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Abstract We investigate, through a fractional mathematical model, the effects of physical distance

on the SARS-CoV-2 virus transmission. Two controls are considered in our model for eradication

of the spread of COVID-19: media education, through campaigns explaining the importance of

social distancing, use of face masks, etc., towards all population, while the second one is quarantine

social isolation of the exposed individuals. A general fractional order optimal control problem, and

associated optimality conditions of Pontryagin type, are discussed, with the goal to minimize the

number of susceptible and infected while maximizing the number of recovered. The extremals are

then numerically obtained.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The availability of easy-to-use precise estimation models are
essential to get an insight into the effects of transferable infec-

tious diseases. In outbreak diseases, policy makers and institu-
tions make decisions based on forecasting models to decide on
future policies and to check the efficiency of existing policies [1].
Coronaviruses are a group of viruses that can be transmit-
ted between humans, livestock and wild animals. Person to
person spread of COVID-19 happens through close contact,
up to six feet. This group of viruses mainly affects the hepatic,

neurological and respiratory systems [2–4].
In the end of 2019, the World Health Organization (WHO)

reported a novel coronavirus in China, which causes severe

damage to the respiratory system. The virus was first found
in Wuhan city, and was named as severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) [5]. After the outbreak of

the virus, the Chinese government put several cities on lock
down [6,7]. However, the number of affected people increased
daily within China and in other countries. In March 11, 2020,
COVID-19 was declared as a global pandemic by WHO. At

the time of writing these lines, January 6, 2021, approximately
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87 million people have been infected worldwide, with 1.9 mil-
lion of deaths [8].

Recently, many mathematical models were proposed to

understand disease transmission and project handful controls:
see, e.g., [9–11] and references therein. Simultaneously, all
health organizations are trying to drive the most lethal infec-

tious diseases towards eradication, using educational and
enlightenment campaigns, vaccination, treatment, etc. How-
ever, many of these infectious diseases will become eventually

endemic because of interventions to mitigate the spread in time
and lack of adequate policies. For control of infectious dis-
eases, proactive steps are required, specially for diseases having
vaccine and cure. Indeed, some times it is more difficult to con-

trol the spread of an infectious disease than to cure it. Regard-
ing COVID-19, several vaccines begin to be available [12].

Optimal control theory is a branch of mathematical opti-

mization that deals with finding a control for a dynamical sys-
tem, over a period of time, such that an objective function is
minimized or maximized. Along the years, optimal control the-

ory has found applications in several fields, containing process
control, aerospace, robotics, economics, bio-engineering, man-
agement sciences, finance, and medicine [13–15]. In particular,

the study of epidemic models is strongly related to the study of
control strategies, as screening and educational campaigns
[16], vaccination [17], and resource allocation [18].

In the current pandemic situation of COVID-19, due to

best presentation of memory effects and its usefulness in many
different and widespread phenomena [19–25], fractional (non-
integer order) models are receiving the attention of many

researchers: see, e.g., [26–38]. Here, with the purpose to control
the current pandemic, we follow two control variables, in the
form of media (education) campaigns, social distance, and

use of mask for protection of susceptible individuals; and
quarantine (social isolation) for the exposed. For a general
non-integer order optimal control problem, necessary optimal-

ity conditions are presented, with the help of Caputo deriva-
tives. One of the great advantages of the Caputo fractional
derivative is that it allows traditional initial or boundary con-
ditions to be included in the formulation of the problem. More

concretely, we minimize the number of susceptible and
infected, while maximizing the number of recovered popula-
tion from COVID-19. The optimal levels of the proposed

two controls are characterized using the fractional version of
Pontryagin’s maximum principle. The resulting optimality sys-
tem is then solved numerically with Matlab.

The rest of the paper is arranged as follows. In Section 2,
we present our fractional mathematical model. Section 3
recalls the fundamental definitions and the main result of frac-
tional optimal control. We then derive an optimal control

problem in Section 4, while parameter estimation with numer-
ical results are discussed in Section 5. We finish with some
remarks and conclusions, in Section 6.

2. The fractional model

Our model consists of four classes: SðtÞ, which represents the

vulnerable individuals (healthy people but who may get the
disease in a near future); EðtÞ, representing the exposed popu-
lation or individuals who are infected but not yet infectious;

the group IðtÞ, devoted to the population who are confirmed
infected (individuals who have contracted the disease and are
now sick with it and are infectious); the group RðtÞ, defined as
the recovered population (individuals who have recovered from
COVID-19). For the dynamics of this base model, see [28].

Thus, the fractional order model we consider here is given by

0
CDa

t SðtÞ ¼ K� b1SðtÞEðtÞ � b2SðtÞIðtÞ � lSðtÞ þ sRðtÞ;
0
CDa

t EðtÞ ¼ b1SðtÞEðtÞ þ b2SðtÞIðtÞ � ðlþ qÞEðtÞ;
0
CDa

t IðtÞ ¼ qEðtÞ � ðcþ dþ lÞIðtÞ;
0
CDa

t RðtÞ ¼ cIðtÞ � ðlþ sÞRðtÞ;

8>>><
>>>:

ð1Þ
where K is the recruitment rate, b1 and b2 are the incidence
rates, s is the relapse rate, l is the natural death rate, q the rate
at which the exposed population of COVID-19 join the infec-

tious class, c the recovery rate of infected population, and d is
the death rate of infected class due to the SARS-CoV-2 virus.
The total population NðtÞ is given, at each instant of time, by

NðtÞ ¼ SðtÞ þ EðtÞ þ IðtÞ þ RðtÞ: ð2Þ
By adding all the equations of system (1), we have

0
CDa

t NðtÞ ¼ K� lNðtÞ � dIðtÞ 6 K� lNðtÞ: ð3Þ
3. Basics of fractional control theory

In this section we recall the basic definitions of Caputo frac-

tional calculus and the central result of fractional optimal con-
trol theory [23,39], which are required for the coming sections.

Definition 1. For f 2 Cm;m 2 N, the left-sided Caputo frac-
tional derivative is given by
a
CDa

t fðtÞ ¼
1

Cðm� aÞ
Z t

a

ðt� sÞm�a�1 d

ds

� �m

fðsÞds; ð4Þ

while the right-sided Caputo fractional derivative is given by

t
CDa

bfðtÞ ¼
1

Cðm� aÞ
Z b

t

ðs� tÞm�a�1 � d

ds

� �m

fðsÞds; ð5Þ

where a stands for order of the derivative, m� 1 < a 6 m.

Definition 2. For f an integrable function, the left-sided Rie-
mann–Liouville fractional derivative is defined by

aD
a
t fðtÞ ¼

1

Cðm� aÞ
d

dt

� �m Z t

a

ðt� sÞm�a�1
fðsÞds; ð6Þ

while the right-sided Riemann–Liouville derivative of f is given
by

tD
a
bfðtÞ ¼

1

Cðm� aÞ � d

dt

� �m Z b

t

ðs� tÞm�a�1
fðsÞds; ð7Þ

where a is the order of the derivative with m� 1 < a 6 m,
m 2 N.

Our control system is described by a fractional differential
system (FDS) with a given/fixed initial condition as follows:

0
CDa

t XðtÞ ¼ f XðtÞ; uðtÞ; tð Þ;
Xð0Þ ¼ X0;

�
ð8Þ

where a 2 ð0; 1�, the n-dimensional XðtÞ is the state vector, f is
a given vector-valued function, t 2 ½0; tf� with tf > 0 the ending
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time of the control process, and m-dimensional uðtÞ is the con-
trol vector. A fractional optimal control problem consists to
minimize or maximize a performance index

J uð�Þ½ � ¼ h XðtfÞ; tf
� �þ Z tf

0

/ XðtÞ; uðtÞ; tð Þdt ð9Þ

subject to the control system (8) (see, e.g., [39,40]). Functions h
and / will be specified in Section 4. Note that here tf is fixed

but XðtfÞ is free. For finding the optimal control law uðtÞ solu-
tion to the optimal control problem (8)–(9), we use the frac-
tional version of Pontryagin maximum principle, which
coincides with the classical Pontryagin maximum principle

when a ¼ 1:

Theorem 1. (See, e.g., [39,40]) For the optimality of (8)–(9), a
necessary condition is given by

@/
@u

XðtÞ; uðtÞ; tð Þ þ kT @f
@u

XðtÞ; uðtÞ; tð Þ ¼ 0;
C
0D

a
t XðtÞ ¼ f XðtÞ; uðtÞ; tð Þð Þ; Xð0Þ ¼ X0;

tD
a
tf
kðtÞ ¼ @/

@X
XðtÞ; uðtÞ; tð Þ þ kT @f

@X
XðtÞ; uðtÞ; tð Þ;

kðtfÞ ¼ @h
@X

XðtfÞ; tf
� �

:

8>>>><
>>>>:

In the next section, we compute the optimal control strat-
egy for the fractional order COVID-19 model, which is a hot
topic in current times.
4. Fractional-order model with controls

We implement an optimal control technique to the fractional
order model (1). With the purpose to control the spread of

the COVID-19 pandemic in the world, we use two control vari-
ables in the form of media (educational) campaigns, social dis-
tance, and use of masks — the control u1ðtÞ — applied to the
susceptible class; and quarantine (social isolation) — the con-

trol u2ðtÞ — applied to the exposed class. Then, the new system
with controls is given by

0
CDa

t SðtÞ¼K�b1SðtÞEðtÞ�b2SðtÞIðtÞ�lSðtÞþsRðtÞ�u1ðtÞSðtÞ;
0
CDa

t EðtÞ¼b1SðtÞEðtÞþb2SðtÞIðtÞ�ðlþqÞEðtÞ�u2ðtÞEðtÞ;
0
CDa

t IðtÞ¼qEðtÞ�ðcþdþlÞIðtÞþð1�pÞu2ðtÞEðtÞ;
0
CDa

t RðtÞ¼ cIðtÞ�ðlþ sÞRðtÞþu1ðtÞSðtÞþpu2ðtÞEðtÞ;

8>>><
>>>:

ð10Þ
where the fractional order a is a real number in the interval

ð0; 1� and p can be interpreted as the probability of infected
individuals to recover by quarantine. In vector form, the sys-
tem (10) can be written as

0
CDa

t XðtÞ ¼ f XðtÞ; uðtÞð Þ; ð11Þ
where XðtÞ ¼ SðtÞ;EðtÞ; IðtÞ;RðtÞð Þ represents the state-vector

and uðtÞ ¼ u1ðtÞ; u2ðtÞð Þ stands for the control-vector.
Our optimal control problem consists to minimize the

spread of COVID-19 and maximize the number of recovered

population. The following objective functional is defined with
this purpose:

J½uð�Þ� ¼ A3SðtfÞ þ A4EðtfÞ þ
Z tf

0

A1IðtÞ � A2RðtÞ

þ 1

2
r1u

2
1ðtÞ þ r2u

2
2ðtÞ

� �
dt�!min; ð12Þ
where the positive weights Ai; i ¼ 1; 2; 3; 4, and ri; i ¼ 1; 2, are
used to balance the control factors. The objective functional
(12) is a particular case of the general form (9) discussed in Sec-
tion 3, and can be written as

J½uð�Þ� ¼ h XðtfÞ
� �þ Z tf

0

/ XðtÞ; uðtÞð Þdt ð13Þ

with h XðtfÞ
� � ¼ A3SðtfÞ þ A4EðtfÞ and

/ XðtÞ; uðtÞð Þ ¼ A1IðtÞ � A2RðtÞ þ 1

2
r1u

2
1ðtÞ þ r2u

2
2ðtÞ

� �
:

Similar functionals (13) to be optimized, e.g. for optimal con-
trol problems in the combat of Zika and Ebola, have been pre-
viously considered in the literature, see [41,42] and references

therein. By using Theorem 1, the following necessary optimal-
ity conditions can be written: the control system and its initial
condition,

0
CDa

t X ¼ f X; uð Þ;
Xð0Þ ¼ X0;

�
ð14Þ

the adjoint system and its transversality condition,

tD
a
tf
kðtÞ ¼ @/

@X
þ kT @f

@X
;

kðtfÞ ¼ @h
@X

��
tf
;

8<
: ð15Þ

and the stationary condition

@/
@u

þ kT
@f

@u
¼ 0; ð16Þ

where kðtÞ ¼ k1ðtÞ; k2ðtÞ; k3ðtÞ; k4ðtÞð Þ and f ¼ f1; f2; f3; f4ð Þ with
f1 ¼ a� b1SðtÞEðtÞ � b2SðtÞIðtÞ � lSðtÞ þ sRðtÞ � u1ðtÞSðtÞ;
f2 ¼ b1SðtÞEðtÞ þ b2SðtÞIðtÞ � ðlþ qÞEðtÞ � u2ðtÞEðtÞ;
f3 ¼ qEðtÞ � ðcþ dþ lÞIðtÞ þ ð1� pÞu2ðtÞEðtÞ;
f4 ¼ cIðtÞ � ðlþ sÞRðtÞ þ u1ðtÞSðtÞ þ pu2ðtÞEðtÞ:

The adjoint system of Pontryagin’s maximum principle asserts
that

tD
a
tf
k1ðtÞ ¼ �k1b1EðtÞ � k1b2IðtÞ � k1lþ k2b1EðtÞ þ k2b2IðtÞ;

tD
a
tf
k2ðtÞ ¼ �k1b1SðtÞ þ k2b1SðtÞ � k2l� k2qþ k3q;

tD
a
tf
k3ðtÞ ¼ A1 � b2k1SðtÞ þ b2k2SðtÞ � ðcþ dþ lÞk3 þ ck4;

tD
a
tf
k4ðtÞ ¼ sk1 � k4ðsþ lÞ � A2;

8>>>><
>>>>:

ð17Þ
subject to the transversality conditions

k1ðtfÞ ¼ A3;

k2ðtfÞ ¼ A4;

k3ðtfÞ ¼ 0;

k4ðtfÞ ¼ 0:

8>>><
>>>:

ð18Þ

The optimal control variables are given by the stationary
conditions:

u1ðtÞ ¼ ðk1ðtÞ�k4ðtÞÞSðtÞ
r1

;

u2ðtÞ ¼ ðk2�ð1�qÞk3�qk4ÞEðtÞ
r2

:

(
ð19Þ

These analytic necessary optimality conditions are solved
numerically in Section 5.



Fig. 2 The exposed class EðtÞ of individuals, with and without

controls, respectively solid and doted lines, for a ¼ 0:75; 0:85;

0:95; 1.
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5. Numerical simulations

To illustrate the theoretical results presented in previous sec-

tions, here we use numerical simulations. For this purpose, a
program was developed in Matlab to integrate the necessary
optimality conditions and, with the help of a number of simu-

lations, a detailed output is comprehensively verified. As
explained in Section 4, we obtain the optimality system for
the proposed optimal control problem from the state and

adjoint equations subject to suitable boundary conditions:
the initial conditions Xð0Þ ¼ X0 on the state variables, see
(14); and the terminal conditions on the adjoint variables pro-

vided by the transversality conditions, see (18). Furthermore,
we obtain the optimal control strategies from the stationary
system, see (19). We use a forward time/backward space
finite-difference numerical method. Beginning with an initial

guess for the adjoint variables, a forward time and backward
space finite-difference method is used to solve the state equa-
tions. The key is to rewrite the control system (11) into the

equivalent integral form

XðtÞ ¼ Xð0Þ þ 1

CðaÞ
Z t

0

ðt� sÞa�1
fðXðsÞ; uðsÞÞds

and then use the generalized Adams-type predictor–corrector

method [21,22] for solution. Further, these state values are
used for the solution of the adjoint equations by a backward
time and forward space finite-difference method, because of
the transversality conditions. System (15) is written, in an

equivalent way, as the integral equation

kðtÞ ¼ @h
@X

����
tf

þ 1

CðaÞ
Z tf

t

ðs� tÞa�1 @/
@X

þ kT
@f

@X

� 	
ds:

Using a steepest-method to generate a successive approxima-
tion of the optimal control form, we continue iterating until

convergence is achieved. For illustrative purposes, take the
initial values as Sð0Þ ¼ 220;Eð0Þ ¼ 100; Ið0Þ ¼ 3;Rð0Þ ¼ 0
and parameter values as K ¼ 0:271; b1 ¼ 0:00035;
Fig. 1 The susceptible population SðtÞ, with and without

controls, respectively solid and doted lines, for a ¼ 0:75; 0:85;

0:95; 1.

Fig. 3 Infected population for systems with and without

controls, respectively solid and doted lines, for a ¼ 0:75; 0:85;

0:95; 1.
b2 ¼ 0:00040; l ¼ 0:001, q ¼ 0:00580; c ¼ 0:007; s ¼ 0:002,
p ¼ 0:3, and d ¼ 0:00025.

In Fig. 1, we plot the susceptible population of systems (1)
and (10). The doted lines denote the population of class S in

the uncontrolled system (1), without controls, while the solid
lines denote the population of SðtÞ in the controlled system
(10), under optimal controls for a ¼ 0:75; 0:85; 0:95 and 1.

Fig. 2 represents the exposed population of both systems (1)
and (10). The doted lines show that there are more exposed
individuals when no control measures are implemented.

Fig. 3 illustrates the infectious population IðtÞ of system (1),
without any control, and that of system (10) with controls. The
doted lines make it clear that there are more infectious individ-
uals when no control is implemented.



Fig. 4 Recovered individuals for systems with and without

controls, respectively solid and doted lines, for a ¼ 0:75; 0:85;

0:95; 1.
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Finally, Fig. 4 illustrates the recovered population RðtÞ. We
see that there are more recovered individuals in the case one
uses optimal control theory (because there is less susceptible,

exposed and infected).

6. Conclusion

The current pandemic situation due to COVID-19 affects the
whole world on an unprecedented scale. In this work, we
implemented optimal control techniques to the COVID-19

pandemic through a fractional order model. For the eradica-
tion of virus spread throughout the world, we applied two con-
trols in the form of media (education) campaigns, social
distance, use of masks and protection for the susceptible class;

and quarantine (social isolation) for the exposed individuals.
We discussed necessary optimality conditions for a general
fractional optimal control problem, whose fractional system

is described in the Caputo sense while the adjoint system
involves Riemann–Liouville derivatives. In the COVID-19 set-
ting, we minimize the number of susceptible and infected pop-

ulation, while maximizing the number of recovered population
from SARS-CoV-2 virus. Using the fractional version of Pon-
tryagin’s maximum principle, we characterize the optimal
levels of the proposed controls. The resulting optimality sys-

tem is solved numerically in the Matlab numerical computing
environment. Our numerical experiments were based on data
of [27]. In a future work, we plan to use real data of Africa,

USA and UK.
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