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Abstract: Driven by the rapid development of additive manufacturing technologies and the trend
towards mass customization, the development of new feedstock materials has become a key aspect.
Additivation of the feedstock with nanoparticles is a possible route for tailoring the feedstock material
to the printing process and to modify the properties of the printed parts. This study demonstrates the
colloidal additivation of PA12 powder with laser-synthesized carbon nanoparticles at >95% yield,
focusing on the dispersion of the nanoparticles on the polymer microparticle surface at nanoparticle
loadings below 0.05 vol%. In addition to the descriptors “wt%” and “vol%”, the descriptor “surf%”
is discussed for characterizing the quantity and quality of nanoparticle loading based on scanning
electron microscopy. The functionalized powders are further characterized by confocal dark field
scattering, differential scanning calorimetry, powder rheology measurements (avalanche angle and
Hausner ratio), and regarding their processability in laser powder bed fusion (PBF-LB). We find that
heterogeneous nucleation is induced even at a nanoparticle loading of just 0.005 vol%. Finally, analysis
of the effect of low nanoparticle loadings on the final parts’ microstructure by polarization microscopy
shows a nanoparticle loading-dependent change of the dimensions of the lamellar microstructures
within the printed part.

Keywords: additive manufacturing; colloidal additivation; laser fragmentation in liquids;
Nanocomposites; 3D printing; selective laser sintering SLS; polyamide

1. Introduction

Additive manufacturing (AM) causes a transformation of design, manufacturing, and business
models [1]. However, the range of polymer materials available for AM on an industrial scale is limited.
In the field of powder bed fusion of polymers (PBF-LB/P, according to ISO/ASTM DIS 52900:2018),
the market is dominated by polyamide powders with a market share of ~90% [2]. Much effort is
spent on extending the range of materials in PBF-LB/P, and hereby also widen the range of potentials
applications [3–8]. One approach for tailoring the polymer powder properties is additivation with
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nanomaterials [9,10]. Carbon-based nanomaterials, such as carbon dots [11], tubes [12–14], fibers [15,16]
or graphene [17,18], are already known for their applicability in various fields [19–21] and can also
be used as fillers in polymer powders for PBF-LB/P [10,22]. They significantly affect PBF-LB/P
processing behavior in terms of light absorptivity adjustment for diode laser 3D printing [23–26],
modify the mechanical properties [24,25,27–30], and introduce new functionalities to the printed part,
e.g., electrical conductivity [23,31]. Nevertheless, the complex influence of nanofillers, related to
the nanoparticle–polymer interaction during rapid heating and slow cooling of the polymer in the
PBF-LB/P process, is yet not fully understood.

As nanoparticles act as nuclei during polymer crystallization and hereby strongly affect the
microstructure of the printed part, it can be expected that not only the mass loading of the nanofiller,
but also its dispersion (polymer surface coverage and particle size) significantly influence the powder
processability and part properties. For example, high filler loadings in the range of 4 wt% of carbon
nanoparticles can decrease the flexural modulus, caused by nanoparticle agglomeration [23]. On the
other hand, no effects on the melt flow and the polymer crystallization were observed for loadings in the
range of 0.1 wt% and low dispersion quality [30,32]. However, the degree of nanoparticle dispersion
is typically not investigated in detail. One exception is a study of Meyer and Zimmerman [33],
who highlighted the influence of oxide nanoparticle dispersion on the powder flowability. They found
that the dispersion affects the surface roughness of the microparticles and hereby the particle adhesion,
which governs the powder rheology in accordance with an earlier study by Rumpf [34]. Nevertheless,
the scarce literature makes it hard to systematically correlate the processing behavior and part properties
in PBF-LB to the nanoparticle dispersion. The variety of additivation methods aggravates this problem
since the dispersion quality is strongly related to the nanoparticle synthesis and polymer additivation
method [30,35,36], e.g., insufficient dispersion of aggregated gas phase-synthesized nanoparticles after
dry coating of polymer powder or enhanced dispersion after wet coating [37].

Therefore, our study focuses on the preparation method of the feedstock material, starting
with the preparation of a highly dispersed carbon colloid by laser synthesis and processing of
colloids (LSPC) [38]. LSPC has become an established approach for the formation of metal and metal
oxide nanoparticles [39] and was also reported by several researchers for the preparation of carbon
colloids [40–46]. In the next step, a colloidal additivation process is used to adsorb the as-prepared
laser-generated carbon nanoparticles on PA12 microparticles, directly in an aqueous dispersion.
Besides a deep characterization of the nanoparticle dispersion on the polymer particle surface, we focus
on investigating the heterogeneous nucleation effect caused by the nanoparticles in the polymer matrix
during resolidification. Our study aims at an understanding of the influence of carbon nanoparticles
especially at small nanoparticle loadings (<0.1 wt%), which are already high enough to have a high
potential for influencing the polymer microstructure and the mechanical properties of the final part.

2. Materials and Methods

2.1. Colloidal Surface Additivation

The process chain for colloidal surface additivation of a polyamide 12 powder (EVONIK
VESTOSINT 1115, Evonik Industries, Essen, Germany) is depicted in Figure 1. In a first step, 50 mg/L
carbon nanoparticles (CARBON BLACK, Orion Engineered Carbons, Senningerberg, Luxemburg) is
dispersed in water by ultrasonication (Hielscher, Ultrasonics, Teltow, Germany, UP200S, 200 W and
24 kHz, alternating between on and off for 0.5 s each), directly followed by laser irradiation through
a cylindrical lense with a 3 ps laser system operating at 515 nm (Amphos 500flex, Herzogenrath,
Germany, 5 MHz, 170 W, max. 36 mJ/cm2

, 34 µJ/pulse, 0.094 mm2 spot size) or with a 10 ps laser
system operating at 532 nm and much higher fluence (Edgewave PX400-3-GH, Edgewave PX400-3-GH,
Würselen, Germany, 80 kHz, 30 W 150 mJ/cm2, 375 µJ/pulse, 0.25 mm2 spot size). A liquid jet set-up
with a flow rate of 60 mL/min and a liquid jet diameter of 1.3 mm was utilized for laser postprocessing
(LPP) [47,48]. At the given spot size and repetition rate of the laser system, this leads to multiple laser



Materials 2020, 13, 3312 3 of 18

pulses per volume element [49]. The applied fluence can be tuned by varying the distance between
the cylindrical lens and the liquid jet so that the mass-specific energy dose can be tuned by repeating
the irradiation cycle several times, which is referred to as “number of passages”. Due to self-focusing
effects in the round couture of the liquid jet, approximately 12% of the liquid jet is unirradiated [50].
To ensure that >99% of the particles are illuminated, at least three passages are necessary. However, the
net throughput decreases with the increasing number of passages. Therefore, only one passage was
applied to the colloids in the following experiments if not stated otherwise. Hereby, 180 mg in 3.6 L
of colloid can be processed per hour. After the last passage, the irradiated colloid is either analyzed
via UV–Vis absorbance spectroscopy (Thermo Scientific Evolution 201, Waltham, MA, USA, 1 nm
bandwidth, 0.8 nm resolution), dynamic light scattering (DLS, PSS-Nicomb 380 ZLS, Entegris, Billerica,
MA, USA), or dried to perform transmission electron microscopy (TEM, Zeiss EM 910, Oberkochen,
Germany), Raman spectroscopy (Renishaw InVia, Wotton-under-Edge, UK), and Fourier-transform
infrared spectroscopy (FTIR, JASCO FT/IR-430, Easton, MD, USA). SEM and TEM samples were
prepared by dripping 20 µL of the nanoparticle dispersion on a TEM grid or an SEM specimen mount,
followed by drying for one day. To perform colloidal additivation, the colloid is directly mixed with an
aqueous suspension of PA12 powder (50 g/L) under constant stirring. After irradiation, the mixture
is stirred for 5 min to ensure complete supporting. The typical mass load for additivation ranged
between 0.01 and 0.1 wt% (equivalent to 0.005 vol%–0.05 vol%). The concentration of 50 g/L was
chosen to ensure efficient colloidal additivation. Subsequently, the mixture is filtered, dried at 50 ◦C
for 24 h, and sifted with a 125 µm sieve before powder analysis. The educt colloids as well as the
permeates after filtration were analyzed by UV–Vis absorbance spectroscopy to calculate the residual
carbon nanoparticles in the permeate and the supporting efficiency, defined as

Supporting e f f iciency =
Abs600 (Educt) −Abs600 (Permeate)

Abs600 (Educt)
100% (1)
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Figure 1. Process chain for colloidal additivation of PA12 micropowder with carbon nanoparticles: (a) 
Dispersion of aggregated carbon nanoparticle powder in water by ultrasonication. (b) Laser 
postprocessing (LPP) with a high power, high repletion rate laser, focused on the nanoparticle 
dispersion in a liquid jet. (c) Cixing of the irradiated colloid with the polymer powder and adsorption 
of nanoparticles on the polymer particles. (d) Filtration, drying, and sifting to yield dry 
nanofunctionalized PA12 powder. 

Figure 1. Process chain for colloidal additivation of PA12 micropowder with carbon nanoparticles:
(a) Dispersion of aggregated carbon nanoparticle powder in water by ultrasonication. (b) Laser
postprocessing (LPP) with a high power, high repletion rate laser, focused on the nanoparticle
dispersion in a liquid jet. (c) Cixing of the irradiated colloid with the polymer powder and adsorption of
nanoparticles on the polymer particles. (d) Filtration, drying, and sifting to yield dry nanofunctionalized
PA12 powder.
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2.2. Polymer Powder Analysis

The distribution of nanoparticles on the surface of the polymer particles is investigated by laser
scanning confocal dark-field imaging (Leica TCS SP8, Leica Microsystems, Wetzlar, Germany) and
scanning electron microscopy (SEM, ESEM Quanta 400 FEG, ThermoFisher Scientific, Waltham, MA,
USA). Hausner ratio measurements were conducted according to VDI 3405 Part 1.1. The tapped
volume has been determined manually with a 100 mL plastic cylinder for 5 times for statistical
evaluation. The dynamic flow properties of powders were estimated by using a rotating drum analyzer
(Revolution Powder Analyzer, Mercury Scientific, Newtown, CT, USA), which is known for good
correlation with PBF-LB/P processing conditions due to the evaluation of particle cohesiveness during
flow under elevated temperatures [8,51,52]. Avalanche angles were measured at 20 ◦C and 100 ◦C
and a rotating speed of 10 rpm with a sample quantity of 100.0 ± 0.5 mL. Measurements of 150
avalanches were averaged for each sample. The dynamic image analysis (ISO 13322-2) of the PA12
powder compositions was conducted via the Camsizer X2 (Microtrac RETSCH, Haan, Germany)
with compressed air of 50 kPa through the X-Jet extension to get rid of possible agglomerations.
The amounts of analyzed powder per run were a few grams, which equals to around 500,000 detectable
particles. The range of detection of this machine is between 0.8 µm and 8 mm, with a resolution of up
to 0.8 µm/pixel. The number-weighted and volume-weighted distributions were directly calculated by
the device and are based on the projected area of a sphere. The procedure has been repeated 3 times
for statistical analysis.

2.3. Differential Scanning Calorimetry (DSC)

The PA12 powders and their composites were analyzed non-isothermally with a DSC 822e (Mettler
Toledo, Columbus, OH, USA) under a nitrogen purge of 40 mL/min. The machine has a temperature
accuracy of ±0.2 ◦C, reproducibility of ±0.1 ◦C, and a resolution of 0.04 µW. Powder samples of 12 mg
were placed in 40 µL aluminum pans with covers. The measurements were performed from 25 ◦C
to 250 ◦C with a heating rate of 20 K/min. At 80 ◦C, the powders were held for 3 min to ensure the
same starting conditions for every powder sample. At 250 ◦C, the samples were held again for 3 min
to fully melt all residual crystals and to assure a thermal equilibrium. Afterward, the samples were
cooled down to 80 ◦C with a cooling rate of 10 K/min, held for 3 min, and heated up to 250 ◦C with
10 K/min. Thus, an analysis of the crystallization behavior and the melting behavior of previously
emerged crystals as well as the sample’s crystallinity were possible. For statistical evaluation, each
powder composition was analyzed 3 times, leading to a total of 9 samples. The evaluation of the results
was performed with the Mettler Toledo STARe Evaluation Software 16.10. For the calculation of the
relevant enthalpies, an integral tangential baseline was used.

2.4. Microscopic Analysis

After cooling down the DSC samples at a rate of 10 K/min, the crystalline structures were analyzed
through transmitted light as well as reflected light for bright field illumination by the microscope
Metalloplan from Leitz (Leica Microsystems, Wetzlar, Germany) with a magnification of 400 and 256,
respectively. For this, the samples were sliced to 10 µm specimens with a microtome and embedded
in oil on microscope slides. With the use of two polarizers, the birefringence of the crystals was
made visible. The evaluation of the aspect ratio of the crystal forms has been performed manually by
measuring the longest to shortest dimension of at least 20 crystalline structures of 3–5 DSC slices per
sample, with a value of 1 being equivalent to a circle.

3. Results and Discussion

3.1. Preparation of Carbon Nanoparticles by Laser Synthesis

Ps-laser irradiation with a high repetition rate laser system (3 ps, 5 MHz, max. 36 mJ/cm2)
significantly decreases the hydrodynamic diameter of carbon nanoparticles, which is confirmed by
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DLS measurements (Figure 2a). The higher the fluence, the smaller the nanoparticle size (Figure 2b).
The best results were found for a fluence of 36 mJ/cm2, leading to a hydrodynamic particle size
reduction from 157 nm to 36 nm. A similar trend can be found for the zeta potential, which decreases
from −40 to −60 mV through irradiation (Figure 2c). This effect indicates a higher surface charge of
the irradiated particles and has also been reported for laser irradiation of other materials, such as
gold [53,54]. In accordance with the literature, the isoelectric point (IEP, Figure 2d) lies between pH
values of 3.5 to 4 [55,56] and slightly shifts from 4.1 pH before LPP is to 3.3 pH through laser irradiation.
Although the high absolute zeta potential value of more than 30 mV nominally indicates good colloidal
stability, colloids exhibit only short time stability and show high activity for aggregation. This happens
within minutes after laser irradiation (Figure 2d), indicated by hydrodynamic particles diameters in
the range of a few hundreds of nm. However, the short time stability was high enough for reliable
DLS and zeta potential measurements. In order to further reduce the size of the nanoparticles, another
laser system with a higher fluence was utilized (10 ps, 80 kHz, 150 mJ/cm2). The synthesized colloid
also showed very weak colloidal stability and aggregation within minutes. In both cases, the weak
colloidal stability could be explained by the successful disaggregation and fragmentation of carbon
nanoparticles. The smaller the nanoparticles at a given concentration, the smaller the volumetric
interparticle distance, and the higher the probability for aggregation (which scales with the square root
of particle number concentration).
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Figure 2. Laser postprocessing of carbon black with a high repetition rate laser system:
(a,b) Hydrodynamic nanoparticle diameter (mass weighted) measured by dynamic light scattering
(DLS) as a function of laser fluence. (c) Zeta potential as a function of the pH value of the dispersion
before and after LPP. (d) Temporal evolution of the hydrodynamic particle size after laser irradiation.
The error bars in panels (b,c) represent the standard deviation and are based on at least 3 samples each.
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TEM images (Figure 3) confirm pronounced disaggregation for the low fluence laser system
(Figure 3b) compared to the educt particles (Figure 3a), whereas the high fluence laser system also
results in fragmentation of the primary particles (Figure 3c) and appearance of strongly aggregated
nanoparticles in the sub-10 nm scale (inset of Figure 3c). Laser synthesis is known to produce such
small nanoparticles with a size below 10 nm [40–46]. Due to the high instability of the aqueous colloid
and the fast aggregation after LPP, statistical evaluation of particle size and degree of dispersion
based on TEM images is not meaningful as the TEM grid does not represent the degree of dispersion
and the aggregate size right after laser irradiation, but the size after preparation of the TEM grid
and drying of the colloid. Note that particle ripening and aggregation is much faster than drying of
the colloid on the TEM grid. Despite the fraction of small particles, which is likely to dominate the
number-weighted particle size distribution, a significant fraction of the educt volume material remains
unchanged by laser irradiation. This is indicated by larger educt particles and aggregates on the TEM
grid. In agreement with this observation, a volume-sensitive Raman shift analysis (Figure 4) does not
reveal any significant changes of the ratio of the relevant peaks at 1590 cm−1 (G-Band) and 1350 cm−1

(D-Band), which result from the sp2-hybridization of planar carbon (graphite) and defect structure
in the graphite, respectively. The investigation of the carbon particle’s surface by Fourier-transform
infrared spectroscopy (Figure 4b) reveals the presence of C=C, C-H, C–O, and O–H bonds in the
material before and after irradiation [57]. The preservation of the chemical surface groups composition
after laser irradiation is associated to the employment of water as solvent, therefore no other element
apart from C, H, and O are expected even after irradiation. A closer look to the spectra reveals slight
differences after laser irradiation, as a higher absorption of the C–O peak at 1060 cm−1 and the C–H
peaks at 2860 cm−1 and 1470 cm−1. This fact indicates the increased presence of C–OH and CH2

surface groups, which can be explained due to the higher surface area after particle size reduction and
the generation of molecular O and H based radicals or molecules from water splitting during laser
irradiation [58].
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Figure 3. TEM analysis of (a) the raw carbon nanoparticles dispersed in water by ultrasonication and
(b,c) colloids produced by irradiation with (b) a low fluence (36 mJ/cm2) and (c) a high fluence laser
system (150 mJ/cm2). LPP with a high fluence laser system results in many small particles, but the
colloid is more unstable against aggregation than at low fluence.
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3.2. Nanoparticle Dispersion on PA12 Microparticle Surface

After irradiation of the nanoparticles, a fast aggregation of the carbon nanoparticles within
minutes can be observed. However, if a support (PA12 powder) is provided under constant stirring
during this phase, efficient and fast adsorption of nanoparticles on the support occurs in less than
one minute. As we know from a previous study for nanoparticle adsorption on a polymer surface,
constant stirring is an important factor once the colloid is instable and starts to aggregate [59]. A good
mixture reduces the necessary diffusion distance between a nanoparticle and the polymer surface.
The supporting efficiency of the nanoparticles on the polymer microparticles determined by UV–Vis
absorbance spectroscopy of the permeate is larger than 95%, independent of the used laser for laser
synthesis. Permeates show a clear color and powders exhibit a black or grey color depending on the
mass load of carbon nanoparticles. As the nanoparticles completely adsorb on the polymer powder in
less than one minute under constant stirring (supporting efficiency > 95%), nanoparticle adsorption is
likely to dominate aggregation.

Laser scanning confocal microscopy of the decorated polymer particles reveals a homogeneous
distribution of nanoparticles (Figure 5). It is a reference method adapted from Blaesser/Million et al. [60]
and Klein et al. [61], which has also shown its potential for analyzing the distribution of fillers in
polymer matrixes [62,63]. The bright-field images of the additivated and unadditivated powders
look similar (Figure 5, upper row), but confocal dark-field imaging reveals much higher scattering
intensity for 0.05 vol% compared to 0.005 vol%, whereas only minor scattering can be observed for the
unloaded polymer powder. However, even the scattering signal from 0.005 vol% is high enough to
clearly distinguish the additivated from unadditivated polymer particles.
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Figure 5. Representative confocal bright field images and laser scanning dark field images of pure
PA12 and PA12 colloidal additivated with 0.005 and 0.05 vol% of laser irradiated carbon nanoparticles,
respectively. For dark-field imaging, the sample was excited at a wavelength of 500 nm and the
detection wavelength was set to 507–587 nm.

SEM images confirm the homogeneous distribution and high dispersion of the nanoparticles on
the polymer particle surface (Figure 6a–c). As expected from the colloidal analysis, small aggregates
appear. The effect of dispersion and nanoparticle size on the surface coverage on the polymer particle
surface is described in the scaling graphs in Figure 6d,e. Reducing the particle size by one magnitude,
e.g., from 500 nm to 50 nm, also results in an increase of theoretical surface coverage by one magnitude.
This is shown exemplarily in the scaling graphs in Figure 6d,e. If the particle size is dropping further
to 10 nm, even 0.01 vol% of carbon nanoparticles would be enough to completely cover the polymer
particles with 10 surf%. Therefore, the surface coverage could be an interesting parameter to quantify
the dispersion quality and quantity, instead of just using wt% to describe the nanoparticle loading.
However, for practical usage it is difficult to use this value, due to the limited resolution of SEM imaging
of carbon nanoparticles on a polymer surface. This can be explained by the low contrast between
nanoparticle and polymer. Especially, ultra-small carbon nanoparticles in the sub-10 nm-scale, which
are generated during LPP, cannot be resolved. Eventually, the primary particle diameter cannot be
determined exactly. In addition, surf% was also calculated from the polymer particle size distributions,
neglecting any surface porosity of the polymer particles. Especially, the letter will highly influence a
calculation of the surface coverage. However, the general scaling graphs in Figure 6d,e outline the
importance of high dispersion and small nanoparticle sizes in order to reach a high surface coverage at
small nanoparticle loadings.
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nanoparticles sizes on PA12 polymer powder (The specific surface area of PA12 was 0.114 m2/g, 
calculated from the particle size distribution, assuming spherical particles.). The dotted lines give an 
example of downsizing of the nanoparticle diameter and its effect on the theoretical surface coverage. 

Although the high activity of the colloids for aggregation is a drawback for particle size analysis 
of the colloids, this property can be utilized to vary the dispersion of the nanoparticles on the polymer 
surface by variation of agglomeration after LPP. Our experimental set-up allows mixing the carbon 
nanoparticles with the polymer microparticles directly after laser irradiation or after a specific 
residence time. The hydrodynamic diameter (Figure 7a) shows a linear dependence on the waiting 
time between sample preparation and measurement (residence time). Comparing a direct 
measurement and a measurement after 30 min reveals a mean difference of more than 100 nm, which 
is an increase in hydrodynamic particle size of more than 200%. This reproducible effect is also 
reflected in the Feret diameter of the adsorbed particles and aggregates on the polymer surface 
(Figure 7b), and the polydispersity index (PDI; Figure 7c). The Feret diameter shifts from 25 to 80 nm, 
whereas the PDI increases from below 0.3 (monodisperse < 0.3) to ~0.4 after a residence time of 30 
min. Please note that these measurements were just conducted once for each data point, since all SEM 
images needed to be analyzed manually. In addition, as mentioned before, SEM imaging of carbon 
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polymer surface, especially on the sub-10 nm-scale. However, samples can be compared to each 
other, and the results in Figure 7a–c show clear tendency. 

Figure 6. (a) SEM images of PA12 particles (a) before and (b) after colloidal additivation with 0.005 vol%
(0.01 wt%) of carbon nanoparticles (LPP at highest fluence). (c) Zoom in shows the homogeneous
distribution of carbon nanoparticles on the surface of the polymer microparticle. (d,e) Scaling graphs
illustrating the connection between vol%, wt%, and surface coverage (surf%) for different nanoparticles
sizes on PA12 polymer powder (The specific surface area of PA12 was 0.114 m2/g, calculated from
the particle size distribution, assuming spherical particles.). The dotted lines give an example of
downsizing of the nanoparticle diameter and its effect on the theoretical surface coverage.

Although the high activity of the colloids for aggregation is a drawback for particle size analysis
of the colloids, this property can be utilized to vary the dispersion of the nanoparticles on the polymer
surface by variation of agglomeration after LPP. Our experimental set-up allows mixing the carbon
nanoparticles with the polymer microparticles directly after laser irradiation or after a specific residence
time. The hydrodynamic diameter (Figure 7a) shows a linear dependence on the waiting time between
sample preparation and measurement (residence time). Comparing a direct measurement and a
measurement after 30 min reveals a mean difference of more than 100 nm, which is an increase
in hydrodynamic particle size of more than 200%. This reproducible effect is also reflected in the
Feret diameter of the adsorbed particles and aggregates on the polymer surface (Figure 7b), and the
polydispersity index (PDI; Figure 7c). The Feret diameter shifts from 25 to 80 nm, whereas the PDI
increases from below 0.3 (monodisperse < 0.3) to ~0.4 after a residence time of 30 min. Please note that
these measurements were just conducted once for each data point, since all SEM images needed to
be analyzed manually. In addition, as mentioned before, SEM imaging of carbon nanoparticles on
polymer is limited in its resolution due to low contrast between nanoparticle and polymer surface,
especially on the sub-10 nm-scale. However, samples can be compared to each other, and the results in
Figure 7a–c show clear tendency.
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0.005 vol%. SEM image of the PA12 particle surfaces after (d,g) colloidal additivation. (e,h) 
Corresponding number-weighted Feretmax size distribution of carbon nanoparticles on the surface of 
PA12 particles and (f,i) interparticle distance distribution. For the comparison of particle size and 
interparticle distance, several images were taken for each sample at the same resolution. 
Nanoparticles and distances were analyzed for at ~1000 nanoparticles, e.g., N=1082 in panel (e) and 
N=908 in panel (h). 

Our presented set-up allows a flexible additivation of polymer micropowders via the liquid-
flow LPP and colloidal downstream supporting process. At a throughput of 180 mg of carbon 
nanoparticles per hour, equivalent to 3.6 L of colloid, it is capable to additivate 1.8 kg/h of polymer 
powder at a loading of 0.005 vol%, which is a sufficient amount for powder production to allow PBF-
LB/P parameter studies and 3D printing of test structures. Equipped with a static mixer instead of a 
stirred tank reactor, this approach has an even higher potential for fully automated, continuous 
colloidal additivation. 

3.3. PA12 Powder Characteristics 

To ensure the processability of the nanoparticle–polymer composite powder in terms of powder 
recoating/spreading during PBF-LB/P, colloidal additivation should not worsen the morphology and 
geometry of the base particles, preserving the extraordinary flowability of the base powder material. 
Therefore, particle size distribution before and after colloidal additivation is analyzed. The addition 
of 0.05 and 0.005 vol% carbon nanoparticles (CB) does not show significant differences (n.s.; 𝑃 >0.05) in the x10,3, x50,3 and x90,3 of volume-weighted distribution (Figure 8a). Furthermore, all particle 
size distributions are located within the desired average particle size of 10 and 120 µm for PBF-LB/P 

Figure 7. Comparison of (a) the hydrodynamic diameter after LPP with (b) the achieved Feretmax

diameters (primary particle diameter) of carbon nanoparticles on the polymer particle surface;
(c) the corresponding polydispersity index (PDI) of carbon nanoparticles on the polymer particle
surface at 0.005 vol%. SEM image of the PA12 particle surfaces after (d,g) colloidal additivation.
(e,h) Corresponding number-weighted Feretmax size distribution of carbon nanoparticles on the surface
of PA12 particles and (f,i) interparticle distance distribution. For the comparison of particle size and
interparticle distance, several images were taken for each sample at the same resolution. Nanoparticles
and distances were analyzed for at ~1000 nanoparticles, e.g., N=1082 in panel (e) and N=908 in panel
(h).

Our presented set-up allows a flexible additivation of polymer micropowders via the liquid-flow
LPP and colloidal downstream supporting process. At a throughput of 180 mg of carbon nanoparticles
per hour, equivalent to 3.6 L of colloid, it is capable to additivate 1.8 kg/h of polymer powder at a
loading of 0.005 vol%, which is a sufficient amount for powder production to allow PBF-LB/P parameter
studies and 3D printing of test structures. Equipped with a static mixer instead of a stirred tank reactor,
this approach has an even higher potential for fully automated, continuous colloidal additivation.

3.3. PA12 Powder Characteristics

To ensure the processability of the nanoparticle–polymer composite powder in terms of powder
recoating/spreading during PBF-LB/P, colloidal additivation should not worsen the morphology and
geometry of the base particles, preserving the extraordinary flowability of the base powder material.
Therefore, particle size distribution before and after colloidal additivation is analyzed. The addition of
0.05 and 0.005 vol% carbon nanoparticles (CB) does not show significant differences (n.s.; P > 0.05)
in the x10,3, x50,3 and x90,3 of volume-weighted distribution (Figure 8a). Furthermore, all particle size
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distributions are located within the desired average particle size of 10 and 120 µm for PBF-LB/P [64].
Minor changes of particle size distribution are only significant for the number-weighted distribution.
However, the total impact is rather minimal and should not negatively influence the flowability of
the powders. This hypothesis could be validated by measuring the Hausner ratio (HR). Here, the
additivation of small amounts of CB does not significantly (n.s.; P > 0.05) affect the good flowability
(< 1.25) of the base powder (Figure 8b), which shows a Hausner ratio similar to typical PA12 powders
used for PBF-LB/P [65]. This is also confirmed by dynamic flow properties, characterized by the
unchanged avalanche angle (Figure 8c).
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Figure 8. (a) Polymer microparticle size distribution, (b) Hausner ratio, and (c) avalanche angle before
and after colloidal additivation for 3 samples each. Particle sizes are based on the projected area of a
sphere xarea. The significance analysis shows no significant differences (n.s.) through the addition of
different amounts of CB.

3.4. Analysis of the Crystallization Behavior

Particles of nanoscale dimensions can significantly influence the melting enthalpy and act as
heterogeneous nucleation seeds, increasing the crystallization temperature and initiating crystal growth
during cooling [66–68]. Even small amounts (0.005 vol%) of CB induce a change of the crystallization,
and subsequent melting behavior as shown in the DSC analysis (Figure 9a,b). The crystallization
onset, peak, and endset temperatures shift significantly (****; P ≤ 0.0001) to 3 ◦C higher temperature
values (Figure 9c). The addition of 0.05 vol% CB increases the onset and the peak temperature even
further (+5 ◦C) compared to the base material. Based on these thermal results, CB seem to act as
heterogeneous nucleation seeds already at a minute amount of nanoadditive. By subsequently heating
the DSC samples, the melting behavior of the crystalline structures can be analyzed (Figure 9b,d).

The addition of CB leads to an increase in the heat of fusion ∆Hm at ~172 ◦C (Figure 10), displayed
by a larger peak area (Figure 10b), which indicates an increasing number of thinner lamellar crystalline
structures [69]. From the heat of fusion, the crystallinity Xc of the samples was calculated according to
Equation (2) [70,71]:

Xc =
∆Hm

∆H100·
(
1−w f

) = ∆Hm

209.3 J
g ·
(
1−w f

) (2)

where the enthalpy of fusion of a 100% crystalline PA12 crystal ∆H100 is given in the literature [72],
and w f is the weight percentage of the nanofiller in the composite. At higher amounts of CB (0.05 vol%),
the overall heat of fusion shows a significant (**; p ≤ 0.01) decrease compared to the base material,
while the crystallinity increases significantly (***; p ≤ 0.001) (Figure 10b). Based on these measurements,
higher amounts of CB seem to promote the crystal growth at a cooling rate of 10 K/min. This correlates
with the fact that more CB lead to more nucleation sites, increasing the amount of crystalline structures.



Materials 2020, 13, 3312 12 of 18
Materials 2020, 13, 3312 12 of 18 

 

 
Figure 9. DSC analysis of PA12 powder before and after colloidal additivation with the laser-
generated carbon nanoparticles: (a) 1st crystallization and (b) 2nd heating curves, based on the 
average of 3 runs. (c,d) Extracted onset, peak, and endset temperatures with corresponding error bars. 
The analysis of statistical significance either shows no significant difference (n.s.; p > 0.05) or a 
significant difference, where the p-values decrease with the increasing number of asterisks. 

 
Figure 10. (a) Exemplary determination of the heat of fusion of both peak areas from the DSC second 
heating curve and (b) heat of fusion and crystallinity of PA12 and its composites after colloidal 
additivation calculated from the DSC data. No significant changes are visualized with n.s. (p > 0.05) 
and significant differences with asterisks ** (p ≤ 0.01) and *** (p ≤ 0.001). 

Figure 9. DSC analysis of PA12 powder before and after colloidal additivation with the laser-generated
carbon nanoparticles: (a) 1st crystallization and (b) 2nd heating curves, based on the average of 3 runs.
(c,d) Extracted onset, peak, and endset temperatures with corresponding error bars. The analysis of
statistical significance either shows no significant difference (n.s.; p > 0.05) or a significant difference,
where the p-values decrease with the increasing number of asterisks.
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Figure 10. (a) Exemplary determination of the heat of fusion of both peak areas from the DSC second
heating curve and (b) heat of fusion and crystallinity of PA12 and its composites after colloidal
additivation calculated from the DSC data. No significant changes are visualized with n.s. (p > 0.05)
and significant differences with asterisks ** (p ≤ 0.01) and *** (p ≤ 0.001).
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For a more detailed analysis of the nucleation effects of CB, an evaluation of the area underneath
the two peaks of the heat of fusion curve of Figure 9b was conducted in Figure 10a. The deconvolution
of two Gaussian curves (R2 > 0.97) shows that the left area increases with increasing amounts of CB
from 18.10 to 21.38 and finally to 22.57 J/g, while the right area sank from 16.18 to 13.57 and finally to
11.01 J/g, accordingly. This leads to the conclusion that the addition of CB increases the amount of
thinner lamellar crystals while decreasing the amount of thicker crystalline structures [69]. Further
proof for different crystal dimensions can come from polarization microscopy imaging of sliced DSC
samples. Pure PA12 samples show the typical spherulite structures of a Maltese cross (Figure 11a) with
an aspect ratio of 1.04 ± 0.04. The origin of these crystals is located in their center. The addition of
0.005 vol% CB leads to different crystalline structures instead. Some of the typical round spherulite
structures are replaced by oval shapes at 0.005 vol% CB (Figure 11b) with an aspect ratio of 1.48 ± 0.38.
This phenomenon becomes further evident when increasing the amount of CB to 0.05 vol% and thereby
the density of the carbon nanoparticles on the polymer matrix. In this case, oval structures dominate
the crystalline areas in the sample (Figure 11c), resulting in an even higher aspect ratio of 1.71 ± 0.35
(Figure 11d). The transition point between solely spherulites and only oval lamellar structures seems
to lie between 0.005 and 0.05 vol% CB in PA12.
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matrix. The CB, which were initially adhered to the surface of the powder particles, are distributed 
on former polymer powder particle surface, creating a superstructure on the former surface of the 
polymer particles, visible as chain formation in the sliced samples. As a result, spherulites which 
originate on these nucleation seeds show highly anisotropic growth. This transition in crystal 
structures could have an effect on mechanical properties of final parts and should be examined in 
future studies. To prove that PA12 powders additivated with 0.005 vol% of colloidal nanoparticles 
can be processed on a PBF-LB/P machine, a test sample of 10 layers was successfully printed on an 
EOSINT P385 (150 µm layers, 13 × 13 mm2) (Figure 12), indicating high potential for generating test 
structures of refined parameters for an optimal layer bonding in follow-up studies on the influence 
of a very low carbon nanoparticle dose on the microstructure and properties of printed polymer parts. 

Figure 11. (a–c) Polarization microscopy images of PA12 with different carbon nanoparticles loading,
showing representative crystalline structures of different dimensions. (d) Corresponding aspect ratio
of observed crystalline shapes at different carbon nanoparticles loadings. (e–g) Bright-field images
of PA12 with carbon nanoparticles, depicted as black dots. Samples were analyzed after sizing to
10 µm films.

An explanation for the change of crystal structure could lie in the nanoparticle dispersion within
the polymer matrix. Incident bright-field images of the sample slices are shown in Figure 11e–g.
Increasing the amount of CB to 0.05 vol% clearly shows the CB distribution throughout the polymer
matrix. The CB, which were initially adhered to the surface of the powder particles, are distributed
on former polymer powder particle surface, creating a superstructure on the former surface of the
polymer particles, visible as chain formation in the sliced samples. As a result, spherulites which
originate on these nucleation seeds show highly anisotropic growth. This transition in crystal structures
could have an effect on mechanical properties of final parts and should be examined in future studies.
To prove that PA12 powders additivated with 0.005 vol% of colloidal nanoparticles can be processed on
a PBF-LB/P machine, a test sample of 10 layers was successfully printed on an EOSINT P385 (150 µm
layers, 13 × 13 mm2) (Figure 12), indicating high potential for generating test structures of refined
parameters for an optimal layer bonding in follow-up studies on the influence of a very low carbon
nanoparticle dose on the microstructure and properties of printed polymer parts.
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4. Conclusions 

Carbon nanoadditives are often applied at high weight doses in polymer feedstock powder for 
PBF-LB/P. This limits the dispersion and decreases the number of nuclei for heterogeneous nucleation 
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Figure 12. Test sample generated by PBF-LB/P of PA12 powder additivated with 0.005 vol%
carbon nanoparticles.

4. Conclusions

Carbon nanoadditives are often applied at high weight doses in polymer feedstock powder
for PBF-LB/P. This limits the dispersion and decreases the number of nuclei for heterogeneous
nucleation of the polymer. Alternatively to chemical ligands as dispersion aids, which might hinder
the polymer–nanoparticle bonding significantly, lower additive doses could be applied in case a good
dispersion on the polymer surface is achieved. Hence, the influence of the degree of nanoparticle
dispersion is an important aspect for the application of nanofunctionalized polymer powders in
PBF-LB/P. By colloidal additivation of PA12 with carbon nanoparticles in an aqueous dispersion at
comparable small loadings, we were able to coat the polymer particles with a homogenous layer
of carbon nanoparticles. Colloidal nanoparticles were dispersed and fragmented in water by laser
postprocessing (LPP), prior to colloidal additivation. Our experiments reveal that the dispersion of
the carbon nanoparticles on the polymer surface can be tailored by the waiting time between sample
preparation and measurement (residence time). If direct mixing was performed immediately after
laser irradiation, the nanofunctionalized PA12 shows a high carbon nanoparticle dispersion on its
surface with a polydispersity index PDI < 0.3.

As-prepared feedstock materials trigger heterogeneous nucleation effects even at just 0.005 vol%
of carbon nanoparticles, underlining the value of high dispersion. Through their high surface
coverage (surf%) and their small interparticle distances of 50–100 nm, the carbon nanoparticles form
a superstructure after melting the polymer matrix. Hereby, they affect the lamellar dimensions of
the crystalline structures. The form of the crystals changes from typical round spherulites to oval
lamellar structures with the addition of more carbon nanoparticles. Exemplary PBF-LB/P experiments
show that the modified PA12 powder with 0.005 vol% CB can be processed like the raw PA12 powder.
A deeper understanding of nanoparticle influence on polymer crystallization at small nanoparticle
doses will facilitate a precise modification of the microstructure and could have significant effects on
the mechanical properties of printed parts.
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