included difficulty of associating outcomes, limited post-index time period, and potential misclassification when establishing a standardized algorithm for PWID identification

	All Drug Injectors Pre-Index n=328	All Drug Injectors Post-Index n=398 (#, %)	P-value	Opioid Injectors Pre-Index n=146	Opioid Injectors Post-Index n=156 (#, %)	P-value
	(#, %)			(#, %)		
Biological Sex			0.52			0.46
Male	230 (70.12)	270 (67.84)		103 (70.55)	103 (66.03)	
Female	98 (29.88)	128 (32.16)		43 (29.45)	53 (33.97)	
Race			0.09			0.64
White	223 (67.99)	245 (61.56)		118 (80.82)	124 (79.49)	
Black	104 (31.71)	148 (37.19)		27 (18.49)	29 (18.59)	
Others	1 (0.30)	5 (1.26)		1 (0.30)	3 (1.92)	
Hispanic †	123 (37.50)	134 (33.75)	0.31	65 (44.52)	57 (36.54)	0.16
Age in Years			0.11			0.17
18-29	39 (11.89)	60 (15.08)		22 (15.07)	30 (19.23)	
30-39	88 (26.83)	90 (22.61)		47 (32.19)	47 (30.13)	
40-49	67 (20.43)	108 (27.14)		36 (24.66)	48 (30.77)	
50-59	83 (25.30)	97 (24.37)		30 (20.55)	20 (12.82)	
60-65	37 (11.28)	28 (7.04)		9 (6.16)	5 (3.21)	
65+	14 (4.27)	15 (3.77)		2 (1.37)	6 (3.85)	
Insurance Status	(N, %)	(N, %)	0.88			0.90
Uninsured	166 (50.61)	196 (49.25)		85 (58.22)	95 (60.90)	
Medicaid	95 (28.96)	122 (30.65)		31 (21.23)	34 (21.79)	
Medicare + Federal	51 (15.55)	66 (16.58)		24 (16.44)	21 (13.46)	
Private	13 (3.96)	11 (2.76)		5 (3.42)	4 (2.56)	
Other	3 (0.91)	3 (0.75)		1 (0.68)	2 (1.28)	
Median Length of Stay	4	3	0.39	4	2	0.14
Expired During Study Period	15 (4.57)	17 (4.27)	0.85	5 (3.42)	4 (2.56)	0.74

Infectious Sequela Admissions in Persons who Inject Drugs††	All Drug Injectors Pre-Index n=328 (N, %)	All Drug Injectors Post-Index n=398 (N, %)	P-value	Opioid Injectors Pre-Index n=146 (N, %)	Opioid Injectors Post-Index n=156 (N, %)	P-value
Endocarditis	13 (3.96)	29 (7.29)	0.08	6 (4.11)	12 (7.69)	0.23
Bacteremia, Sepsis	147 (44.82)	165 (41.46)	0.37	70 (47.95)	55 (35.26)	.026
Osteomyelitis of						
bone/spine	49 (14.94)	78 (19.60)	0.12	20 (13.70)	25 (16.03)	0.63
Skin and Soft Tissue	172 (52.44)	212 (53.27)	0.88	82 (56.16)	98 (62.82)	0.24
HIV	52	56	0.53	18	21	0.86
HCV	107	140	0.48	64	94	0.0056
Overdose Sequela	32 (9.76)	14 (3.52)	0.0006	20 (13.7)	6 (3.85)	0.0034
tt Some admissions had m	ultiple infectious sequ	elae coded				

Disclosures. All authors: No reported disclosures.

1644. Performance of Symptom-Based Case Definitions to Identify Influenza Virus Infection among Pregnant Women in Middle-Income Countries: Findings from the Pregnancy and Influenza Multinational Epidemiologic (PRIME) Study Meredith G. Wesley, MPH¹; Yeny Tinoco, PhD²; Archana Patel, MD³;

Piyarat Suntarattiwong, MD^{4,5}; Danielle R. Hunt, PhD, MPH⁶;

Giselle Soto, MD²; Chalinthorn Sinthuwattanawibool⁷

Wanitchaya Kittikraisak, PhD⁷; Carmen S. Arriola, DVM, PhD¹;

Danielle Hombroek, MPH⁶; Joshua Mott, PhD⁷; Kunal Kurhe, MD³; Savita Bhargav, MD³; Amber A. Prakash, M Sc⁸; Richard Florian, MD⁹;

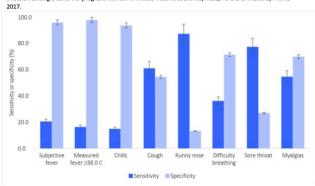
Oswaldo Gonzales, MD¹⁰; Santiago Cabrera, MD¹¹; Edwin Llajaruna Zumaeta, MD¹²; Tana Brummer, MPH⁶; Parker Malek¹³;

Siddhartha Saha, MD1; Shikha Garg, MD, MPH1;

Eduardo Azziz-Baumgartner, MD, MPH¹; Mark G. Thompson, PhD¹⁴; Fatimah S. Dawood, MD¹; ¹Centers for Disease Control and Prevention, Atlanta, Georgia; ²U.S. Naval Medical Research Unit No. 6, Lima, Peru; ³Lata Medical Research Foundation, Nagpur, Madhya Pradesh, India; ⁴Queen Sirikit National Institute of Child Health, Bangkok, Thailand, 5Thailand Ministry of Public Health, Bangkok, Krung Thep, Thailand; ⁶Abt Associates, Atlanta, Georgia; ⁷Thailand Ministry of Public Health—US Centers for Disease Control and Prevention Collaboration, Bangkok, Krung Thep, Thailand; ⁸Lata Medical Research Foundation, Nagpur, Madhya Pradesh, India; 9Hospital Nacional Arzobispo Loayza, Lima, Peru; ¹⁰Instituto Nacional Materno Perinatal, Lima, Peru, ¹¹Hospital Nacional Docente

Madre Niño San Bartolomé, Lima, Peru, 12 Hospital Nacional Dos de Mayo, Lima, Peru, ¹³Abt Associates Inc., Atlanta, Georgia, ¹⁴US Centers for Disease Control and Prevention, Atlanta, Georgia

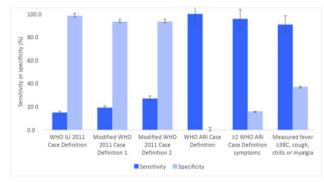
Session: 163. Public Health Friday, October 4, 2019: 12:15 PM


Background. The World Health Organization (WHO) recommends case definitions for influenza surveillance that are also used in public health research, though their performance has not been assessed in many risk groups, including pregnant women in whom influenza may manifest differently. Â We evaluated the performance of symptom-based case definitions to detect influenza in a cohort of pregnant women in India, Peru, and Thailand.

Methods. In 2017, we contacted 4774 pregnant women twice a week during the influenza season to identify illnesses with new or worsened cough, runny nose, sore throat, difficulty breathing or myalgia, and collected data on other symptoms and nasal swabs for influenza rRT-PCR testing. To identify symptom predictors of influenza, we used multivariable logistic regression with forward selection of symptoms significant in univariate analysis after controlling for country, chronic conditions, influenza vaccination, and time from symptom onset to swab collection. We calculated sensitivity and specificity of each symptom, WHO respiratory illness case definitions and a case definition based on significant predictors from the multivariable model.

Results. Of 2431 eligible illness episodes among 1,716 participants, 142 (5.8%) were positive for influenza. Among individual symptoms, runny nose was most sensitive and measured fever ≥ 38° Celsius was most specific (Figure 1). In a multivariable model, measured fever ≥ 38° Celsius [adjusted odds ratio = 3.8, 95% confidence interval [CI] = 2.0-7.2], cough [2.7, CI 1.6-4.7], chills [2.2, CI 1.2-3.8], and myalgia [1.2, CI 2.2, 5.3] were independently associated with influenza illness. A case definition based on these four (measured fever, cough, chills or myalgia), was 91%-sensitive and 37% specific. Sensitivity and specificity of case definitions varied (Figure 2).

Conclusion. While a case definition based on one or more of fever, chills, cough or myalgia is highly-sensitive and moderately specific among pregnant women, case definitions requiring measured or subjective fever may miss many influenza cases making them sub-optimal for studies of burden or vaccine efficacy. The intended use of case definitions should be considered when evaluating the tradeoff between sensitivity and specificity.


Figure 1. Sensitivity and specificity of individual symptom-based case definitions to identify influenza virus infection among a cohort of pregnant women in middle-income countries, India, Peru and Thailand, PRIME

Error Bars Indicate 95% confidence intervals

RT-PCR for influenza is used as the gold standard for these calculations

Figure 2. Sensitivity and specificity of combination symptom-based case definitions to identify influenza virus infection among a cohort of pregnant women in middle-income countries, India, Peru and Thailand, PRIME 2017.

nza-like illness (ILI) 2011 Case Definition includes measured fever ≥38.0 Celsius and cough. Modified WHO 2011 Case Definition 1 includes measured fever ≥38.0 Celsius or subjective fever and cough. Modified WHO 2011 Case Definition 2 includes measured fever ≥38.0 Celsius or subjective fever or chills and

WHO ARI Case Definition includes at least one of the following: cough, sore throat, runny nose or difficulty

breathing.

Final model includes measured fever ≥38.0 Celsius, cough, chills or myalgia. Error bars indicate 95% confidence intervals

RT-PCR for influenza is used as the gold standard for these calculations

Disclosures. All authors: No reported disclosures.

1645. High Seroprevalence and Seroconversion Rate of Borrelia burgdorferi Infection Among Hispanic/Latino Immigrant Workers in Eastern Suffolk County, New York: A Longitudinal-Based Study

Stalin Vilcarromero, MD, DTM&H1; Ana M. Nunez, MS2;

Katherine Vivas, Bachelor's of Science 2

Julianna Russo, Bachelor of Science in Health Science²

Saadia Mahmood, MPH (c)²; Anna-Marie Wellins, DNP²;

Ximena Lopez-Carrillo, PhD (c)²; Yun Xu, PhD²; Xiaohua Yang, MS²;

Luis Marcos, MD, MPH²; Chrisa Arcan, PhD, MHS, MBA, RD²

Benjamin J. Luft, MD²; ¹stony Brook University, Brentwood, New York; ²Stony Brook University, Commack, New York

Session: 163. Public Health

Friday, October 4, 2019: 12:15 PM

Background. Lyme disease, caused by Borrelia burgdorferi, continues to be the most commonly reported vector-borne disease in the United States (US) affecting the