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Abstract: In this work, we designed and prepared a hierarchically assembled 3D plasmonic metal-
dielectric-metal (PMDM) hybrid nano-architecture for high-performance surface-enhanced Raman
scattering (SERS) sensing. The fabrication of the PMDM hybrid nanostructure was achieved by the
thermal evaporation of Au film followed by thermal dewetting and the atomic layer deposition
(ALD) of the Al2O3 dielectric layer, which is crucial for creating numerous nanogaps between the
core Au and the out-layered Au nanoparticles (NPs). The PMDM hybrid nanostructures exhibited
strong SERS signals originating from highly enhanced electromagnetic (EM) hot spots at the 3 nm
Al2O3 layer serving as the nanogap spacer, as confirmed by the finite-difference time-domain (FDTD)
simulation. The PMDM SERS substrate achieved an outstanding SERS performance, including a
high sensitivity (enhancement factor, EF of 1.3 × 108 and low detection limit 10−11 M) and excellent
reproducibility (relative standard deviation (RSD) < 7.5%) for rhodamine 6G (R6G). This study opens
a promising route for constructing multilayered plasmonic structures with abundant EM hotspots for
the highly sensitive, rapid, and reproducible detection of biomolecules.

Keywords: SERS; metal-dielectric-metal; Au nanoparticles; hot spots; FDTD simulation

1. Introduction

Owing to its extremely high sensitivity, ability to work in real time, and multiplexing
detection capability, surface-enhanced Raman scattering (SERS) has emerged as a power-
ful detection technique for sensing molecules through its unique fingerprint vibrational
spectrum [1–5]. It has tremendous potential for single-molecule level detection [6,7], the
investigation of live cells [8,9], the monitoring of catalytic reactions [10,11], and sensing
molecules, in both liquid and solid samples [12,13]. In SERS, the Raman signals of analytes
can be amplified by several orders of magnitude (108–1010) based on two mechanisms:
electromagnetic mechanism (enhancement of ~106–108) and chemical mechanism (enhance-
ment of ~102–104) [14–16]. The SERS enhancement mostly relies on the amplification of the
electromagnetic field—i.e., electromagnetic (EM) hot spots generated by the excitation of
the localized surface plasmon resonance (LSPR) of the metal nanostructures [17]. Therefore,
plasmonic metallic nanostructures including Au, Ag, and Cu have been fabricated to pre-
pare an excellent SERS substrate for sensing molecules [18–20]. Designing and optimizing
the geometry of a plasmonic nanostructure, such as its size [21], sharp corners [22], tips [23],
surface roughness [24], and interparticle gaps [25], is essential in order to provide a strong
EM hotspot and hence enhance SERS signal intensities. Among these, the interparticle
gap structure has attracted considerable attention thanks to its ability to provide extremely
strong EM hot spots within a sub-nanometer gap [26]. The precise control of nanogaps
between plasmonic nanoparticles (NPs) at a nanometer scale is crucial to produce a high
density of strong and stable EM hot spots. To maintain the specific sub-nanometer gap,
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a dielectric layer can be considered as a nanogap spacer between two layered plasmonic
metal nanostructures—namely, metal-dielectric-metal hybrid nano-architectures [27–30].
The dielectric spacer offers several benefits: protecting the plasmonic core from oxida-
tion, tunning the LSPR properties, and maintaining a sub-nanometer gap between metal
nanostructures to obtain a strong EM hotspot [31–34]. Therefore, it is of great significance
to construct a unique 3D nano-architecture SERS substrate that comprises a hierarchical
assembly of plasmonic NPs, separated by a dielectric spacer, for achieving an extremely
high SERS activity.

Inspired by the above discussion, we report a facile method for fabricating abun-
dant nanogaps containing hierarchically assembled 3D plasmonic metal-dielectric-metal
(PMDM) hybrid nano-architectures for superior SERS detection in this work. However, the
developed PMDM hybrid SERS sensor is considerably different from the above-mentioned
metal-dielectric-metal structure in terms of the preparation method and architecture of
the SERS platform. The PMDM hybrid nanostructures were prepared by the thermal
evaporation of Au film followed by the thermal annealing and atomic layer deposition
(ALD) of the Al2O3 dielectric layer. We achieved an enormous SERS enhancement of the
PMDM hybrid nanostructures, with a maximum enhancement factor (EF) of 1.3 × 108 and
a low detection limit of 10−11 M R6G molecules. We further observed the excellent repro-
ducibility of the SERS substrate with relative standard deviation (RSD) values of less than
7.5%. To support the experimental SERS performance, we conducted the finite-difference
time-domain (FDTD) simulation of hybrid nanostructures and showed that a high density
of strong EM hot spots was produced between the Au core and numerous out-layered Au
NPs at the Al2O3 nanogap regions.

2. Materials and Methods
2.1. Hybrid Nanostructures Fabrication

SiO2/Si substrates (purchased from Sehyoung wafertech, Seoul, Korea) were cleaned
by acetone, isopropyl alcohol (Sigma-Aldrich, Saint Louis, MO, USA), and deionized water
for 10 mins in sequence in an ultrasonic cleaner and dried at room temperature. Au
films (10 nm) were deposited on SiO2/Si substrates using thermal evaporation, where the
thickness of films was controlled by the deposition time. The 10 nm Au films was annealed
in a rapid thermal annealing (RTA) chamber at 800 ◦C for 120 s for the fabrication of core
Au NPs arrays based on the solid-state dewetting [35,36]. Subsequently, the ultrathin
dielectric layer—i.e., 3 nm Al2O3 film—was deposited on the as-prepared core Au NPs
via the ALD method. Then, the 5nm Au films were deposited on the surface of Au/Al2O3
nanostructures, followed by annealing at 450 ◦C for 120 s to produce highly dense small-
sized Au NPs on the surface of Au/Al2O3 NPs, which are referred to as a hierarchically
assembled PMDM (Au/Al2O3/Au) nanostructures. For comparison, double dewetting Au
nanostructures were prepared by a similar method without using an Al2O3 spacer.

2.2. Sample Characterization

The morphological characterization and elemental analysis of the as-synthesized hy-
brid nanostructures fabricated on SiO2/Si substrates was performed using a field emission
scanning electron microscope (FE-SEM, Hitachi S-7400, Tokyo, Japan), coupled with the
energy-dispersive x-ray spectroscopy (EDS) analysis. Moreover, the crystalline informa-
tion was examined by X-ray diffraction (XRD, Rigaku Ultima IV diffractometer, Tokyo,
Japan) with Cu-Kα radiation, whereas the chemical states were evaluated using X-ray
photoelectron spectroscopy (XPS, Veresprobe II, Ulvac-phi, Chigasaki, Japan).

2.3. SERS Analysis

Rhodamine 6G (R6G, Sigma-Aldrich, Saint Louis, MO, USA) was used as a probe
molecule to determine the SERS activity of the as-prepared PMDM hybrid nanostructures.
For the preparation of the samples for SERS measurements, the SERS substrates were
immersed in different concentrations of R6G solution ranging from 10−12 to 10−5 M for
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2 h to allow the sufficient adsorption of R6G molecules on plasmonic nanostructures.
SERS measurements were performed using confocal Raman spectroscopy (HEDA, NOST,
Seongnam, Korea) at room temperature. SERS signals were acquired using an incident laser
with a wavelength of 532 nm with a power of 0.1 mW (laser spot size ~1 µm), 100× objective
lens (numerical aperture = 0.80), and acquisition time of 10 s. To determine the EF, the
Raman spectrum of R6G (10−2 M) adsorbed on the SiO2/Si substrates was evaluated
as above.

2.4. FDTD Simulation

The EM field distribution was calculated with the FDTD method (Lumerical Solutions
Inc., Vancouver, BC, Canada). In our simplified unit of the simulation model, the core Au
NP was assumed to be a larger hemisphere coated with a dielectric spacer layer (3 nm
Al2O3) followed by the out-layered small Au NPs. The diameter of the core, top, and
surrounding Au NPs was supposed to be 180, 60, and 30 nm, respectively. Furthermore,
the incident light source of a plane wave, surrounding medium (air), perfectly matched
layer (PML) as an absorption boundary in z-boundary, periodic boundary condition for
x and y directions, and mesh size (1 nm) were selected for the simulation to compute the
EM field distribution. The near-field EM field intensity was calculated in the vicinity of
the nanostructures using two monitors in X-Y and Y-Z directions. The data of a refractive
index for Au were obtained from the Johnson and Christy model [37]. The data for SiO2
and Al2O3 were acquired from the model data provided by the software.

3. Results and Discussion

Figure 1a shows the fabrication procedures and surface morphology of the hierar-
chically assembled PMDM hybrid nanostructures fabricated on Si/SiO2 substrate. The
combination of double dewetting and the ALD approach was employed for the preparation
of the SERS substrates. The aim of using this approach with a dielectric layer between
Au NPs is to obtain hierarchical nano-architectures with a strong plasmonic response
and massive gap-introduced EM hot spots. First, high-density core Au NPs arrays were
prepared based on the thermal dewetting of 10 nm Au thin film at 800 ◦C for 120 s. The
average diameter Au NPs was found to be ~136 nm and the corresponding size distribution
is shown in the histogram of Figure S1. The surface morphology of the fabricated Au NPs
on the substrate with well-dispersed semispherical or somewhat faceted NPs is shown in
the SEM image of Figure 1b. Next, we deposited 5 nm Au films on as-prepared core Au
NPs arrays and then annealed them at 450 ◦C for 120 s. This repeated dewetting of Au
films resulted in the formation of a very high density of Au NPs, as shown in Figure 1c.
The larger core Au NPs were surrounded by comparatively small Au NPs. However, the
spacing between them was too large, meaning they cannot be considered a good candi-
date for SERS substrates. Therefore, we deposited a 3 nm Al2O3 thin film on core Au
NPs to fabricate a metal-dielectric core-shell nanostructure via the ALD approach. Subse-
quently, a 5 nm Au thin film was deposited on the Au/Al2O3 nanostructure followed by
annealing at 450 ◦C for 120 s, which gives rise to the formation of hierarchically assembled
PMDM hybrid nanostructures, as shown in Figure 1d. These hierarchical PMDM hybrid
nanostructures provide not only an increased surface coverage and roughness, but also
multiple out-layered small-sized Au NPs separated with a nanogap layer of dielectric
Al2O3 from the core Au NPs. The out-layered Au NPs can be distinctly observed along
the surface of core Au NPs in Figure 1d. Moreover, we confirmed the formation of PMDM
hybrid nanostructures by using EDS mapping based on elemental analysis, as shown in
Figure 1e–h.
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Figure 1. (a) Schematic illustration of the fabrication of hierarchically assembled plasmonic metal-
dielectric-metal (PMDM) nano-architectures. (b) SEM image of Au nanoparticles (NPs) fabricated
on Si/SiO2 substrate by the annealing of Au film (10 nm) at 800 ◦C for 120 s. (c) Fabrication of
double dewetting Au NPs arrays grown on Au NPs (Au/Au) by the deposition of 5 nm Au film and
subsequent annealing at 450 ◦C for 120 s. (d) SEM image of hierarchically assembled PMDM hybrid
nano-architectures. Scale bar: 400 nm. (e–h) EDS mapping of PMDM hybrid nanostructures grown
on Si/SiO2 substrate, where elemental maps are Si (blue), Au (red), and Al (green). Scale bar: 100 nm.

The crystalline structures of the Au and hybrid nanostructures were examined with
an XRD pattern, in which all samples possessed almost the same diffraction peaks as those
shown in Figure 2a. Four distinct diffraction peaks were observed at 38.3, 44.3, 64.7, and
77.7◦ corresponding to the (111), (200), (220), and (311) planes of the face-centered cubic
phase of Au (JCPDS no. 04-784), revealing the formation of Au NPs. Furthermore, the
XPS spectra of the Au and PMDM hybrid nanostructures were thoroughly analyzed to
confirm the elemental and chemical states. Figure 2b shows the XPS survey spectra of the
Au NPs, double dewetted Au/Au NPs, and PMDM hybrid nanostructures, discovering
all the elements as expected. In particular, the Au 4f, Al 2p, Au 4d, and O 1s elements are
all presented in the XPS survey spectra of PMDM hybrid nanostructures. As shown in
the high-resolution XPS spectrum of Au 4f (Figure 2c), two characteristic peaks located at
binding energies 84.2 and 87.9 eV are attributed to 4f7/2 and 4f5/2, respectively, indicating
the presence of a metallic state of Au [38]. In addition, the high-resolution XPS analysis
(Figure 2d) depicts the peak at 74.1 eV assigned to Al 2p, originating from the Al2O3
film [39]. The above evidence reveals the existence of dielectric spacer Al2O3 in the PMDM
hybrid nanostructures.
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Figure 2. (a) XRD patterns of three different plasmonic nanostructures: Au, Au/Au, and PMDM
hybrid nanostructures, as labeled. (b) XPS survey spectra of Au, Au/Au, and PMDM hybrid
nanostructures. (c,d) High-resolution XPS spectra of Au 4f and Al 2p of PMDM hybrid nanostructure.

Next, FDTD simulations were used to calculate the spatial distribution of the near-field
EM field of the plasmonic Au and PMDM hybrid nanostructures deposited on SiO2/Si
substrate. The FDTD simulation models were constructed by mimicking the real experi-
mental results of nanostructures obtained from SEM images, as shown in Figure 3a,d. The
FDTD simulation of EM field distribution modes for each nanostructure in the X-Y and X-Z
directions was analyzed with an incident laser source with a 532 nm wavelength. As shown
in Figure 3b,c, the Au NP provides a hot spot at the interface between the Au NPs and
SiO2 substrate with a maximal EM field strength (|E|/|E0|) of 5.8. Figure 3e,f show the
FDTD calculation of the localized EM field distribution in PMDM hybrid nanostructures
with a 3 nm Al2O3 nanogap. The high density of the strongest hot spots is induced at the
dielectric Al2O3 nanogap between the core Au NPs and the out-layered Au NPs due to the
plasmon coupling between the Au NPs. Compared with Au NPs, the EM field strength
was much higher for the PMDM hybrid nanostructures—i.e., |E|/|E0| ≈ 21.5. It is widely
known that the SERS EF can be theoretically predicted from the local EM field enhance-
ment (|E|/|E0|) of nanostructures—i.e., SERS EF is proportional to the fourth power of
|E|/|E0| [40–42]. Based on the above relation, the theoretical SERS EF is estimated to
be ~2.14 × 105 for hybrid nanostructures, which is two orders higher than Au NPs. These
results suggest that a high density of strong EM hotspots can be highly beneficial for SERS
enhancement. It should be noted that the theoretical calculation of SERS EF from the EM
enhancement is usually 2–3 orders lower than the experimental results due to the exclusion
of chemical enhancement.
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Figure 3. Finite-difference time-domain (FDTD) simulation of EM field distribution of plasmonic
nanostructures under the radiation of a 532 nm laser. (a) Simulation model and EM field distribution
of Au NP at (b) X-Y and (c) X-Z view. (d) Simulation model of PMDM hybrid nanostructure and
corresponding EM field distribution in (e) X-Y and (f) X-Z views. Scale bar: 100 nm.

Figure 4 shows the SERS performance of PMDM hybrid nanostructures using R6G
as a probe molecule and an excitation laser of wavelength 532 nm. The comparison of the
SERS performance of different SERS-active substrates with a 10−6 M R6G concentration
is demonstrated in Figure 4a, and the corresponding SERS enhancement is summarized
in terms of Raman peak intensity in Figure 4b. Several of the most prominent Raman
peaks of R6G are observed at the wavenumbers of 612, 776, 1185, 1310, 1363, 1506, 1574,
and 1650 cm−1, which are consistent with the characteristic peaks of R6G reported in the
literature [43,44]. The band assignment of all the Raman peaks of R6G is also summarized
in Table S1. In particular, the Raman peak intensity of the PMDM hybrid nanostructures
at the wavenumber of 1650 cm−1 is about 3.3 and 2.2 times higher compared to that of
the Au NPs and Au/Au NPs. As confirmed by the FDTD simulation results, it is obvious
that the PMDM hybrid nanostructures exhibit the best performance due to the strong
EM field enhancement. It is observed that the intensity of the R6G Raman signal on the
hybrid nanostructure is much enhanced, as compared to that of Au NPs. Therefore, the
PMDM hybrid nanostructures-based SERS substrates was further analyzed to identify the
detection limit, enhancement factor, and reproducibility. Figure 4c,d show the SERS spectra
of different concentrations of R6G molecules adsorbed on hybrid nanostructures in the
range of 10−5 to 10−12 M. The Raman intensity is gradually reduced with the decreased R6G
concentration. The lowest detectable concentration reaches 10−11 M, where certain Raman
peaks such as 1363 and 1650 cm−1 can be identified, indicating that the SERS substrate
possesses a high SERS sensitivity. To quantitatively study the SERS performance of hybrid
nanostructures, the SERS EF was calculated using the relation EF = (ISERS/CSERS)/(IR/CR),
where ISERS and IR correspond to the Raman peak intensities of R6G obtained from the SERS
substrate and reference (SiO2) substrate, whereas CSERS and CR represent the concentrations
of R6G molecules on SERS substrate and reference substrate, respectively. The minimum
detectable limit for the SERS substrate was 10−11 M, whereas the lowest detection for
reference substrate was 10−2 M. Therefore, the SERS EF of PMDM hybrid nanostructures
for Raman peak 1650 cm−1 was estimated as 1.3 × 108, which was much higher than that of
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the other SERS substrates reported in the literature (Table S2). Furthermore, we tested the
reproducibility of the as-prepared SERS substrate by conducting the SERS measurement in
several locations. The color contour plot of the SERS spectra of 10−6 M R6G measured at
random 30 different locations is presented in Figure 4e and the corresponding SERS spectra
are presented in Figure S2. The contour plot demonstrates the similar color of Raman
signals, signifying the comparable intensity of the Raman signals due to the homogeneous
distribution of EM hot spots. In addition, the SERS mapping was performed in an area
of 10 µm × 10 µm to further confirm the reproducibility. The RSD values corresponding
to Raman peaks 776 and 1363 cm−1 were calculated to be 6.8% and 7.4%, respectively,
indicating the good reproducibility of SERS substrates.

Figure 4. (a) Comparison of the SERS spectra of R6G molecules (10−6 M) on Au, Au/Au, and PMDM
hybrid nanostructure-based SERS substrates. (b) Corresponding plot of intensity at Raman peaks of
776, 1363, and 1650 cm−1. (c) SERS spectra of R6G molecules on PMDM hybrid nanostructure-based
SERS substrate with different concentrations ranging from 10−5 to 10−12 M. (d) Magnified SERS
spectra of R6G with low concentrations showing the distinct Raman peaks. SERS uniformity and
reproducibility of the PMDM hybrid nanostructure substrate. (e) SERS contour maps of 30 spots and
(f) plot of Raman intensities of 776 and 1363 cm−1 randomly selected from SERS mapping in an area
of 10 µm × 10 µm. (Insets) SERS intensity mapping of 776 and 1363 cm−1.

4. Conclusions

In summary, we developed a facile strategy for a highly sensitive and reproducible
SERS substrate based on a hybrid nanostructure. A simple repeated dewetting process
coupled with an ALD method was used to fabricate hierarchically assembled PMDM hybrid
nano-architectures, which consist of core Au NPs and small out-layered Au NPs isolated
by an Al2O3 layer. FDTD simulation data reveal that the use of the hybrid nanostructures
leads to a high density and more intense EM hot spots through the creation of nanogaps
by a dielectric spacer. Consequently, the SERS measurements of hybrids nanostructures
demonstrate a maximum EF of 1.3 × 108, a low detection limit of 10−11 M R6G molecules,
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and an excellent reproducibility (RSDs less than 7.5%). Thus, we believe that hybrid SERS
substrates have the potential to be used in practical applications for the highly sensitive,
rapid, and reproducible detection of biomolecules.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12030401/s1. Figure S1: Histogram of Au NPs arrays on
Si/SiO2 substrate by the annealing of 10 nm Au at 800 ◦C for 120 s; Figure S2: Raman spectra of R6G
molecules (10−6 M) measured at 30 different locations on PMDM hybrid nanostructures to test the
SERS reproducibility; Table S1: Raman band assignments of R6G molecules; Table S2: Comparison of
SERS performance of current work and previously reported plasmonic NP-based SERS substrates
(references [45–53] are cited in Table S2).
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