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Among the large number of known microRNAs (miRNAs),
somemiRNAs play negligible roles in cell regulation. Therefore,
selecting essential miRNAs is an important initial step for a
deeper understanding of miRNAs and their functions. In this
study, we generated 60 classification models by combining 12
representative feature extraction methods and 5 commonly
used classification algorithms. The optimal model for essential
miRNA classification that we obtained is based on theMismatch
feature extraction method combined with the random forest
algorithm. The F-Measure, area under the curve, and accuracy
values of this model were 93.2%, 96.7%, and 93.0%, respectively.
We also found that the distribution of the positive and negative
examples of the first few features greatly influenced the classifi-
cation results. The feature extraction methods performed best
when the differences between the positive and negative examples
were obvious, and this led to better classification of essential
miRNAs. Because each classifier’s predictions for the same sam-
ple may be different, we employed a novel voting method to
improve the accuracy of the classification of essential miRNAs.
The performance results showed that the best classification
results were obtained when five classification models were
used in the voting. The five classification models were con-
structed based on the Mismatch, pseudo-distance structure sta-
tus pair composition, Subsequence, Kmer, and Triplet feature
extraction methods. The voting result was 95.3%. Our results
suggest that the voting method can be an important tool for
selecting essential miRNAs.
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INTRODUCTION
MicroRNAs (miRNAs) are short noncoding RNAs that are found
widely in eukaryotes.1 Their breadth and diversity indicate that
they have a very wide variety of biological functions. They are
involved in many important biological processes in cells, including
regulating the expression of genes that encode proteins involved in
biological development,2–4 cell proliferation,5 differentiation,6 and
apoptosis.7 miRNAs are associated with cancer8–10 and other dis-
eases.11–15 Drugs that target genes have been developed based on
miRNA gene silencing and have been applied to some previously
incurable diseases that threaten human health.16–20 miRNAs also
play important roles in cell adaptation to abnormal environments,
such as freezing, dehydration, and hypoxia.21–23 Because of the
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many biological functions of miRNAs, a lot of attention has been
given to miRNA-related problems in bioinformatics.24–30

Accurate identification of miRNA sequences is one such problem that
has achieved good results. For example, in 2013, Wei et al.31 con-
structed a classifier to identify miRNAs using a high-quality negative
set and reported a classification accuracy rate of 93%. In 2015, Peace
et al.1 proposed a framework for improving miRNA prediction in
non-human genomes using sequence conservation and phylogenetic
distance information. Their framework uses accuracy, sensitivity, and
specificity parameters to obtain species-specific predictions. In 2016,
Jiang et al.5 used a backpropagation neural network algorithm to
identify miRNAs in Arabidopsis. In their model, the precision and
recall rates were 95% and 96%, respectively; however, these results
do not make much sense for the in-depth study of miRNAs. The rea-
sons for this failure were likely because of the recent dramatic increase
in known miRNAs (e.g., miRBase [Release 22.1: October 2018] con-
tains 38,589 miRNA sequences from 271 species32) and the proposal
that some miRNAs or miRNA families have negligible effects in cell
development.33 Therefore, to efficiently study the biological mecha-
nisms of miRNAs, it is necessary to detect essential miRNAs from
among the many other miRNAs.

Two important factors that influence miRNA prediction results are
the feature extraction method and classification algorithm selected.
A good feature extraction method will fully express the sequence in-
formation. The existing methods for RNA feature extraction can be
divided into four categories: those based on ribonucleic acid compo-
sition, autocorrelation, pseudo ribonucleic acid composition, or pre-
dicted structure composition.34,35 Methods based on RNA sequence
composition include basic kmer (Kmer), Mismatch, and Subse-
quence.31,36–39 Kmer31 represents RNA sequences as the frequency
of occurrence of k adjacent bases and is the simplest of the three
methods. Methods based on autocorrelation include dinucleotide-
based auto-covariance (DAC),40 dinucleotide-based cross-covariance
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Table 1. Performances of the Three Feature Extraction Methods with Different k Values

Kmer Mismatch Subsequence

K Values Sn Sp ACC Sn Sp ACC Sn Sp ACC

2 67.0 80.6 73.9 96.4 89.7 93.0 91.7 88.6 90.1

3 76.4 85.2 80.9 94.1 93.1 93.6 96.4 87.5 90.7

4 83.5 90.9 87.2 89.4 92.0 90.7 90.5 88.6 89.5

ACC, accuracy; Sn, sensitivity; Sp, specificity.
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(DCC),41 dinucleotide-based auto-cross-covariance (DACC; a com-
bination of DAC and DCC),42 Moran autocorrelation (MAC),43

Geary autocorrelation (GAC),44 and normalized Moreau-Broto
autocorrelation (NMBAC).45 Methods based on the pseudo-RNA
composition46,47 include general parallel correlation pseudo-dinucle-
otide composition (PC-PseDNC-General) and its variant general
series correlation pseudo-dinucleotide composition (SC-PseDNC-
General). The equations used in PC-PseDNC-General and SC-
PseDNC-General differ in that they calculate the correlation factors
that reflect the sequence or the order correlations, respectively, among
all of the consecutive dinucleotides along an RNA sequence.42

Methods based on the predicted structure composition include local
structure-sequence triplet elements (Triplet),48–50 pseudo-structure
status composition (PseSSC),26 and pseudo-distance structure status
pair composition (PseDPC).13

The most commonly used classification algorithms are random forest
and support vector machine. Random forest51–57 can be considered
an integrated algorithm that reduces the one-sidedness and inaccu-
racy of a single decision tree by combining multiple different decision
trees. Support vector machine13,48,58–66 maximizes the classification
of positive and negative examples by constructing a hyperplane.
Other machine learning algorithms also have been used for classifica-
tion and recognition, such as neural networks,5,67,68 Naive Bayes,69,70

evolutionary algorithms,71 and ensemble learning.72–76

The aims of this study were: (1) to construct a classification model by
combining 12 different feature extraction algorithms and 5 classifica-
tion algorithms to find the most suitable model for essential miRNA
classification; (2) to explore the distribution of positive and negative
examples under different feature extraction methods, and to deter-
mine the influence of distribution differences between positive and
negative examples on classification results; and (3) to further improve
the classification accuracy of essential miRNAs through a novel
voting method. The performance of the optimal classification model
shows the validity of our conclusions and methods.

RESULTS AND DISCUSSION
Determine the Parameters for Kmer, Mismatch, and

Subsequence

For these three feature extraction algorithms, the parameter k, which
has 4k-dimensional features, has to be set. For k = 1, the extracted fea-
tures do not represent the complete sequence information. For k > 5,
the extracted features will have more than 1,024 dimensions. When
the dimensions are very high, the computational time can be very
long, and over-fitting phenomenon and dimensionality disaster
may occur. To avoid these problems, we set k = 2, 3, and 4. The results
for each of the methods on the pre-miRNA dataset are shown in Ta-
ble 1. Each performance value was taken from the best classification
model under each method.

In the Kmer-based model, the performance was best for k = 4. In the
models that used the Mismatch and Subsequence feature extraction
methods, all three k values produced similar results that were better
than the classification results obtained with the Kmer-based model
(Table 1). Smaller k values will require a shorter computational
time, so k = 2 was selected as the best value for the Mismatch- and
Subsequence-based models.
Figure 1. Accuracy of All the Classification Models
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Table 2. Performances of the Three Best Classification Models

Methods Dimensions F-Measure (%) AUC (%) ACC (%)

Mismatch 16 93.2 96.7 93.0

PseDPC 515 92.6 93.0 93.0

Subsequence 16 90.2 95.1 90.1

ACC, accuracy; AUC, area under the curve.
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Selection of the Best Classification Model for Predicting

Essential miRNAs

A total of 12 feature extraction methods were used in this study. The
models based on Kmer, Mismatch, and Subsequence involve param-
eter setting, as described in Determine the Parameters for Kmer,
Mismatch, and Subsequence. We combined the 12 feature extraction
methods with 5 commonly used classification algorithms to obtain
60 classification models. The accuracy of these models on the pre-
miRNA dataset is shown in Figure 1.

The accuracy of each of the classification models varied depending
on the feature extraction method that was used (Figure 1).
Three classification models had accuracies >90%, namely,
Mismatch + random forest, PseDPC + support vector machine,
and Subsequence + Logistic. Detailed performance information is
shown in Table 2.
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The Mismatch + random forest model, which has low dimensionality
and good performance, was considered the optimal model for pre-
dicting essential miRNAs in the dataset (Table 2).
Representation of Important Features of the Classification

Models

We explored the distribution of positive and negative examples under
the different feature extractionmethods. As shown in Figure 1, the ac-
curacy was <70% for all of the classification models when combined
with the NMBAC and SC-PseDNC-General feature extraction
methods, indicating these methods were not suitable for predicting
essential miRNAs. From among the remaining 50 classification
models, those with the best classification performance under each
feature extraction method were selected. Among the 10 selected
models, those based on the Mismatch, Triplet, and PC-PseDNC-
General methods all showed better performances when combined
with the random forest algorithm. On the basis of the ANOVA of
these three feature extraction methods, we took out the first
four-dimensional features that had the greatest influence on the clas-
sification results. The obtained distribution of positive and negative
examples is shown in Figure 2. Clearly, the difference between the
positive and negative examples is larger with Mismatch than with
the other two methods. This indicates that a feature extraction
method that produces a large difference in the distribution of positive
and negative samples contributes to a better final classification result.
Figure 2. Distribution of Positive and Negative

Examples of Important Features Obtained Using

Different Extraction Methods



Figure 3. Distribution of Mispredicted Samples for

Each Classification Model
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Optimal Voting Results

To achieve higher prediction accuracy, we used a novel votingmethod
to predict all samples based on the results from the 10 selected clas-
sification models described in Representation of Important Features
of the Classification Models. The predictions of these 10 models for
all samples are shown in Figure 3.

We obtained four types of voting results from the 10 classification
models, and the best results for each type are shown in Table 3.
Each voting process eliminates two classification models, and the
eliminated models have strong correlations. For example, from
the distribution of the erroneously predicted samples shown in Fig-
ure 3, the classification models based on the GAC and MAC feature
extraction methods had strong correlations, and the correct or mis-
predicted samples were almost the same, so these methods were
eliminated in the second type of voting. Excluding the most relevant
classification models was beneficial to the final voting result, as
shown in Table 4.

As shown in Table 3, the results obtained by voting on the classifica-
tion model based on theMismatch, PseDPC, Subsequence, Kmer, and
Triplet feature extraction methods were the best (accuracy rate of
Table 3. Best Results for Four Types of Voting

Category Model Included
No. of Samples that
Were Mispredicted

Voting
Results (%)

1

Mismatch + PseDPC +
Subsequence,Kmer +
Triplet + PseSSC,
DACC,GAC + MAC

14 91.9

2
Mismatch + PseDPC +
Subsequence,Kmer +
Triplet + PseSSC + DACC

9 94.7

3
Mismatch + PseDPC +
Subsequence,Kmer +
Triplet

8 95.3

4
Mismatch + PseDPC +
Subsequence

9 94.7
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95.3%). The accuracy of voting was higher
than the accuracy of the case alone.

The predictions of the classification model based
on the Triplet method were worse than those of
the model based on Kmer (Figure 3), but after
participating in the voting with the model based
on Mismatch and PseDPC, the number of sam-
ples that were mispredicted with Triplet was
less than the number with Kmer. This is because
the model based on Kmer had a stronger correla-
tion with the other two classificationmodels.We chose to vote with the
classificationmodel based onMismatch and PseDPCbecause these two
feature extraction methods performed best in all of the classification
models, and the correlation between them was very low.

The results shown in Tables 3 and 4 fully demonstrate that the novel
voting method proposed in this study can achieve excellent results for
the selection of essential miRNAs.

Conclusions

The aim of this study was to select essential miRNAs from a large
number of miRNA sequences, thus making the study of the biological
mechanisms of miRNAs more efficient. We used known mouse miR-
NAs as the dataset. We used different feature extraction methods to
represent these data, then combined the extracted features with
different classification algorithms to construct classification models.
The final classification result was determined by a novel voting
method, which gave a final voting result of 95.3%. This result showed
that this method was effective in identifying the essential miRNAs in
the dataset. In future work, we will focus on detecting new essential
miRNAs, analyzing their function, and exploring the relationship
between new miRNAs and diseases.27,77

MATERIALS AND METHODS
The general pipeline used in this study is shown in Figure 4.

Acquisition of Datasets

Acquisition of essential pre-miRNA sequences: miRNA genes pro-
duce primary miRNA (pri-miRNA) sequences that are 300–
1,000 nt long. The pri-miRNAs are processed to precursor miRNA
(pre-miRNA) sequences that are 60–70 nt long. Mature miRNAs,
which are 20–24 nt long, are formed from pre-miRNAs by the action
of enzymes.26,48,78 The hairpin structure of pre-miRNAs is an impor-
tant feature that is widely used to identify miRNAs.48 In this study,
we used pre-miRNA sequences from miRBase (http://www.mirbase.
org/). We collected a total of 91 pre-miRNA sequences that are essen-
tial in mice from Bartel’s 2018 review of metazoan miRNAs.79 The 91
pre-miRNA sequences were from several families.
apy: Nucleic Acids Vol. 18 December 2019 19
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Table 4. Verifying the Impact of Model Relevance on Voting

Reserved Classification Model
No. of Samples that
Were Mispredicted

Voting
Results (%)

Mismatch + PseDPC + Subsequence 9 94.7

Mismatch + PseDPC + Kmer 14 91.9

Mismatch + PseDPC + Triplet 9 94.7
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Acquisition of pre-miRNA sequences of unknown importance: We
downloaded all the mice pre-miRNA sequences (a total of 1,234)
from miRBase. All the sequences that belonged to the same families
as the 91 essential miRNAs were excluded. The remaining
pre-miRNAs (1,090) were considered to be non-essential pre-
miRNAs.

To shorten the computational time and to ensure better performance
results, we removed redundant sequences80 and obtained a final data-
set that contained 85 essential and 88 non-essential pre-miRNA
sequences.
Feature Extraction Methods

Many methods have been used for extracting features of RNA se-
quences. In this study, we used a number of feature extractionmethods
on the selected pre-miRNA sequences. We expressed a pre-miRNA
sequence as R = r1, r2, r3, r4, r5, ., rL, where ri ˛{A, U, G, C},33 and
L is the sequence length. These features can be generated easily using
the repRNA web server81 and the BioSeq-Analysis platform.82

Kmer and Mismatch

Kmer is a simple feature extraction method in which k indicates the
number of bases in a subsequence. For a given k value, there will be 4k

seed sequences.31 For example, for k = 2, there are 16 subsequences,
AA, AC, AU, AG, UA, UU,., CC. Mismatch calculates the number
of occurrences of subsequences containing k adjacent bases and uses a
parameter m (maximum allowed error match = 0 % m < k).83 For
k = 2, m is 0, 1. For example, for the subsequence AC, the A–
and –C subsequences are all regarded as AC.

Subsequence

Subsequence also counts the number of occurrences of a subsequence,
but, in particular, it takes into account the length of the sequence that
is eligible and the influence factor v.84 This method allows for spacing
20 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
between the bases in a given subsequence. For example, there are four
ways in which a search for AAC in a sequence is eligible: AAC,
AAXXXC, AXXXAC, and AXXAC (where X can be U or G). For
this example, the number of occurrences of AAC can be expressed
as: 1 + v6 + v6 + v5. For AAC, where there is no gap between the
bases, the length is considered to be 1.

Triplet

Triplet extracts features based on secondary structure information in
the sequence. Two states are considered for each nucleotide: matched
(represented by “(” or “)” for A paired with U and G paired with C)
and unmatched (represented by “.”). The possible structural forms for
any three adjacent nucleotides are: “(((,” “((.,” “(.(,” “.((,” “(..,” “.(. ,”
“..(,” and “..” For the four bases (A, U, G, C) in a pre-miRNA
sequence, there will be 8 � 4 different triplets. Triplet counts the
number of occurrences of these 32 triplets in a sequence.48

PseDPC

Pre-miRNA sequences can be represented by 10 secondary structure
states: A, C, G, U, A–U, U–A, G–C, C–G, G–U, and U–G. Within a
given range of distance thresholds, the PseDPC algorithm counts
the frequency of occurrence of the two-two combination between
the structural states. When the distance d is equal to 0, only the fre-
quencies of each of the 10 states are counted. When d is R 1, there
will be 100 combinations of the 10 states, so the frequency of occur-
rence of the 100 combinations is counted. Therefore, 10 + 100d
dimensional features can be extracted. Then the features of the free
energy between the two structural states of a combination are ex-
tracted, giving 4 features, where 4 is the highest counted rank of
the structural correlation along an RNA chain.13
Voting Process

The results produced by each classifier were integrated using a voting
process as follows. First, each classification algorithm will correctly or
incorrectly predict each of the samples (a sequence is considered a
sample). Correctly predicted samples are not marked, the samples
that were mispredicted are marked with “+,” and the number of clas-
sifiers is represented by n. Second, when n is a singular number R3,
the number of times each sample is erroneously predicted under n
classifiers is counted and recorded as m, where mR n + 1/2; the sam-
ple is considered to be a sample that was mispredicted. Third,
when n is a double number R4, the number of times each sample
is mispredicted under the n classifiers is counted, and the sample
Figure 4. Flowchart of the Processes Used in This

Study
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corresponding to m = n/2 is selected. Suppose that there are z samples
that meet the requirements, and the z samples are predicted differ-
ently by the different classifiers, the classifier with the highest number
of mispredicted samples is eliminated. Then, n is singular and step 2
can be repeated. Fourth, when n satisfies the condition of being a sin-
gular number, steps 2 and 3 can count the number of samples consid-
ered to be mispredicted in various voting processes, from which the
final voting result can be derived.
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