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Abstract

We analyse times between consecutive transactions for a diverse group of stocks registered on the NYSE and NASDAQ
markets, and we relate the dynamical properties of the intertrade times with those of the corresponding price fluctuations.
We report that market structure strongly impacts the scale-invariant temporal organisation in the transaction timing of
stocks, which we have observed to have long-range power-law correlations. Specifically, we find that, compared to NYSE
stocks, stocks registered on the NASDAQ exhibit significantly stronger correlations in their transaction timing on scales
within a trading day. Further, we find that companies that transfer from the NASDAQ to the NYSE show a reduction in the
correlation strength of transaction timing on scales within a trading day, indicating influences of market structure. We also
report a persistent decrease in correlation strength of intertrade times with increasing average intertrade time and with
corresponding decrease in companies’ market capitalization-a trend which is less pronounced for NASDAQ stocks.
Surprisingly, we observe that stronger power-law correlations in intertrade times are coupled with stronger power-law
correlations in absolute price returns and higher price volatility, suggesting a strong link between the dynamical properties
of intertrade times and the corresponding price fluctuations over a broad range of time scales. Comparing the NYSE and
NASDAQ markets, we demonstrate that the stronger correlations we find in intertrade times for NASDAQ stocks are
associated with stronger correlations in absolute price returns and with higher volatility, suggesting that market structure
may affect price behavior through information contained in transaction timing. These findings do not support the
hypothesis of universal scaling behavior in stock dynamics that is independent of company characteristics and stock market
structure. Further, our results have implications for utilising transaction timing patterns in price prediction and risk

management optimization on different stock markets.

journal.pone.0092885

Editor: Matjaz Perc, University of Maribor, Slovenia

* E-mail: plamen@buphy.bu.edu

Citation: Ivanov PC, Yuen A, Perakakis P (2014) Impact of Stock Market Structure on Intertrade Time and Price Dynamics. PLoS ONE 9(4): €92885. doi:10.1371/

Received December 3, 2013; Accepted February 27, 2014; Published April 3, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CCO public domain dedication.

Funding: Ainslie Yuen thanks the Department of Engineering, Cambridge University and King's College, Cambridge for financial support. Pandelis Perakakis was
supported by grants JCI-2010-06790 and ECO 2011-23634 offered by the Spanish Ministry of Science and Innovation, and grant P1-1B2012-27 by University Jaume
I. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

The impact of market structure and associated rules of
operation on market efficiency and stock price formation have
attracted considerable public attention [1]. Developments on the
New York Stock Exchange (NYSE) [1,2], have raised the profile of
the market operating mechanism, the “market
employed by a stock market. This has also been of concern to
those involved in stock market regulation, on behalf of investors
[1,3], since optimizing market structure results in more effectively
functioning markets [4] and increases competitiveness for market
share in listed stocks [5]. The two major stock markets in the U.S.,
the NYSE and the National Association of Securities Dealers
Automated Quotation System (NASDAQ) National Market have
very different structures [6,7], and there is continuing controversy
over whether reported differences in stock price behavior are due
to differences in market structure or company characteristics [8].
Comparative studies of the NYSE and NASDAQ have primarily
focused on stock prices to provide evidence that market

structure”’,
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organizational structure affects the price formation process
[4,9,10]. It has been shown that stocks registered on the NASDAQ.
may be characterized by a larger bid-ask spread [11] and higher
price volatility [4,9,10]. However, this is often attributed to the
market capitalization, growth rate or the nature of the companies
listed on the NASDAQ [8]. Empirical studies have also
emphasized the dominant role and impact of trading volume on
prices [12,13]; since traded volume is determined by investors it is
difficult to isolate the effects of market structure on price
formation. As the influence of market structure on stock prices
may be obscured by exogenous factors such as demand and supply
[12,13], we hypothesize that modulation of the flow of transactions
due to market operations may carry a stronger imprint of the
internal market mechanism.

Here we analyse times between consecutive transactions for a
diverse group of stocks registered on the NYSE and NASDAQ
markets, and we relate the dynamical properties of the intertrade
times with those of the corresponding price fluctuations. To
understand how market structure may affect stock prices, we study
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Figure 1. Relationship between stock price and trading activity. Representative example of time series derived from the Trades and Quotes
(TAQ) database for transactions of stock in Compaq Computer Corp. (CPQ) registered on the NYSE. (a) Price of CPQ stock over a three week period
from 20 Feb.- 8 Mar. 1996 (42606 trades). On 1 Mar. 1996 Compagq reported that it would cut product prices in order to meet sales targets, leading to
a drop in the stock price. (b) Intertrade times (ITT) of CPQ stock over the same period. Data exhibit complex fluctuations, a daily pattern of trading
activity (with short ITT at the open and close of a trading day and longer ITT in between), and highly heterogeneous structure, as seen in the flurry of
trades following the price drop. The relaxation time of the ITT response following the price drop extends over several days, suggesting that
information may be contained in the temporal structure of trading activity. Data include transactions occurring between 9.30am and 4pm EST,

excluding weekends and holidays.
doi:10.1371/journal.pone.0092885.9001

the information contained in the times between consecutive stock
transactions. As market-specific operations may modulate the flow
of transactions, we hypothesize that dynamical features of
transaction timing reflect the underlying market mechanism.
Specifically, we ask if stocks of companies with diverse character-
istics registered on a given market exhibit common features in
their transaction timing, which may be associated with the
particular market structure. Further, we investigate how the
dynamical properties of transaction timing over a range of time
scales relate to stock price dynamics and whether market structure
affects the temporal organisation of price fluctuations.

To probe how market structure influences the trading of stocks,
we consider the two major U.S. stock markets, the NYSE and the
NASDAQ. All transactions on the NYSE of a given stock are
centralised and are controlled by a single human operator called a
“specialist”, whose primary role is to match together public buy
and sell orders on the basis of price, in an auction-like setting [6].
The NYSE specialist is under obligation to maintain both price
continuity and a “fair and orderly market” [6], as well as to
intervene, using his own firm’s inventory of available stock, to
provide liquidity in the event of an order imbalance, thus
preventing sharp changes in the stock price [6]. The NYSE
regulations allow for considerable flexibility within the specialist’s
operations [2].

In contrast, trading on the NASDAQ is decentralised, with
trading in a given stock managed by a number of dealers called
“market makers”. These market makers maintain a stock
inventory, posting their best prices at which they are prepared
to immediately buy and sell stock [7]. Market makers compete
with each other for orders, so in theory competition ensures that
investors get the best prices. Alternatively, an order can be placed
into an Alternative Trading System (ATS), operated by NASD
members or NASD-member affiliates and designed to allow two
subscribers to meet directly on the system under the regulation of a
third party. The most commonly used form of ATS is the
Electronic Communication Network (ECN), a facility that matches
customer buy and sell orders directly through a computer network.

A third alternative, in case the order placed is very small, is to
enter the order into the Small Order Execution System (SOES),
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which is an electronic network designed to allow fast automatic
routing, execution and reporting of orders of 500 shares or less.
Orders are automatically routed to market makers whose quotes
are currently identical to the highest bid (buy) and the lowest offer
(sell) prices. Participation in the SOES system was made
mandatory [7] after the market crash of October 1987, as one
of the reported problems on the NASDAQ during the crash was
the inability to reach market makers by the phone during periods
of rapid price movement.

To summarize the differences between the two market
structures, each market maker on the NASDAQ maintains his
own inventory of stock in order to buy and sell [7]. In comparison,
the NYSE specialist rarely uses his own firm’s inventory: such
transactions involve less than 15% of trading volume [14].
Although several regional exchanges may trade NYSE listed
stocks, price formation has primarily been attributed to NYSE
trading [15]. In contrast, the NASDAQ market relies on
competition between multiple dealers for public orders to facilitate
the price formation process [11]. Moreover, a substantial fraction
of share volume on the NASDAQ is not handled by dealers, but is
traded electronically via networks for small public orders and for
mstitutional investors [7]. Such fragmentation of the NASDAQ
stock market has been associated with higher price volatility [4].

Here we ask to what extent such structural and operational
differences between the NYSE and NASDAQ markets affect the
flow of transactions. It is difficult to answer whether differences in
mntertrade times are due to individual company characteristics or
external market influences (Fig. 1). Two empirical studies have
considered only a single company stock over a short period of a
few months [16,17]. Studies which considered a larger group of
stocks either did not find common features in the intertrade times
[18,19] or did not compare between markets [20-22]. The only
comparative study considered a single NYSE and a single Paris
stock, finding some differences in their intertrade times, but those
may well be due to a different culture of trading [23]. To probe for
evidence of the impact of market structure on the trading of stocks,
we employ concepts and methods from statistical physics to
investigate the correlation properties of transaction timing for
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Figure 2. Root-mean-square fluctuation function F (1) obtained
using DFA-2 analysis, for the intertrade times (ITT) of stock in
NASDAQ company Sun Microsystems (SUNW) and NYSE
company Compaq Computer Corp. (CPQ). Here n indicates the
time scale in number of trades. We normalize the time scale n by the
daily average number of trades for each stock, so that a unit normalized
scale indicates one trading day (marked by a dashed line). The scaling
curves are vertically offset for clarity. While both companies have similar
market capitalisations, industry sectors and average levels of trading
activity (average ITT) and exhibit long-range power-law correlations
over a broad range of scales, the scaling behaviour of the intertrade
times for the two stocks is quite different. For CPQ we find a
pronounced crossover from weaker correlations over time scales

smaller than a day, to stronger correlations over time scales larger
than a trading day (océTT“’Q >cx{TT”Q). In contrast, the scaling function
F(n) for SUNW does not exhibit such a crossover, and we find much

stronger correlations over time scales smaller than a trading day
compared with CPQ (o] 750 > a{TT” ?).
doi:10.1371/journal.pone.0092885.9g002

diverse companies, over time scales ranging from seconds up to a
year.

Data

We examine one hundred stocks listed on the NYSE, from
eleven industry sectors: Technology-Hardware(5), Semiconduc-
tors(2), Pharmaceutical & Medical Equipment(10), Financial(8),
Automotive(9), Defense/Aerospace(9), Mining, Metals & Steel
Works(8), Chemicals & Plastics(7), Retail & Food(17), Petroleum,
Gas & Heavy Machinery(10), Telephone Service Providers(7),
Electric & Power Services(8). We study the time intervals between
successive stock trades, over a period of four years—4 Jan. 1993 to
31 Dec. 1996-as recorded in the Trades and Quotes (TAQ)
database from the NYSE (Table 1).

We also analyse one hundred NASDAQ stocks from fourteen
industry sectors: Technology-Hardware(28), Technology-Soft-
ware(16), Semiconductors(7), Pharmaceutical, Biotechnology &
Medical Equipment(12), Financial(5), Automotive(l), Steel
Works(1), Chemicals(1), Retail & Food(16), Petroleum, Gas &
Heavy Machinery (2), Telephone & Cable Television Service
Providers(5), Services(2), Transportation(3), Electrical Appara-
tus(1). We study the time intervals between successive stock trades
as recorded in the TAQ) database, for twenty-nine companies over
the period 4 Jan. 1993-31 Dec. 1996, and seventy one companies
over the period 3 Jan. 1994-30 Nov. 1995 (marked with (*) in

PLOS ONE | www.plosone.org
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Table 2). For both markets, we select companies with average
market capitalisations ranging over three decades, and varying
levels of trading activity with average values of intertrade time
between 11 and 640 seconds for NYSE stocks, and between 5 and
680 seconds for NASDAQ) stocks. In parallel with the intertrade
times, we analyse the prices for both sets of stocks over the same
periods.

Method

Like many financial time series the intertrade times (IT'T) are
mmhomogeneous and nonstationary, with statistical properties
changing with time, e.g. I'T'T data exhibit trends superposed on
a pattern of daily activity [24]. While I'TT fluctuate in an irregular
and complex manner on a trade-by-trade basis, empirical
observations reveal that periods of inactive trading are often
followed by periods of more active trading (Fig. 1). Such patterns
can be seen at scales of observation ranging from minutes to
months, suggesting that there may be a self-similar, fractal
structure in the temporal organisation of intertrade times,
independent of the average level of trading activity of a given
stock [24].

To probe for scale-invariant features in the fluctuations of
intertrade times, we apply the detrended fluctuation analysis
(DFA) method, which has been shown to detect and accurately
quantify long-range power-law correlations embedded in noisy
non-stationary time series with polynomial trends [25]. We choose
this method because traditional techniques such as power spectral,
autocorrelation and Hurst analyses are not suited to nonstationary
data [26]. The DFA method (DFA-/) quantifies the root-mean-
square fluctuations F(n) of a signal at different time scales n, after
accounting for nonstationarity in the data by subtracting
underlying polynomial trends of order (I—1). A power-law
functional form F(n) ~n* indicates self-similarity and fractal scaling
in the ITT time series. The scaling exponent o quantifies the
strength of correlations in the I'TT fluctuations: if «=0.5 there are
no correlations, and the signal is uncorrelated random noise; if
2<0.5 the signal is anti-correlated, meaning that large values are
more likely to be followed by small values; if a>0.5 there are
positive correlations and the signal exhibits persistent behaviour,
where large values are more likely to be followed by large values
and small values by small values. The higher the value of «, the
stronger the correlations. The DFA method avoids the spurious
detection of apparent long-range correlations that are an artifact of
polynomial trends and other types of nonstationarities [27-30].

Results

We find that the I'TT series for all stocks on both markets
exhibit long-range power-law correlations over a broad range of
time scales, from several trades to hundreds of thousands of trades,
characterised by a scaling exponent o> 0.5 (Fig. 2 and Fig. 3). For
all stocks on both markets we observe a crossover in the scaling
curve F(n) from a scaling regime with a lower exponent o over
time scales less than a trading day, to a scaling regime with an
exponent o >0 (stronger positive correlations) over time scales
from days to almost a year.

Further, we find that this crossover is systematically more
pronounced for NYSE stocks compared to NASDAQ) stocks (Fig. 2
and Fig. 3). Characterising I'T'T' fluctuations over time scales less
than a day, we find that NASDAQ stocks exhibit statistically
stronger correlations than NYSE stocks as indicated by Student’s t-
test (1=25.28, p<10~%%), with significantly higher average value

of the exponent oc{TT“”S’“Q =0.754+0.04 (group mean = std. dev.)
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Figure 3. Different correlation properties in intertrade times for stocks registered on the NYSE and NASDAQ markets. Correlation
exponents a; and a, characterising the temporal structure in ITT for (a) one hundred NYSE stocks and (b) one hundred NASDAQ stocks, of companies
with a broad range of market capitalisations and industry sectors. Stocks are ranked in order of decreasing average value of ITT (I77T) (as in Tables 1
and 2), and are split into subsets (marked by vertical dashed lines) of companies with matching 777, and with approximately equal number of stocks
in each subset. We estimate 4”7 over scales from 8 trades to half of the daily average number of trades (for stocks with fewer than 1.5 x 10° trades/
year), and to a third of the da|Iy average number of trades (for stocks with more than 1.5 x 10° trades/year). We estimate «’7 over scales from 3 to
100 times the daily average number of trades. Group averages and standard deviations of o{’7 and o5’ are shown to the right of the panel for each
market. Systematically higher values of a/7 for the NASDAQ stocks as compared to the NYSE stocks (statistically significant difference with p-value
p<10~% by Student’s t-test), suggest an underlying influence of market structure on the temporal organisation of intertrade times over scales within
a trading day. In contrast, no systematic differences between the two markets are observed in the values of o}’7, characterising correlation properties
of intertrade times over scales above a trading day (»p=0.03 by Student’s t-test). We find similar results When we analyse trading activity at high
resolution in terms of the number of trades per minute: a crossover at one trading day and stronger correlations for NASDAQ stocks compared to
NYSE stocks over time scales less than a day (features which were not observed in previous studies [52,50]). We further observe an increasing trend in
the values of of”” and of’" with decreasing ITT and increasing company capitalisation for the companies on both markets.

doi:10. 1371/Journal pone. 0092885.g003

as compared to ocl TTwvse = (.62 40.03 (Fig. 3). In contrast, over scales less than a day, the correlation exponent O([ T characterising
time horizons above a trading day, we find that the correlation the trading dynamics is larger for stocks w1th higher trading
properties of I'T'T on both markets are statistically similar (t=2.27, activity (lower I7T) and correspondingly higher market capitalisa-
p=0.03), with average scaling exponent Oté Traspao _ 85+0.08 tion (Fig. 3a,b and Fig. 4a). Surprisingly, this dependence persists
comparable with ocITT‘ 155 —=(.8740.09 (Fig. 3). Values for the also for 47T, characterizing the dynamics over much longer time

scaling exponents oc’TT and @77 for the companies on the NYSE scales, ranging from days to months (Flg.]i-;)). For NXI’TSTE stocks we
and oy’ " on ITT

and NASDAQ markets are shown in Table 1 and Table 2 find a logarithmi? dependence (_)f % ]
respectively. (subsequent to posting this manuscript on the Los Alamos archive

We next investigate how the correlation properties of ITT [?.’1]’ this logarithmic dependeHCf? was later confirmed in [32] on a
depend on the average level of trading activity, and if this different set of NYSE stocks). This dependence does not appear to

dependence differs with market structure. Since both sets of a hold for NASDAQ stocks <Flg 4). .

hundred stocks that we study on the NYSE and NASDAQ We then compare the scaling behaviour of ITT for each subset
markets encompass a range of average trading activity spanning of. NASDAQ stocks with the corresponding subset of NYSE stocks
over two decades, we split both sets into six subsets with matching ~ With matching /T7. We find that for each subset the average

correlation exponent o7 for the NASDAQ stocks is significantly

average I'T'T (ITT) and approximately equal numbers of stocks in 1

each subset (Fig. 3a,b). Within each market we find that over time higher compared to the NYSE stocks (all p values <10
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Figure 4. Comparing long-range correlations in ITT for groups
of stocks with varying average levels of trading activity on the
NYSE and the NASDAQ. (a) Dependence of exponent oi’7,
characterizing the strength of correlations in ITT over scales from
seconds up to a trading day, on the average level of trading activity.
Each datapoint represents the group average over a subset of stocks,
with a matching range of average intertrade times I77 for the two
markets. Stocks are grouped into subsets as indicated by vertical
dashed lines in Fig. 3ab. The consistent difference in the scaling
exponent od’” between NYSE and NASDAQ stocks suggests that
independent of company characteristics such as market capitalization
and industry sector, the temporal organization of ITT within a trading
day carries an imprint of market structure. (b) Dependence of exponent
o4 characterizing correlations in ITT over time scales from a trading
day to several months, on the average level of trading activity. On both
markets we observe similar behavior with no systematic difference in
the values of of7 between NYSE and NASDAQ subsets of stocks with
matching ranges of ITT. These results suggest that over time horizons
longer than a trading day, the impact of market structure on trading
dynamics is less pronounced as more information is available to
investors over longer time scales, driving their trading activity. The
resulting more coherent behavior of investors is reflected in stronger
correlations (o477 >olTT) over longer time scales.
doi:10.1371/journal.pone.0092885.9g004

Fig. 4a). We also find that there is no significant correlation

. ITTnys ITTy .
between the differences o) "**'¢ — ) " ¥F in each subset and

the ITT, as indicated by Pearson’s test (r=—0.62, p=0.19).
These observations show that within a trading day the difference
in the correlation properties of intertrade times of NYSE and
NASDAQ stocks is independent of the average level of trading
activity. In contrast to o7 there is no systematic difference in the
values of the average o477 for NASDAQ and NYSE stocks for
subsets with matching I77 (all p values >0.08; Fig. 4b) except for
the subset of companies with the highest frequency of trading
(»<0.01; Fig. 4b).

PLOS ONE | www.plosone.org
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Since for both NYSE and NASDAQ stocks we have chosen
companies representing eleven industry sectors with a broad range
of market capitalisations and average levels of trading activity
spanning over more than two decades, our findings of (1) a
crossover in the scaling behaviour of I'TT that is more pronounced
for NYSE stocks, and (ii) stronger correlations over intraday time
scales of NASDAQ stocks with higher values for o4”7 compared to
NYSE stocks, support our hypothesis that market structure affects
the dynamics of transaction timing. However, more established
companies listed on the NYSE may be subject to different trading
patterns when compared with the younger and more rapidly
growing companies on the NASDAQ), To verify that the stronger
correlations in I'T'T over time scales less than a day for NASDAQ
stocks are indeed due to market structure, we ask if the scaling
properties of ITT systematically change for companies that
transfer from the NASDAQ to the NYSE. In particular, we
investigate the trading dynamics of ten companies that moved
from the NASDAQ) to the NYSE around the end of 1994 and the
beginning of 1995 (Table 3). For each company, we analyse the
ITT time series while the company was registered on the
NASDAQ, and then repeat the analysis when the company was
on the NYSE.

For all ten companies we find a significant change in the scaling
properties of intertrade times: a marked decrease in the strength of
the power-law correlations within a trading day (lower of7T)
associated with the transfer from the NASDAQ to the NYSE
(average difference AafTT=0.1340.03; TFig. 5b). There is
however, no corresponding systematic change in the correlations
over time scales above a trading day (average difference
AadTT=0.03+£0.08; Fig. 5c), consistent with our findings of
statistically similar values of scaling exponent of7 for the two
groups of one hundred stocks registered on the NYSE and
NASDAQ (Fig. 2 and Fig. 3). Thus, our results indicate that
market structure impacts not only trading dynamics on a trade-by-
trade basis [19], but also the fractal temporal organisation of
trades over time scales from a few seconds up to a day. The
presence of stronger intraday correlations in transaction timing for
NASDAQ stocks may be attributed to the multiplicity of dealers
(ranging from 2 to 50 per stock during 1994 [11]) and electronic
methods of trading (Electronic Communication Networks and the
Small Order Execution System [7]), allowing the NASDAQ to
efficiently absorb fluctuations in trading activity in almost real time
[5]. In contrast, for each stock on the NYSE, while there is the
electronic SuperDOT routing system, each order has to be
exposed to and compared with outstanding orders, as the single
NYSE specialist finds the best bid to match an offer with [6]. This
may lead to interruptions in the execution of a rapid succession of
trades on the NYSE, resulting in weaker correlations in intertrade
times within a trading day.

On the other hand, our finding of stronger power-law
correlations for both markets over time horizons from a trading
day to several months (océTT >a{TT) suggests that investors’
behaviour is more coherent over longer time scales, as information
driving trading activity takes time to disseminate. Moreover, this
can account for the similar values of of77 for subsets of NYSE and
NASDAQ stocks with matched ITT (Fig. 4b), since news and
information driving trading activity are exogenous to market
structure.

Finally, we investigate if the market-mediated differences in
long-range power-law correlations in I'T'T' translate into differenc-
es in the scaling behaviour of price fluctuations of stocks registered
on the NASDAQ and NYSE markets. To this end, in parallel with
ITT we analyse the absolute price returns for each company in our
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313 14819

CAH
AKS

333
383
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148

11510
14575
17721
43829
34873
90598

171
256
177
282
273

CDIC

Wholesale Drugs

Cardinal Health

10397
19907
16916

167
307

AKST

Steelworks

AK Steel Holding Corp.

WON
STT

DG

SPRC
STBK

Retail

Sports & Recreation

202

211

Financial

State Street Boston

19817
50245

180
48

Retail DOLR

Dollar General

136

297

MME

Financial MAMS 187

Mid-Atlantic Medical

Services

67
28

SEG 246 85100
308

NN

46

119544
208771

SGAT 238
176

Hardware

Seagate

148637

20

Hardware NNCXF

Newbridge Networks

Companies are ranked in order of decreasing average value of ITT when on the NYSE. We include all trades occurring during NYSE trading hours (9.30am-4pm EST) excluding public holidays and weekends.

doi:10.1371/journal.pone.0092885.t003
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database for both markets. For all stocks we observe a crossover at
a trading day in the scaling function F(n) of price fluctuations
[33,24], from weaker to stronger correlations, corresponding to
the crossover we observe for intertrade times. In addition we find
that over time scales less than a day, stocks with stronger
correlations in I'T'T exhibit stronger correlations in absolute price
returns (Fig. 6a), as indicated by Pearson’s test (r=0.9, p < 10~8).,
In particular, we find that the stronger correlations in I'TT
associated ~ with the NASDAQ  market structure

ITTy s ITTy i i
NASDAQ >0 "¥F), are accompanied by stronger correlations

(or)

|RET| RET|yysg .
o) ‘MSDAQ>a‘1 ‘”“) over time scales

in price fluctuations (
within a trading day (Fig. 6a).

We also find evidence of a positive relationship between
correlations in ITT and correlations in price fluctuations over
time scales larger than a trading day for NASDAQ stocks

(Pearson’s test shows statistically significant correlation between

ITTy, . RET),, ) _ .
b0 iy ofRETINasono iy 120,64, p <1012 Fig. 6b). In
contrast, there is no corresponding positive relationship between

oATT with oc‘zRET‘ for NYSE stocks (Pearson’s test: r=0.17, p=0.1),
suggesting a weaker coupling between trading dynamics and price
formation under the NYSE market structure, over time horizons
above a trading day. While previous work has suggested that bursts
of trading activity have an instantaneous impact on stock prices
[19,34], our results show that the interaction between trading
times and price formation is more complex, where scale invariant
temporal patterns in I'TT are linked with scaling features of price
fluctuations over a broad range of time scales.

We then test whether long-range correlations in ITT are also
linked with stock price volatility. Previous studies have reported
higher price volatility for NASDAQ stocks compared to NYSE
stocks [4,9,10]. We find a positive relationship, with stronger
correlations in I'TT over time scales less than a day related to
higher daily volatility ¢R¥7" (Pearson’s test: r=0.73, p<10733;
Fig. 6¢). Further, we find that the NASDAQ stocks have higher
AT and correspondingly higher o®ET compared to NYSE stocks
(Fig. 6¢). This relationship may appear to follow from our
observation that {77 depends on ITT (Fig. 4a), and previous
studies which connect price volatility with periods of high
transaction rates [16,35]. However, for the stocks in our database
(Tables 1 and 2), we find no correlation between o®£T and
average level of trading activity as measured by 77T (Pearson’s
test: r=0.01, p=0.36; Fig. 6d). Thus the relationship between
AT and oRFT suggests that information contained in the
microscopic temporal structure of I'T'T is carried over a range of
scales to impact daily price volatility.

Discussion

Understanding the statistical properties of intertrade times and
the related underlying mechanism is crucial for the development of
more realistic models not only of the flow of transactions [36-38],
but more importantly to elucidate (i) the relation between
intertrade time dynamics and stock price formation [16,18,39—
41], and (ii) how the process of stock price formation is influenced
by market structure. In that context, several prior studies have
focused not only on the correlation properties, but also on
nonlinear features of intertrade times, and on the functional form
of their probability distribution. Early studies reported stretched
exponential distributions for intertrade times based on data from a
single actively-traded stock over a short period of a few months
[16,17], or power-law tailed distributions for rarely-traded 19th
century stocks [42] and eurobonds traded in 1997 [43]. While
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Figure 5. Correlation properties of intertrade times of compa-
nies that moved from the NASDAQ to the NYSE. (a) Fluctuation
function F(n), obtained using DFA-2 analysis on ITT of stock in the
company Mid-Atlantic Medical Services Inc. while it was on the NASDAQ
(3 Jan. 1994-29 Sep. 1994) and then after it moved to the NYSE (30 Sep.
1994-30 Nov. 1995). Here n indicates the scale in number of trades and
the vertical dashed lines indicate the average daily number of trades
while on the NYSE or the NASDAQ. The two scaling curves are vertically
offset for clarity. After the move to the NYSE there is a decrease in the
correlation exponent «; at time scales within a trading day and a
pronounced crossover to stronger correlations with a higher exponent
a, at larger time scales. (b) o”” characterising fluctuations over time
scales less than a trading day in ITT of stock in ten companies that
moved from the NASDAQ to the NYSE. Companies are ranked in order
of decreasing ITT while on the NYSE (as in Table 3) and the scaling
range for of 77 is the same as for the hundred NYSE and NASDAQ stocks
(Fig. 3a,b). For all companies there is a decrease in of’ after the move
to the NYSE, indicating that the transition to weaker correlations in ITT
over time scales less than a day is due to the NYSE market structure and
not to company-specific characteristics. (c) 4’7 over time scales
extending from a trading day to almost a year. In this case we do not
observe any systematic change when companies move to the NYSE,
which is consistent with the finding of statistically similar values of
scaling exponent 47 for the two groups of the one hundred stocks
registered on the NYSE and on the NASDAQ (Fig. 3a,b).
doi:10.1371/journal.pone.0092885.9005

some of these studies have also considered autocorrelations in
intertrade times, they have not identified the functional form of
these correlations and whether they are persistent or anti-
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persistent. A first systematic empirical study based on 30
frequently-traded US stocks over a long period of several years
[24] has (i) reported long-range power-law correlations of
persistent type with a characteristic crossover to a superdiffusive
behavior at time scales above a trading day, and (ii) identified a
Weibull functional form for the distribution of intertrade times. In
a follow up study based on a different group of US stocks [38], the
Weibull functional form was also considered a good fit for the
intertrade time distribution, with the Tsallis g-exponential form as
an alternative. Further investigations considering the intertrade
dynamics of a group of frequently-traded Chinese stocks have
shown that the Weibull distribution outperforms the Tsallis g-
exponential for more than 98.5% of the data [20]. The long-range
power law correlations in intertrade times initially reported for US
stocks [24] were also observed for liquid stocks on the Shanghai
Stock Exchange [22]. Our results based on 100 NASDAQ and
100 NYSE stocks confirm the presence the long-range power law
correlations. The results of these studies, which focus on different
markets and different time periods, confirm that the Weibull
distribution and long-range power law correlations are stable
characteristics of intertrade time dynamics across markets and
temporal time scales. Interestingly, similar characteristics were
recently reported for commodity dynamics of ancient Babylon
(463-72 B.C), and medieval and early modern England (1209-
1914 A.D.) markets [44].

It has been recently hypothesized [36] that the dynamics of
intertrade times maybe governed by a priority decision-based
queuing mechanism [45,46]. This hypothesis, however, does not
appear plausible. First, the priority queuing process proposed in
[45] leads to power law distributions for the timing between
events, which has been rejected for intertrade times [20,38].
Second, this queuing process does not generate long-term
correlations, contrary to empirical findings for intertrade times
of stocks reported in [20,22,24], and in the current study
comparing stocks on different markets. Moreover, the activity
pattern of a single stock broker is not adequately described by a
power law, but rather by a power law with a stretched exponential
tail [46], which is actually the functional form of the Weibull
distribution [24]. Further, it is unlikely that the priority decision-
based queuing process underlies stock market operations, since
market agents treat all orders for stock transactions with the same
priority no matter how big or small the order, because the
objective of market agents is to execute all orders as soon as
possible. For this reason, each stock transaction is a minimal time
event realization resulting from the competition of a number of
market agents with different reaction times-the statistics of
minimal events derived from multiple realizations are described
by Weibull distributions. Thus, the process of stock market
operations is markedly different from the processes governing the
dynamics of other human activities, such as web browsing or email
exchange that are based on priority queuing [45,46]. Furthermore,
in contrast to priority decision-based processes, intertrade dynam-
ics exhibit nonlinear (multifractral) properties, as first empirically
identified in [24] and later confirmed in the framework of
multifractal random walks [36].

To summarize, this is the first large empirical study to
investigate intertrade times comparing 200 stocks registered on
the NYSE and NASDAQ markets representing diverse sectors of
the economy, where all stock transactions over a period of four
years are included (Table 1 and 2, Figure 2 and Figure 3). This is
also the first study to examine changes in the trading dynamics of
stocks of companies that moved from one market to the other
(Table 2 and Figure 5).
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Figure 6. Relation between correlations in intertrade times and stock price dynamics. (a) Dependence of exponent zx‘lRET‘ characterising

power-law correlations in absolute logarithmic price return fluctuations, on correlation exponent o’ characterising intertrade times within a trading

day. Data represent one hundred NYSE (Table 1) and one hundred NASDAQ (Table 2) stocks. We calculate price returns over 1-minute intervals and
oc‘lRET‘ over time scales from 8 to 180 minutes (& half a trading day, which is 390 minutes). The positive relationship between oc{TT and a'lRETl
indicates that stronger correlations in ITT are coupled with stronger correlations in price fluctuations. This finding suggests that price fluctuations are
not merely a response to short-term bursts of trading activity [34,16]: rather the fractal organisation of price fluctuations over a broad range of time
scales is linked to the observed underlying scaling features in the series of intertrade times. (b) Strong relationship between correlations in ITT and
correlations in price fluctuations over time scales larger than a trading day for NASDAQ stocks. In contrast, there is no corresponding positive
relationship for NYSE stocks. This suggests a weaker coupling between trading dynamics and price formation under the NYSE market structure, over
time horizons above a trading day. Dependence of stock price volatility s%£7 on (c) the correlation exponent «!’” and (d) the average value of ITT for
the same stocks as in (a). We calculate 6*E7 as the standard deviation of daily logarithmic price returns over six-month periods, averaging over all six-
month periods throughout the entire record of each stock. Our results show no strong dependence between stock price volatility ¢*£7 and average
level of trading activity, rather the volatility appears sensitive to the strength of the temporal correlations in ITT. These findings suggest that scale-
invariant features in transaction times may play an important role in price formation. Furthermore, both dynamic and static properties of stock prices

appear to be influenced by market-specific features in transaction timing: stronger power-law correlations in ITT (higher values of «/7T) for NASDAQ

stocks are matched by stronger power-law correlations in price fluctuations (higher values of x‘lRET‘) and higher volatility (¢®£7), compared with NYSE
stocks.

doi:10.1371/journal.pone.0092885.9006

We report that trading dynamics of company stocks are Investigating a group of companies that transferred from the
characterized by a scale-invariant temporal organisation of NASDAQ to the NYSE, we find that intertrade times exhibit
intertrade times which is significantly different for stocks registered significantly stronger power-law correlations over scales from
on the NYSE and the NASDAQ), indicating that market structure seconds to a trading day while the companies are on the
influences the correlation properties of transaction timing. NASDAQ (Figure 5). These findings suggest that market structure
Specifically, we find that intertrade times are more strongly impacts trading dynamics, not only on a trade-by-trade basis, but
correlated for NASDAQ) stocks, when data are analysed over time over a broad range of time scales. In addition, our results imply
scales within a trading day, and that this difference is independent that within a trading day the NASDAQ market structure may be
of the average level of trading activity of the companies (Figures 2, more efficient than the NYSE market structure in absorbing rapid
3 and 4). In contrast, on time scales above a trading day there is no variations in trading activity in response to investors’ demand [47].
significant difference in the long-range correlations of companies In contrast, on scales above a trading day our results suggest a
on the two markets. more coherent behavior of market agents in response to events on
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larger time scales, thus leading to stronger correlations in
mntertrade times for the companies on both markets.

Importantly, we also uncover a strong dependence between the
scale-invariant features of intertrade times and stock price
fluctuations: stocks with stronger correlations in their intertrade
times also exhibit stronger correlations in their absolute price
returns (Figure 6), indicating an influence of trading activity
patterns on the dynamics of price formation. Furthermore, we
show that within a trading day absolute price returns, like
intertrade times, are more strongly correlated for stocks registered
on the NASDAQ) market (Figure 6a), and that higher price
volatility on the NASDAQ) is coupled with stronger correlations in
mntertrade times (Figure 6¢). These findings suggest that market-
mediated differences in transaction timing translate into differ-
ences in the scaling behavior of stock prices over a broad range of
time scales.

Finally, our results do not support the hypothesis of a universal
behavior in stock dynamics that is independent of individual
company characteristics. In contrast to earlier studies reporting
identical scaling exponents for stock price returns, volume and
number of trades per unit of time [48-52], our findings show a
strong dependance of the scaling behavior of intertrade times on
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the market capitalization and the average frequency of trading of
individual companies (Figure 2 and Figure 3), as well as on the
market structure where the companies are traded. Recent studies
[32,53] have also demonstrated that stock price returns and
volume do not exhibit universal behavior, but rather depend on
market capitalization. Our results show that this universality does
not hold also because trading dynamics are strongly influenced by
market-specific trading operations and market structure. Our
results may have implications for the use of transaction timing
patterns in the prediction of prices and risk management on
different stock markets. These observations are of interest in the
context of the continuing process of optimizing market structure to
maintain the efficiency and competitiveness of U.S. stock markets
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