL-22 is also raised,
although to a lesser extent. Hyperglycemic conditions could also affect the cytokine production by
monocyte-derived macrophages, which after stimulation with LPS or M. tuberculosis lysate react with a
dose-dependent enhancement in both pro-inflammatory (TNF, IL-6) and anti-inflammatory (IL-10 and
interleukin-1 receptor antagonist (IL-1RA)) cytokine release [23]. Additionally, the pro-inflammatory
effect of a high glucose environment has been reported in reference to vascular endothelial cells. Studies
conducted with the use of bovine and human aortic endothelial cells have shown their epigenetic
reprogramming through increased H3K4 monomethylation at the NF-κB (nuclear factor kappa light
chain enhancer of activated B cells) promoter, which results in the production of reactive oxygen
species (ROS) and upregulation of p65, MCP-1 and VCAM-1 (vascular cell adhesion molecule 1).
Those pro-inflammatory features underlie the vascular damage. It is interesting to note that the
hyperglycemia-induced pro-inflammatory properties of vascular endothelial cells can persist, even
after the cell transfer to the medium with normalized glucose concentration. This phenomenon
has been termed “metabolic/glycemic memory” [24]. It has been described that monocytes isolated
from both type-1 and type-2 diabetes mellitus patients exhibit functional modifications referring to
altered cytokine production and increased binding to endothelial cells. The intensified adhesion to
endothelium is most likely responsible for extended migration of monocytes in atherosclerotic plaques.
Indeed, the enhanced infiltration of plaques by macrophages in T1D and T2D patients has been
demonstrated. It is possible that circulating monocytes in hyperglycemic conditions undergo a training,
which “inscribes” their “proatherosclerotic mode” before they infiltrate the atherosclerotic plaque
and next this epigenetically programmed phenotype is revealed after monocyte differentiation to
macrophages to subsequently encounter with other stimuli, such as oxLDL [15]. The understanding of
the epigenetic regulation underlying monocyte-to-macrophages differentiation and trained immunity
is a challenge that may deliver new tools to modulate immune response [25].

4. Chronic Inflammatory Disorders

Trained immunity has been also shown to participate in the pathophysiology of autoimmune
or autoinflammatory diseases. Excessive activation of innate immune mechanisms leading to the
enhanced immune response may result in the induction and maintenance of chronic inflammatory
disorders such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis
(MS) or sarcoidosis.

4.1. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that is characterized
primarily by progressive joint destruction, but in more than 20% of cases it has a profound effect on
other organs of the body including the lungs, heart and blood vessels, kidneys or eyes [26,27]. RA
disease progression is a complex process that involves interactions between components of both the
adaptive and innate immune responses. Cells of the innate immune system, mainly macrophages,
are important effectors of tissue-damaging inflammatory lesions, which act through phagocytosis,
antigen presentation, and the release of pro-inflammatory cytokines, reactive oxygen intermediates
and matrix-degrading enzymes [27–29]. The pathophysiology of the disease has not been fully
explained; however, it is believed to involve a combination of genetic and environmental factors.
Epigenetic mechanisms including posttranslational modifications of histones (acetylation, methylation,
phosphorylation, ubiquitination and SUMOylation), DNA methylation, as well as interference of
noncoding RNAs (miRNAs), which determine the chromatin state and regulate the accessibility of
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DNA for transcription factors, have been found to contribute to the pathogenesis of RA by affecting
the behavior of several cell types and modifying their gene expression levels [26,30–32].

Much evidence suggests that modifications of histones play an important role in the regulation of
hyperplasia in the synovial joint [33]. The best studied histone modification is acetylation of lysine
residues of histones H3 and H4. The acetylation catalyzed by histone acetyltransferases (HATs) has
been found to be associated with enhanced gene transcription, while the deacetylation performed
by deacetylases (HDACs) leads to a silencing of affected genes [34]. Most of the available data
on the role of histone acetylation in the pathogenesis of RA come from the research using HDAC
inhibitors (HDACis). One of them is streptomyces metabolite trichostatin A (TSA), which acts as
an inhibitor of class I (HDAC1, HDAC2, HDAC3, HDAC8) and class II (HDAC4, HDAC5, HDAC6,
HDAC7, HDAC9, HDAC10) HDACs [26,27]. TSA has been shown to sensitize RASF (RA-derived
synovial fibroblasts) to tumour necrosis factor related apoptosis-inducing ligand (TRAIL)-induced
apoptosis and promote a cell cycle arrest by inducing the cell cycle regulator p21 [35]. Grabiec et al.
demonstrated that two HDACis, TSA and nicotinamide, induced apoptosis also in RA macrophages
by specific downregulation of the antiapoptotic protein Bfl-1/A1 and potently blocked IL-6 and TNF-α
production [36]. The confirmation of HDACis beneficial effects in arthritis animal models caused
these compounds to be recognized as potential therapeutics of RA [37–39]. However, it should be
remembered that the effects of HDACis are related to histone modifications, because HDACs targets
are not only histones but also other proteins including gene transcription factors.

Besides acetylation, methylation or demethylation as well as ubiquitination and SUMOylation of
histones belong to epigenetic modifications described in RA [26,29,32]. Depending on the methylated
position, the methylation process has been found to be associated with transcriptional activation or
silencing [26]. The silencing of genes is associated with trimethylation of histone 3 lysines H3K27m3,
H3K9m3 and H4K20m3, whereas H3K36m3, H3K4m3 and H3K79m3 are responsible for the induction
of gene transcription [40]. Trenkmann et al. demonstrated that the chronic inflammatory environment
of the RA joints induced in RASF the histone methyltransferase enhancer of zeste homologue 2
(EZH2), which added up to three methyl marks to H3K27 of genes designated for silencing, and
thus might have caused changes in the epigenetic programme of synovial fibroblasts [41]. Other
post-translational processes modulating epigenetic mechanisms in RA are ubiquitination, a process of
adding ubiquitin peptides to lysine residues, and SUMOylation, a process that targets proteins harboring
a SUMO (small ubiquitin-like modifier) interaction motif [32]. In contrast to histone acetylation and
methylation, histone ubiquitination and SUMOylation result in larger covalent modifications of
histones. Ubiquitination is associated with transcriptional silencing, initiation and elongation, whereas
histone SUMOylation is associated with repressive functions [31]. There is evidence that SUMO
is overexpressed in both the synovial tissue and RASF [42]. DeSUMOylation of RASF has been
demonstrated to diminish the levels of histone acetylation leading to a lower expression of MMP-1,
thus reducing the invasiveness of RASF [43]. Many of epigenome modifiers can directly or indirectly
affect the activity of the transcription factor NF-κB, a central regulator of the transcription of many
inflammatory genes [44]. The key epigenetic signal for the recruitment of NF-κB to the cytokine genes
promoter is the phosphorylation of serine 10 in the tail of histone H3. Glant et al. found that genes
encoding Aurora kinases A (AURKA) and B (AURKB) were strongly upregulated in mononuclear cells
from both mice and humans with arthritis, which was correlated with elevated levels of phosphorylated
H3 [45]. Treatment with the Aurora kinase-specific inhibitor VX-680 attenuated inflammatory reactions
and promoted the apoptosis of B cells in arthritic mice [45].

DNA methylation involves the covalent modification of the 5th carbon in the cytosine residue
within CpG dinucleotides, which are located close to the transcription start sites of many genes [46].
The methylation of these CpG-rich regions blocks the transcriptional activity of the corresponding
genes and results in long-term gene silencing [31,47]. A number of hypo- and hyper-methylated
genomic regions have been found in peripheral blood mononuclear cells (PBMC) from RA patients, in
RASF, the main cell type invading the cartilage, as well as in RA-derived synovial tissues [40,48–50].
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Hypomethylation has been shown to be a consequence of an increased metabolism of polyamines,
resulting in decreased levels of a methyl donor, S-adenosyl-L-methionine [40]. Most of identified
hypomethylated genes have been found to be involved in cell adhesion, leukocyte recruitment,
extracellular matrix interactions and inflammation [49]. Nile et al. and Fu et al. showed demethylation
in the promoter region of the IL-6 and IL-10 genes, which resulted in the elevation of the cytokines
levels during the disease [51,52]. Hypomethylation of the promoter region of the chemokine CXCL12
gene and the retrotransposon LINE1 gene was reported by Karouzakis et al. and Neidhart et al. [53,54].
On the other hand, some DNA regions in RA patients can also be hypermethylated. Hypermethylation
of the promoter region of the death receptor 3 gene (DR3), a member of the apoptosis inducing
Fas gene family, results in a higher resistance of RASF to apoptosis [55]. RA-derived SF are able to
produce proinflammatory cytokines and chemokines as well as matrix metalloproteinases attracting
inflammatory cells to the synovium and taking part in the destruction of the cartilage. Lefevre et al.
demonstrated that RA-derived SF implanted together with healthy human cartilage into severely
immunodeficient mice migrated to the sites of implanted cartilage and destroyed it [56]. The cartilage
damage occurred without the development of either cellular or humoral immune responses, suggesting
that RASF were capable of maintaining their activated phenotype, characterized by the expression of
proto-oncogenes, antiapoptotic molecules and a lack of expression of tumor suppressor genes, in the
absence of any further immune stimulation [26,57].

Small non-coding single-stranded RNA molecules (miRNAs) have been recognized as
downregulators of gene expression on the post-transcriptional level [27]. Several studies have
detected altered expression patterns of miRNAs in RA. Stanczyk et al. showed upregulation of miR-155
and miR-146a in RA synovial fibroblasts and synovial tissues. Monocytes in the peripheral blood of
RA patients were also characterized by increased levels of miR-155, whose expression was further
enhanced by TNF-α, IL-1β and TLR2, 3 and 4 ligands [58]. Furthermore, the enhanced expression of
miR-155 was found to repres the expression of MMP-3 and MMP-1, suggesting its role in the inhibition
of the destructive behavior of RASFs [58].

4.2. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by the
development of autoantibody response to nuclear and cytoplasmic antigens. The signs and symptoms
of SLE can involve many organs and systems, including the joints, kidneys, lungs, skin, heart and
central nervous system [59]. It has been found that epigenetic modifications, in particular DNA
methylation and post-translational histone changes, play a critical role in the pathogenesis of SLE.
There are a number of studies reporting global DNA demethylation in T cells from active lupus patients,
which results in the increase in T cell reactivity [50,60,61]. A possible mechanism explaining DNA
hypomethylation is a reduction in the enzymatic activity of DNA methyltransferases (DNMTs) [62].
Deng et al. demonstrated decreased mRNA expression of DNMT1 in SLE-derived T cells, whereas
Luo et al. showed a reduced expression of both DNMT1 and DNMT3a mRNAs in active lupus
patients [63,64]. DNA hypomethylation referred to many autoimmune-related genes including those
encoding CD11a (ITGAL), CD70 (TNFSF7), CD40L (CD40LG) and perforin (PRF1) molecules [65–67].
Moreover, genome analysis showed that interferon-related genes such as IFIT1, IFIT3, IFI44L, TRIM22
and BST2 are hypomethylated in CD4+ T cells of SLE patients [68]. Treatment of normal T cells with
5-azacytidine (5-azaC), one of the demethylating drugs, caused global DNA hypomethylation resulting
in altered gene transcription and an increase in the expression of CD11a [69,70]. The hypomethylation
of IL-4 and IL-6 promoters was found to correlate with IL-4 and IL-6 overexpression, and finally, with
the severity of SLE [71].

Modifications of histones have been widely studied in both human and animal models of
SLE [48,72–75]. Monocytes and T lymphocytes of SLE patients demonstrat aberrant histone acetylation
and methylation patterns [76]. SLE monocytes show overall H4 hyperacetylation, which results
in the upregulation of genes such as IRF1, RFX1 and BLIMP1 (PRDM1) [75]. On the other hand,
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SLE-derived CD4+ T are characterized by decreased global acetylation of H3 and H4 and decreased
global methylation of histone H3K9, which consequently skews gene expression [73,75]. T cells also
show increased H3 acetylation at lysine 18, increased H3 dimethylation at lysine 4 (H3K4me2) as well
as increased H3 trimethylation at lysine 27 [75,77–79]. H3 hyperacetylation and increased H3K4me2
levels in the CD70 gene promoter have been noted to correlate positively with SLE disease activity [79].

SLE patients are characterized by unique microRNA expression profiles involved in the processes
of hyperactivation of the type-I IFN pathway, down-regulation of DNA methylation by inhibiting
DNMTs and exacerbation of inflammatory responses by promoting the secretion of cytokines and
chemokines [76]. In SLE-derived PBMC the expression of miR-189, miR-61, miR-78, miR-21, miR-142-3p,
miR-342, miR-299-3p, miR-198, miR-298 shows an increase, while the expression of miR-196a,
miR-17-5p, miR-409-3p, miR-141, miR-383, miR-112, miR-184 is reduced [80]. The expression of
two miRNAs—miR-21 and miR-148a, which promote CD4+ T cell hypomethylation, has been found to
be upregulated in CD4+ T cells from both humans and mice with lupus [81]. Another upregulated
miRNA is miR-126, whose overexpression causes demethylation and upregulation of the CD11a and
CD70 genes leading to T cell and B cell hyperactivity [82]. On the other hand, miR-125a is significantly
downregulated in SLE PBMCs contributing to the elevated secretion of RANTES (CCL5) by T cells [72].
A causal role in the pathogenesis of SLE may also be played by miR-3148, which targets TLR7 mRNA
through binding to its untranslated region (3’UTR) resulting in excessive activation of the innate
immune system [72]. Recent data have revealed that distinct expression signatures of miRNAs in SLE
PBMC are associated with the production of different autoantibodies [83].

4.3. Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease characterized by the
infiltration of immune cells into the central nervous system and subsequent destruction of myelin [84,85].
Although the causes of MS remain unknown, the involvement of genetic and environmental factors in
the development of MS has been widely suggested. In the last few years, degeneration of neurons has
been linked to epigenetic modifications of neuronal and glial DNA [86,87]. Differentially methylated
positions and regions have been found in immune cells and oligodendrocytes from MS patients
compared to healthy controls [88,89]. Hypomethylation has been observed at the promoter region of
peptidyl arginine deaminase 2 (PADI2), which catalyzes the citrullination of myelin basic protein (MBP).
The result of the PADI2 hypomethylation is the inhibition of the MBP production, contributing to the
loss of myelin stability in MS [90]. Interestingly, hypomethylation of PADI2 has also been observed
in PBMC from MS patients [91]. Additionally, the reduction of methylation has been found in T cell
IL-17A promoter, which results in an increased IL-17, and subsequently leads to the inflammation of
the central nervous system [92,93].

Different histone modifications have been demonstrated to be involved in the transcriptional
regulation in many of the cells engaged in the pathology of MS. It has been proven that there is a
marked deacetylation in oligodendrocyte histones of MS patients, and the process is more frequent
in chronic MS lesions than in the early stages of the disease [94]. Histone citrullination is another
epigenetic modification implicated in the immunological process in MS. Citrullination of arginine 8 in
histone H3 (H3Cit8) in PBMC prevents binding of the heterochromatin protein 1 (HP1) to neighboring
H3K9me3 and leads to the inhibition of TNF-α and IL-8 production [95].

Epigenetic control in MS can also be achieved by microRNA-mediated gene silencing. The miRNAs,
which are significantly upregulated in active MS lesions, are miR-326, miR-155 and miR-34a [96].
Overexpression of these miRNAs has been suggested to downregulate the expression of CD47,
which diminishes the phagocytic activity of macrophages. miR-326 was found to promote the
differentiation of naïve T cells into the T helper (Th)17 phenotype by targeting Ets-1, a negative
regulator of Th17 differentiation [97,98]. Additionally, the expression of miR-326 is highly correlated
with disease severity in both mice and humans suffering from autoimmune encephalomyelitis [97].
Noorbakhsh et al. demonstrated the upregulation of miR-155, miR-338 and miR-491 in brain samples
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of progressive MS patients and suggested their possible role in rendering white matter susceptible to
inflammation-induced damage [99]. The expression of miR-155 was involved in autoimmune process
by enhancing inflammatory T-cell development, therefore mice without miR-155 were resistant to
development of experimental autoimmune encephalomyelitis (EAE), the most commonly used model
for the human demyelinating disease [100]. Moreover, it was found that miR-96 overexpression was
correlated with MS remission, whereas overexpression of miR-18b and miR-599 was associated with
MS relapse [98].

4.4. Sarcoidosis

Sarcoidosis is a complex granulomatous disorder which is strongly related to immune response;
however, its pathogenesis is still not completely understood. The immunological background of this
disease involves the accumulation of activated macrophages and T-lymphocytes in affected organs,
most commonly in the lung [101,102]. There is no information that epigenetic changes in monocytes
could be associated with sarcoidosis, however both, occupational, environmental and infectious agents
are involved in the development of this disorder [29].

In general, more proinflamatory cytokines (GM-CSF (granulocyte-macrophage colony stimulating
factor), TNF-α, TGF-β-1 (transforming growth factor), IL-1β, IL-6, IL-17) and chemokines (chemokine
C-X-C motif ligand (CXCL)9, CXCL10, CXCL11), reactive oxygen intermediate, chitotriosidase,
angiotensin convertase enzyme and serum amyloid A have been observed among sarcoidosis patients.
All of these molecules have been evaluated as biomarkers for the diagnosis, prognosis and response to
treatment in sarcoidosis [29,103]. Interestingly, macrophages and circulating monocytes in patients with
sarcoidosis express more CD16, TLR2 and TLR4 [29]. The activation of TLRs leads to the modulation
of several adapter proteins such as IRAK (interleukin-1 receptor associated kinase) and Rip2 (receptor
interacting protein 2). These kinases are pivotal for signaling pathways, including NF-κB and MAPKs
(mitogen-activated protein kinases), which trigger cytokines production [29,102]. Beside macrophages
T helper lymphocytes are present at sites of granulomatous inflammation in sarcoidosis. The activation
of T CD4+ cells leads to the overexpression of IL-2R (IL-2 receptor) on the cell surface with the enzymatic
cleavage of these molecules and release of sIL-2R (soluble IL-2 receptor) form [103]. Several studies
have observed increased levels of sIL-2R in patients with sarcoidosis [104,105]. Genetic sarcoidosis risk
factors have also been evaluated. Analysis of Fisher et al. revealed that granulomatous processes in
sarcoidosis may be influenced by genes involved in the antigen presentation process (HLA alleles),
immune cell activation (TNF, BTNL2 and IL23R) as well as apoptosis (ANXA11, XAF1) [106]. In the last
decades the composition of the pulmonary microbiota in sarcoidosis has been discussed [107,108]. It is
clear that pulmonary microbial community may be involved in antigen-driven T CD4+ lymphocyte
activation followed by macrophage migration and granuloma formation. The 16sRNA gene analysis has
revealed that pulmonary microbiota in sarcoidosis patients is composed of Firmicutes, Proteobacteria,
Acinetobacter, Bacteroidetes, Fusobacteriales, and Spirochaetales. However, this composition does not
differ from lung microbiota in patients with other interstitial lung diseases [107].

5. Neurodegenerative Disorders

The immune and nervous systems are a complex network of immune cells, including
microglia (brain macrophages which are responsible for the elimination of microbes and
production of proinflammatory cytokines), neutrophils, lymphocytes, neurons, astrocytes and
oligodendrocytes [109,110]. In a healthy brain microglia provide synaptic plasticity through
engulfing synaptic elements, including apoptotic cells, a process required for accurate brain
development [111–113]. Microglia are able to modulate a wide spectrum of cellular responses
and contribute to homeostasis as well as aging and neurodegenerative processes [114,115]. These cells
retain a long-term memory of infectious and noninfectious agents, including stress [116]. Interestingly,
in children exposed during prenatal life to a high level of the stress hormone cortisol persistent changes
in the innate immunity have been observed, including overproduction of proinflammatory cytokines
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with further development of mental illness (behavioral and mental pattern) as well as psychological
impairment. The susceptibility of the fetus to those factors may be due to the rapid changes in the
nervous system [116,117]. The process of trained immunity, which takes place in the brain, is defined
as microglial priming. Exposure to an initial stimulus (noxious or inflammatory factor as well as
systemic illness or infection) induces the long-lasting memory of microglia. The secondary challenge
of these cells causes an exaggerated inflammatory response, resulting in neuroinflammation and
enhanced production of neurotoxic molecules [116,118,119]. The initial and secondary stimuli may
be temporally separated. Many studies indicate that the inflammatory challenge in utero can be
associated with impaired microglial reactivity in later life among offspring [120–123]. Püntener et
al. revealed that repeated doses of LPS or a single injection of live Salmonella typhimurium SL3261
to mice intensified the IFN-γ, IL-1β and IL-12 production in the serum, spleen and brain up to
three weeks post-infection [124]. Moreover, they observed the up-regulation of ICAM-1 (intracellular
adhesion molecule-1), VCAM-1, major histocompatibility complex (MHC)I, and MHCII on the
cerebral vasculature and the overexpresion of CD11b and CD68 on microglia. The consequence of
the augmented level of these receptors on cerebral endothelium still remains unknown, however
it can induce T cell tolerance, which contributes to the regulation of immune activation in the
central nervous system [116,124]. Interestingly, elevated levels of proinflammatory cytokies, which
are produced by microgila and other immune cells, can cause changes in behavior such as social
withdrawal, loss of appetite, lethargy, pessimism, irritability and depression [125,126]. It is known
that neurodevelopmental disorders can be associated with microglial dysfunction. The role of these
cells has been studied in autism spectrum disorder (ASD), Alzheimer’s disease, accelerated aging,
myotrophic lateral sclerosis, Parkinson’s disease and depression [114,115,118].

5.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is a common form of dementia causing memory loss and impaired
cognitive abilities as a result of extracellular accumulation of amyloid β (Aβ) and intracellular fibrillar
Tau aggregation [114,127]. Recent large-scale genome-wide association studies (GWAS) have proved
that the risk of developing late-onset AD is significantly associated with rare variants of innate
immune receptors expressed on the microglia surface, such as CD33 (cluster of differentiation 33)
and the triggering receptor expressed on myeloid cells 2 (TREM2). TREM2 is a transmembrane
glycoprotein that is necessary for microglial survival, inflammatory response, and phagocytosis.
TREM2 binds phospholipids during Aβ accumulation as a result of neuronal cell apoptosis and myelin
damage [127,128]. Trem2-/- mice show invasiveness of fibrillary amyloid followed by the weakening
of microglial barriers around Aβ [114]. CD33 is a transmembrane receptor of the innate immune
system that is highly expressed on microglia and binds sialic acid, which leads to the activation of
protein phosphatases SHP1 and SHP2. These phosphatases inhibit downstream signaling pathways
resulting in hampering of microglial function, particularly phagocytosis of Aβ [127,129]. Interestingly,
LPS-activated microglia eliminate viable neurons and synapses and promote the development
of neurotoxic astrocytes A1 by releasing TNF-α, IL-1α and complement component C1q. All of
these molecules activate A1 cells, which phagocyte healthy neurons and oligodenrdocytes [118,130].
Neutralizing antibodies to Il-1α, TNF-α, and C1q together inhibit the harmful activity of astrocytes. A
similar effect was observed in knock-out mice (Il-1α−/−TNFα−/−C1q−/−) that failed to generate A1
cells [131]. These data provide evidence that astrocytes A1 are involved in human neuroinflammatory
and neurodegenerative diseases.

The role of epigenetic factors, including DNA methylation, histone modifications and non-coding
RNAs, in the development of AD has been widely studied. It has been found that demethylation of
cytosines (from -207 to -182) in the promoter region of amyloid precursor protein (APP) gene may
result in Aβ aggregation in the aged brain [132]. The study of Zhang et al. revealed that methylation
of the microtubule-associated protein tau (MAPT) gene, especially in dinucleotide cytosine/guanine
sites, triggers the function of microtubules and axonal transport [133]. These mutations lead to the
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formation of abnormal hyperphosphorylated tau protein, which participates in the formation of
neurofibrillary tangles (NFTs) and induces abnormal earlier maturation and increased excitableness of
neurons [134,135]. The biological activity of tau protein is also regulated by HDACs, which repress
gene expression by condensing the structure of chromatin [132]. SIRT1, a member of the sirtuin
family of nicotinamide adenine dinucleotide (NAD)-dependent HDACs, catalyzes the deacetylation
of lysine 28 in the microtubule-stabilizing protein tau, which inhibits its function and promotes its
aggregation [136,137]. Julien at al. observed that a significant reduction of SIRT1 level in the brains of
AD patients was associated with the accumulation of Aβ and tau protein [138].

5.2. Parkinson’s Disease

Parkinson’s disease (PD) is an adult onset neurodegenerative disease characterized by selective
degeneration of neurons, including loss of dopaminergic neurons and the presence of Lewy bodies
containing α-synuclein, which results in motor and nonmotor symptoms [139–141]. α-synuclein plays
a leading role in the initiation and progression of neurodegeneration as a result of neurotoxicity
induction by various pathways, such as inflammation, oxidative stress as well as autophagy
abnormalities [141,142]. TLR1 and TLR2 on microglia recognize α-synuclein followed by the activation
of phagocytic TAM receptor tyrosine kinases: Axl and Mer [143]. The functional roles of these
receptors include regulating the innate immune response with phagocytosis of distressed spinal motor
neurons and controlling the target genes involved in the homeostatic regulation of TLR-mediated
signal transduction pathways [114,143,144].

Differences in DNA methylation, histone modifications and miRNA expression are also relevant
in the dysregulation of the expression of some genes, which are important in the pathogenesis of
PD. The expression of α-synuclein is regulated by DNA methylation. The addition of a methyl
group to CpG islands in the first intron (5′-regulatory regions) of the α-synuclein gene results in
transcriptional repression. Jowaed et al. and Matsumoto et al. observed that demethylation of the
α-synuclein gene affects the pathogenesis of Parkinson’s disease [145,146]. Moreover, the Dntm1 (DNA
methyltransferase 1) level, one of the key regulator enzymes that inhibit DNA methylation, has also
been found to be lower in human postmortem cortical brain samples from PD [147]. Methylation
mechanisms have also been analyzed in mRNA. The post-transcriptional modifications relate to
N6-methyladenosine and 5-methylcytosine. The consequence of the mutations in FTO (Fat mass and
obesity-associated) gen, that encodes nucleic acid demethylase, is the impairment of dopaminergic
neuron activity via dopamine receptor type 2 (D2R) and dopamine receptor type 3 (D3R), which has
been observed in mouse brain model and among patients with Parkinson’s disease [148,149]. Chromatin
remodeling, including methylation and acetylation of histones, is associated with transcriptionally
active genes. α-synuclein can bind to H3, which prevents histone acetylation, inhibits gene expression,
leads to α-synuclein fibrillation and toxicity, and in consequence results in cell death [149,150]. Many
environmental neurotoxins, such as dieldrin or paraquat, which trigger the pathogenesis of PD, are
related to hyperacetylation of H3 or H4 in dopaminergic neurons [151]. Choi et al. revealed that miR-7
represses α-synuclein expression by targeting the 3′-untranslated region of its mRNA as well as by
facilitating the degradation of α- synuclein protein/aggregates by promoting autophagy, which was
evaluated in the human neural progenitor cell line ReNcell VM [152,153]. Similar effect was observed
by Doxakis at el., who concluded that miR-7 and miR-153 play a role in modulating α-synuclein protein
levels in the nervous system, which can be considered as a potential therapeutic strategy for PD [154].

5.3. Autism Spectrum Disorder

Microglia dysfunction may also contribute to the development of autism spectrum disorder
(ASD). It is a neuropsychiatric condition characterized by impaired social communication, including
restricted interests, stereotyped and repetitive behavior or cognitive disabilities [115,155–157]. The
causes of ASD still remain unknown, but many studies indicate a high genetic contribution. Molecular
analysis revealed over one hundred ASD chromosomal rearrangements that are present in as many
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as 20% of affected individuals [155,158]. The genes associated with ASD are involved in multiple
cellular functions, including chromatin remodeling, metabolism, mRNA translation, and synaptic
function as well as neuronal/synaptic homeostasis [158,159]. Furthermore, several studies determined
that pro-inflammatory skew, including autoimmune background, can lead to this disease [115,160].
Cytokines may affect behavior through effects on neurotransmitter function, neuroendocrine
activity and neurogenesis. These processes are associated with the abnormalities in the balance
between excitatory (glutamate-mediated), and inhibitory (GABA-mediated, gamma-aminobutyric
acid) neurotransmission, which can result in the pathological process of excitotoxicity [161,162]. It
is known that maternal immune activation to an invading pathogen during the first trimester of
pregnancy increases the risk of ASD in children. One of the hypotheses that attempts to explain this
reaction is based on the evidence that maternal infection leads to the release of pro-inflammatory
cytokines and activation of Th17 cells, which affects the immune status and genetic predisposition of
the fetus. Analysis of the cytokine profile at birth revealed elevated IL-1β and IL-4 levels, which can be
considered as a prenatal immune challenge, followed by the development of ASD symptoms later in
childhood [163,164].

6. Conclusions

The term “trained innate immunity” describes a kind of immunological memory which is
completely distinct from the classical one, represented by a highly specific and potent response of
lymphocytes. After primary stimulation, innate immune cells develop a trained immunity phenotype,
which allows them to respond more effectively to subsequent restimulation with related or unrelated
stimuli. Unlike in the case of classical adaptive response, where the gene rearrangement plays a pivotal
role, trained immunity depends on the epigenetic reprogramming with which the changes in cellular
metabolism are often closely connected. The phenomenon of innate immune memory possesses the
potential for helping to design some activators of innate immune response or new generation of
vaccines. However, there is some evidence indicating the contribution of epigenetic reprogramming to
the occurrence of different detrimental processes, including those connected with the development
of atherosclerosis, diabetes mellitus, autoimmune disorders or neurodegenerative diseases. The
epigenetic mechanisms accompanying the induction and progression of many pathological processes
have been only partially identified, and their participation in the development and maintaining of this
process should be considered circumstantial or presumptive.

Author Contributions: M.W., M.D., and M.F. wrote the manuscript. M.F. designed the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ABCA1 cholesterol efflux regulatory protein
ABCG1 intracellular cholesterol transporting protein
BCG M. bovis BCG (Bacillus Calmette-Guérin)
GM-CSF granulocyte-monocyte colony stimulating factor
CXCL chemokine (C-X-C) ligand
DNMT DNA methyltransferase
HAT acetyltransferase
HDAC histone deacetylase
HDM histone demethylase
HLA human leukocyte antigen
HMT histone methyltransferase
ICAM-1 Intracellular adhesion molecule 1
IFN interferon
IL interleukin
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IRAK interleukin-1 receptor associated kinase
LPS lipopolysaccharide
MBP myelin basic protein
MCP-1 monocyte chemoattractant protein-1
MHC major histocompatibility complex
MMP metalloproteinase
NK Natural killer cell
oxLDL oxidized low-density lipoprotein
PADI2 peptidyl arginine deaminase 2
Pam3Cys tripalmitoyl-S-glyceryl cysteine
PPARG1 pepxisome proliferator-activated receptor gamma
ROS reactive oxygen species
SUMO small ubiquitin-like modifier
TGF-beta transforming growth factor
Th T helper cell
TLR Toll-like receptor
TNF tumor necrosis factor
TSA trichostatin A
VCAM-1 vascular cell adhesion molecule 1

References

1. Netea, M.G.; van der Meer, J.W. Trained immunity: An ancient way of remembering. Cell Host Microbe 2017,
21, 297–300. [CrossRef]

2. Benn, C.S.; Netea, M.G.; Selin, L.K.; Aaby, P. A small jab–A big effect: Nonspecific immunomodulation by
vaccines. Trends Immunol. 2013, 34, 431–439. [CrossRef]
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