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Background: Working memory (WM) and attention deficits are both important

features of schizophrenia. WM is closely related to attention, for it acted as

an important characteristic in activating and manipulating WM. However, the

knowledge of neural mechanisms underlying the relationship between WM

and attention deficits in schizophrenia is poorly investigated.

Methods: Graph theory was used to examine the network topology at the

whole-brain and large-scale network levels among 125 schizophrenia patients

with different severity of attention deficits (65 mild attention deficits; 46

moderate attention deficits; and 14 severe attention deficits) and 53 healthy

controls (HCs) during an N-back WM task. These analyses were repeated in

the same participants during the resting state.

Results: In the WM task, there were omnibus differences in small-worldness

and normalized clustering coefficient at a whole-brain level and normalized

characterized path length of the default-mode network (DMN) among all

groups. Post hoc analysis further indicated that all patient groups showed

increased small-worldness and normalized clustering coefficient of the

whole brain compared with HCs, and schizophrenia with severe attention

deficits showed increased normalized characterized path length of the DMN

compared with schizophrenia with mild attention deficits and HCs. However,

these observations were not persisted under the resting state. Further

correlation analyses indicated that the increased normalized characterized

path length of the DMN was correlated with more severe attentional deficits

and poorer accuracy of the WM task.

Conclusion: Our research demonstrated that, compared with the

schizophrenia patients with less attention deficits, disrupted integration

of the DMN may more particularly underlie the WM deficits in schizophrenia

patients with severe attention deficits.
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Introduction

Working memory (WM) is a complex cognitive process
involved in encoding, storing, and retrieving information steps
(Baddeley, 1986). It is closely related to attention, which is a
crucial cognitive ability that enables humans to select goal-
relevant information from external sensory stimuli in the
environment. Previous studies have reported that impairments
in attentional selection can have detrimental effects on WM
encoding, specifically when top-down processes are involved
(Baddeley, 1996). Meanwhile, the ability to resist interference
is also crucial for maintaining the stability of memory
representation over time and extracting information from WM
(Berti and Schröger, 2003; Lorenc et al., 2021). Thus, attention
deficits are likely to affect WM at different processing.

Both attention and WM deficits are common neurocognitive
impairments of schizophrenia. They are persisted in
schizophrenia even after systematic treatment, which would
contribute to frequent relapses (Hui et al., 2016) and companied
prolonged illness burden (Park et al., 1999). However, current
treatments are mainly aimed at addressing the positive
symptoms, with minor effects on neurocognitive deficits.
Therefore, understanding the neural mechanism of attention
and WM impairments is vitally important for developing new
treatments that can impact the long-term functional outcome
of schizophrenia.

Extensive previous studies have investigated the neural
mechanism of WM dysfunction in patients with schizophrenia
and revealed that the hyperactivity (i.e., failure to deactivate)
within the default-mode network (DMN) (Pomarol-Clotet
et al., 2008; Whitfield-Gabrieli et al., 2009) was companied
with hypoactivity of the task-positive network (TPN) (Meyer-
Lindenberg et al., 2001) during the WM task. Reduced
suppression of the DMN in schizophrenia can be interpreted
as a failure to allocate attentional resources to the current task,
with consequent impairment in task performance (Whitfield-
Gabrieli and Ford, 2012). The anticorrelation could be regarded
as an alternating balance of attention to internal thoughts
(associated with DMN) and external feelings (associated
with TPN). This greater anticorrelation, associated with
superior cognitive task performance, seemed to be reduced in
schizophrenia patients (Kelly et al., 2008; Hampson et al., 2010;
Liu et al., 2012). Especially, Whitfield-Gabrieli et al. (2009)
have demonstrated that compared with healthy controls (HCs),
patients with schizophrenia showed reduced anticorrelation
between the medial prefrontal cortex (MPFC), a crucial
component of DMN, and the dorsolateral prefrontal cortex
(DLPFC), a well-known important region for TPN.

Previous studies have also explored the neural mechanisms
of attention deficits in patients with schizophrenia. It
was reported a significant uncoupling between attention
performance and mean regional homogeneity in the left

middle frontal gyrus, right superior/inferior parietal lobe (IPL),
and right angular gyrus (AG) in patients with schizophrenia
compared with HCs (Hong et al., 2019). The decreased integrity
of the bilateral cingulum and splenium may underlie the
impaired attention in schizophrenia (Abdolalizadeh et al.,
2020).

Although these studies have investigated the neural
mechanisms of the WM and attention deficits in schizophrenia
and obtained some progress these years, however, the potential
mechanism of attention deficits affecting WM performance in
schizophrenia is still unclear. The WM can be defined as a
certain subset of the process encompassed by the attention,
which is composed of multiple neuropsychological and/or
clinical processes (Fan et al., 2003; Pessoa et al., 2003), and the
attention deficits in schizophrenia can have effects on their WM
performance (Dickinson et al., 2007; Luck and Gold, 2008). It is
meaningful to investigate the possible connection between WM
and attention deficits among schizophrenias.

Mathematical graph theory employed in neuroimaging data
can represent the topological structure of the brain connectome
and infer its neural efficiency (Bullmore and Sporns, 2009;
Rubinov and Sporns, 2010; Fornito et al., 2011). Compared
with the traditional functional connectivity analysis that mainly
investigates the synchrony between different brain regions
(Pomarol-Clotet et al., 2008; Whitfield-Gabrieli et al., 2009), the
graph theory could further indicate the efficiency of information
processing at either the subnetwork level or the whole-brain
level (van den Heuvel and Fornito, 2014). Moreover, previous
related studies have suggested that human brain networks
are organized in an efficient small-world manner (i.e., a
highly clustered/segregated neighborhood of brain regions, with
occasional integrative long-distance connections) (Tononi et al.,
1994; Bullmore and Sporns, 2009). Some studies have explored
the brain connectome topology in patients with schizophrenia
during resting state and reported less efficient organization in
patients compared with HCs (Fornito et al., 2012; Hadley et al.,
2016; Yu et al., 2017; Jiang et al., 2022). Some studies go further
to investigate the brain connectome topology of schizophrenias
during tasks. For example, our previous work (Yang et al.,
2020) demonstrated a putative mechanistic link between whole-
brain connectome topology and impaired performance in
schizophrenia during the WM task. It suggested that the task-
dependent increased small-worldness relates to, but remains
inefficient in, improving the performance above par in patients
with severe negative symptoms. However, to our knowledge,
no studies have investigated the brain connectome topology in
schizophrenia with attention deficits under the WM task.

This study aimed to use the graph theory method to
investigate the topology properties of the functional connectome
at different granularity (i.e., whole brain and subnetworks) of
schizophrenia patients with different attention deficit severity
during the WM task. Based on the results of our prior
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work (Yang et al., 2020), we speculated that all patients
with schizophrenia, despite of their different attentional
deficit severity, would show increased small-worldness of
the whole-brain functional connectome, and this increment
is induced by the elevation of the clustering coefficient.
Meanwhile, based on the abnormal activation of DMN and
TPN among schizophrenias during the WM task claimed by
previous studies (Moraschi et al., 2020; Yuan et al., 2021), we
also speculated that the topology property of subnetworks in
patients with schizophrenia might also change when processing
the WM task. In addition, based on the close association
between WM and attention deficits, we further hypothesized
that schizophrenia patients with more severe attention deficits
were more likely to their special topology alterations of their
brain connectome than other patients.

Materials and methods

Participants

Participants in the current study were enrolled in the
Second Xiangya Hospital, Central South University, during
2009–2014. A total of 142 patients with schizophrenia and 59
HCs were enrolled. All the participants were right-handed native
Chinese speakers. Written informed consent was obtained
from participants at the beginning of the study. The Medical
Ethics Committee of the Second Xiangya Hospital, Central
South University, approved this study. Raw data in the current
research have been reported by previous work of our research
team (Yang et al., 2020; Wang et al., 2022; Wu et al., 2022).

Patients were confirmed to meet the DSM-IV (Diagnostic
and Statistical Manual of Mental Disorders, 4th edition) criteria
for schizophrenia (First and Gibbon, 2004). Exclusion criteria
included (1) age less than 16 or greater than 45 years;
(2) any contraindications for MRI; (3) history of receiving
electroconvulsive therapy; (4) history of alcohol or substance
dependence except nicotine; (5) serious physical ailments,
organic brain disease (e.g., former stroke, cerebral vascular
malformations, and epilepsy), formerly recorded brain injury,
chronic neurological illness, or debilitating physical illness; and
(6) alcohol use or benzodiazepine treatment, if any, stopped for
at least 24 h before scanning.

Clinical symptoms of schizophrenia patients were assessed
by the scale for assessment of positive symptoms (SAPS) and
the scale for assessment of negative symptoms (SANS) (Phillips
et al., 1991). Both patients and HCs were assessed for cognitive
functions with the information and digit symbol subscales of the
Wechsler Adult Intelligence Scale–Chinese Revised (WAIS-CR)
(Gong, 1983) to measure verbal comprehension and processing
speed, respectively.

We further divided qualified patients with schizophrenia
into three subgroups according to their attention deficit severity,
which was measured by the No. 24 item of SANS. The
content of the No. 24 item of SANS was “comprehensive
severity evaluation of attention” conducted by the interviewer
on patients, which mainly included the following aspects: social
contact inattention, being absent-minded during the interview,
and any other presentation possibly associated with attention
deficits (Andreasen, 1989). The score range of this item was 0–
5. Thus, we classified the patients based on the score of No. 24
item according to the hierarchy of clinical symptom descriptions
(Andreasen, 1989; Phillips et al., 1991). Patients whose No. 24
item score equals 0 or 1 were identified as the mild attention
deficit group, patients whose No. 24 item score equals 2 or
3 were identified as the moderate attention deficit group, and
patients whose No. 24 item score equals 4 or 5 were identified as
the severe attention deficit group.

HCs were recruited and assessed using the Structured
Clinical Interview for DSM-IV Axis I Disorders, Research
Version, Non-patient Edition (SCID-I/NP). It was confirmed
that HCs did not meet any criteria for mental disorders,
and their first-degree relatives had no history of any known
psychiatric disorders.

Magnetic resonance imaging data
acquisition and preprocessing

The fMRI data were acquired on a Philips Gyroscan Achieva
3.0 T scanner, which had an eight-channel head coil with
gradient-recalled echo-planar imaging (EPI) pulse sequence.
Participants were asked to perform an N-back WM task during
the task-fMRI scanning. Detailed parameter information of the
task-fMRI was listed as follows: repetition time (TR) = 2,000 ms,
echo time (TE) = 30 ms, flip angle = 90◦, field of view
(FOV) = 240 × 240 mm2, matrix = 64 × 64, slices = 36, slice
thickness = 4 mm, gap = 0 mm, and total volumes = 250.

The fMRI data were preprocessed by using the DPABI
toolbox (Yan et al., 2016). It consisted of the following
steps: discarded several images to reach magnetic saturation,
slice timing correction, head motion realignment, spatial
normalization to the brain template of Montreal Neurological
Institute (MNI) space, smoothing, and linear detrending. Details
are seen in Supplementary material 1.

As for the data filtration, the preliminary exclusion criteria
of data for preprocessing steps were (1) head motions larger
than a 2.5-mm translation or 2.5◦ rotation in any direction;
(2) failure of fMRI data normalization and registration to MNI
space due to acquisition errors. Moreover, a number of patients
were removed to control the demographic variance (age and
gender) among all patient groups. After data quality control, a
total of 143 participants, consisting of 92 schizophrenia patients,
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were grouped by the severity of attention deficits into mild
(n = 49), moderate (n = 29), and severe (n = 14), and 51
HCs were enrolled in the subsequent analyses. No statistically
significant difference in the total number of displaced volumes
for interpolation existed across all groups (p = 0.472).

Working memory task paradigm

The adopted n-back WM task consists of “0-back” and “2-
back” loads. Under the “0-back” load, participants were required
to press the specific button when they saw the letter “X,” whereas
under the “2-back” load, participants were asked to press the
specific button when they recognized that the letter shown was
identical to the two letters before. The duration of presentation
for each letter was 500 ms with an interstimulus interval of
1,500 ms. The stimulation period consisted of “0-back” load
and “2-back” load, followed by a resting period during which
participants were required to relax and focus on a cross in the
screen for 20 s. Stimulation periods and resting periods were
shown alternatively. There were four blocks for either “2-back”
or “0-back” in this WM task paradigm, and each block included
a 2 s guidance and 20 stimulations containing seven targets. The
task paradigm is shown in Figure 1. As the “0-back” load is not
considered as a qualified WM task, only the volumes during the
four blocks of “2-back” load were extracted and concatenated
for the construction of the whole-brain functional connectome.
We also considered that the BOLD signal has a certain delay,
about 5 s (Poldrock et al., 2011), and then shift the extraction
window to backward about two volumes when conducting the
extracting step. The mean time series was extracted from each
of the 264 nodes using 6-mm spheres defined by the Power
atlas (Power et al., 2011). A 264 × 264 symmetric matrix
was generated for each participant by computing the Pearson
correlation coefficients between the time series for each pair of
regions of interest (ROIs) and then normalized by the Fisher’s z
transformation. We also controlled the variance caused by the
effects of age, gender, and education years to derive a corrected
matrix.

Network construction

Network measures at each density (sparsity) were calculated
on the Power atlas 264 × 264 weighted adjacency matrices,
which were acquired by thresholding the symmetric matrices
at a series of network densities, ranging from top 10 to 50%
of all connections, with 2% increments, in line with previous
studies (Yu et al., 2017; Yang et al., 2020; Tan et al., 2021;
Deng et al., 2022). This range density was chosen in the current
study for its lower risk of non-biological artifacts and noise
(Kaiser and Hilgetag, 2006), and negative correlations were set
to zero (Rubinov and Sporns, 2010, 2011). As binarization is

arbitrary without widely recognized criteria, which might result
in the loss of important illness-related biological features, hence
weighted network approaches were applied in our research
to avoid this drawback (van den Heuvel et al., 2017; Váša
et al., 2018). The Brain Connectivity Toolbox (Rubinov et al.,
2009) and the Graph Analysis Toolbox (Hosseini et al., 2012)
were applied to quantify network measures and compare the
functional networks across all groups, respectively.

Network properties

Three common network properties of the functional
connectome underlying the WM task were subsequently
calculated, including the small-worldness, normalized clustering
coefficient, and normalized characterized path length. Small-
worldness (represented by sigma) was the ratio of normalized
clustering coefficient (represented by gamma) to normalized
characterized path length (represented by lambda) (i.e.,
sigma = gamma

lambda ), as normalized topological properties were
supposed to be benchmarked against corresponding mean
values of null random graphs (i.e., normalized clustering
coefficient (gamma) = C

Cnull
; normalized characterized path

length (lambda) = L
Lnull

). Thus, we generated 20 null random
networks with the same number of nodes, degree, and degree
distribution as the network of interest (Palaniyappan et al.,
2015; Das et al., 2018). Based on the network theory, the
clustering coefficient (C) of a network was defined as the
average of ratio between the actual number of edges between
all neighboring nodes and the maximum possible number of
edges. The characterized path length (L) of a certain network
was defined as the mean value of the shortest path among all
pairs of nodes in this network (Achard and Bullmore, 2007; He
et al., 2007).

Considering the widely acknowledged hypotheses of
function segregation and a growing number of studies focused
on relationships between cognition and subnetworks rather
than the whole brain (Sheffield et al., 2017; Fransson et al.,
2018), we, therefore, further parcellated the whole brain into
subnetworks based on the Power atlas to explore the association
of WM deficits with subnetworks in schizophrenia with
different attention deficits severity. Nodes of each subnetwork
were isolated, and topological characteristics of subnetworks
were analyzed individually (details of subnetworks are shown in
Supplementary material 2).

Statistical analysis

Group-related differences among demographic, clinical
characteristics, and WM task performances were analyzed using
a one-way analysis of variance (one-way ANOVA) and chi-
square (χ2) analysis. Post hoc analyses were applied to compare
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FIGURE 1

Paradigm of working memory tasks.

subgroups (patient and HCs groups) alternatively to figure out
where difference specifically existed based on the results of
the ANOVA test. As network properties were calculated across
densities, we first used functional data analysis (FDA) (Bassett
et al., 2012) to synthesize values across densities. In the FDA,
each network metric curve is treated as a function [y = f (x)], and
the sum of differences in y-values is calculated across densities.
It is necessary to mention that network metrics calculated on
all large-scale networks in our study were generated after the
correction of multiple-comparison analysis [false discovery rate
(FDR) corrected using the Benjamin–Hochberg method with
p < 0.05]. Correlation analyses were conducted to further
investigate the relationships between the WM task performance,
the clinical symptoms severity, and topology properties.

Results

Participant characteristics and working
memory performance

Demographic, clinical, and WM performance data of all
groups are shown in Table 1. Except the education received
years (F = 11.938, p < 0.001), other demographic variables
did not differ significantly among all groups. As for the WM
task performance, the “2-back” accuracy of the HCs group
(84.37 ± 12.63%) was better than all patient groups (F = 12.177,
p < 0.001), and the “2-back” accuracy of schizophrenia
patients with mild attention deficits was higher than that of
schizophrenia patients with severe attention deficits (p = 0.027).

There are omnibus differences in clinical symptoms among
all patient groups [SAPS: F = 4.755, p = 0.011; SANS-adapted
(SANS scale without attention items): F = 89.268, p < 0.001].
Patients with mild attention deficit have lower SAPS scores
than patients with moderate (p < 0.001) or severe (p = 0.024)
attention deficit. As for the negative symptoms except attention
deficits, there was a “ladder” pattern of the SANS-adapted
among all patient groups (severe > moderate, p < 0.001;
moderate > mild, p < 0.001). Detailed information is presented
in Table 1.

Network properties

At the whole-brain level, one-way ANOVA detected
omnibus differences in small-worldness [patients: mild = 1.414
(0.167), moderate = 1.407 (0.210), severe = 1.455 (0.138);
HCs = 1.306 (0.148); p-corrected = 0.018] and in normalized
clustering coefficient [patients: mild = 1.539 (0.173),
moderate = 1.541 (0.219), severe = 1.596 (0.132); HCs = 1.426
(0.146); p-corrected = 0.014]. The post hoc analysis indicated
that compared with HCs, patients with mild (small-worldness,
p = 0.0023; normalized clustering coefficient, p = 0.0017),
moderate (small-worldness, p = 0.0005; normalized clustering
coefficient, p = 0.0002), and severe (small-worldness, p = 0.0154;
normalized clustering coefficient, p = 0.0061) attention deficit
showed aberrantly increased small-worldness and normalized
clustering coefficient. Details are presented in Table 2 and
Figure 2.

At the subnetwork level, one-way ANOVA detected
omnibus differences in normalized characterized path length
of the DMN [patients, mild = 1.108 (0.029), moderate = 1.114
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TABLE 1 Demographic, clinical, and neurocognitive information.

Variables Schizophrenia patients (N = 92) HCs (N = 51) F/χ2 P Post hoc Tukey
significance

Mild (n = 49) Moderate (n = 29) Severe (n = 14)

Age 23.96 ± 5.37 24.14 ± 7.11 23.07 ± 5.23 23.08 ± 4.65 0.356 0.785 N/A

Gender (M/F) 29/20 15/14 11/3 28/23 3.131 0.372 N/A

Education (years) 11.76 ± 2.75 11.40 ± 2.19 12.61 ± 2.69 14.14 ± 1.87 11.938 <0.001* HCs > mild: p < 0.001;
HCs > moderate: p < 0.001

SAPS total score 18.67 ± 12.81 26.62 ± 18.78 30.86 ± 13.82 N/A 4.755 0.011* Severe > mild: P = 0.024

SANS total score 22.06 ± 13.04 58.31 ± 17.09 81.50 ± 12.09 N/A 89.283 <0.001* Moderate > mild: p < 0.001;
severe > mild: p < 0.001;
severe > moderate: p < 0.001

SANS-adapted 20.16 ± 12.53 50.41 ± 16.56 69.50 ± 11.67 N/A 88.825 <0.001* Moderate > mild: p < 0.001;
severe > mild: p < 0.001;
severe > moderate: p < 0.001

Attention deficit score 0.41 ± 0.50 2.76 ± 0.44 4.21 ± 0.43 N/A 462.477 <0.001* Moderate > mild: p < 0.001;
severe > mild: p < 0.001;
severe > moderate: p < 0.001

Total dosage (mg/d) 153.85 ± 512.692 96.56 ± 313.04 1526.73 ± 4275.33 N/A 3.686 0.03* Severe > mild: p < 0.001;
severe > moderate: p < 0.001

Illness duration (M) 23.59 ± 29.32 23.44 ± 30.08 41.71 ± 40.12 N/A 1.994 0.142 N/A

WAIS-information 17.26 ± 4.81 14.80 ± 4.14 14.25 ± 4.57 N/A 1.513 0.233 N/A

WAIS-Digit symbol 63.24 ± 14.01 61.10 ± 11.93 53.00 ± 9.93 N/A 1.06 0.356 N/A

ACC of 2-back (%) 72.44 ± 14.90 64.69 ± 18.27 61.16 ± 22.41 84.37 ± 12.63 12.177 <0.001* HCs > mild: p = 0.002;
HCs > moderate: p < 0.001;
HCs > severe: p < 0.001;
mild > severe: p = 0.027

RTC of 2-back (ms) 679.42 ± 127.97 660.21 ± 165.49 592.74 ± 202.87 659.83 ± 134.51 1.148 0.333 N/A

*p < 0.05; n, number; HCs, healthy controls; SAPS, Scale for Assessment of Positive Symptoms; SANS, Scale for Assessment of Negative Symptoms; SANS-adapted, SANS total score
without attention items; WAIS_information, information subscale of Wechsler Adult Intelligence Scale-Chinese Revised; WAIS_Digit_Symbol, digit symbol subscale of Wechsler Adult
Intelligence Scale-Chinese Revised; N/A, not available; antipsychotic dosage refers to the dose equivalents for chlorpromazine. Bold values indicate statistically significant values.

(0.035), severe = 1.143 (0.049); HCs = 1.104 (0.026); p-
corrected = 0.014]. The post hoc analysis indicated that patients
with severe attention deficits showed increased normalized
characterized path length of the DMN compared with HCs
(p < 0.001), patients with mild attention deficits (p = 0.0021),
and patients with moderate attention deficits (p = 0.029). Details
are presented in Table 2 and Figure 3.

We further explored whether the detected network
properties of the whole-brain functional connectome and DMN
subnetwork showed omnibus across all groups during the
resting state. Detailed scanning parameters, data preprocessing,
and network construction information of resting fMRI are
shown in Supplementary material 3. However, we did not
observe any omnibus differences in the network properties of
the whole-brain functional connectome and DMN subnetwork
under the resting state (see Table 3).

Correlation analyses

We observed the decreased accuracy of the WM task was
correlated with increased clinical symptoms (SANS-adapted,

r = –0.230, p = 0.041; SAPS, r = –0.246, p = 0.029; attention
deficit level, r = –0.472, p < 0.001), increased topology
properties (small-worldness, r = –0.195, p = 0.03; normalized
clustering coefficient, r = –0.237, p = 0.008) of the whole
brain, and increased normalized characterized path length of
the DMN network (r = –0.237, p = 0.008). The topology
properties significantly related to the attention deficit level
were whole-brain small-worldness (r = 0.275, p = 0.001),
whole-brain normalized clustering coefficient (r = 0.305,
p < 0.001), and DMN normalized characterized path length
(r = 0.292, p < 0.001). Details are presented in Figure 4 and
Supplementary material 4.

Discussion

To our best knowledge, this is the first study to investigate
the topology of the functional connectome during the WM task
in schizophrenia with different attention deficit severity. We
reported three key findings. First, all patient groups showed
increased small-worldness and local clustering of the whole-
brain functional connectome compared with HCs, despite their
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TABLE 2 Network properties of functional connectome during WM task.

Measures Schizophrenia patients HCs F p p-corrected Post hoc Tukey
significance

Mild Moderate Severe

Whole-brain

Sigma 1.417 (0.167) 1.407 (0.210) 1.455 (0.138) 1.306 (0.148) 5.329 0.002* 0.018* HCs < mild: p = 0.002

HCs < moderate: p < 0.001

HCs < severe: p = 0.015

Gamma 1.539 (0.173) 1.541 (0.219) 1.596 (0.132) 1.426 (0.146) 6.022 0.001* 0.011* HCs < mild: p = 0.002

HCs < moderate: p < 0.001

HCs < severe: p = 0.006

Lambda 1.077 (0.030) 1.086 (0.025) 1.088 (0.036) 1.086 (0.026) 1.125 0.341 0.614 N/A

VAN

Sigma 1.494 (1.301) 1.455 (0.788) 1.788 (1.329) 1.389 (0.638) 0.580 0.629 0.830 N/A

Gamma 1.304 (0.599) 1.325 (0.482) 1.408 (0.600) 1.264 (0.389) 0.316 0.814 0.907 N/A

Lambda 0.985 (0.067) 0.967 (0.073) 0.933 (0.130) 0.972 (0.074) 1.661 0.178 0.486 N/A

SBN

Sigma 1.815 (0.976) 1.858 (0.785) 1.884 (0.761) Null 0.044 0.957 0.957 N/A

Gamma 1.631 (0.482) 1.666 (0.482) 1.750 (0.469) Null 0.339 0.714 0.838 N/A

Lambda 0.948 (0.073) 0.949 (0.086) 0.977 (0.054) 0.978 (0.062) 2.064 0.108 0.486 N/A

SSHN

Sigma 1.489 (0.232) 1.515 (0.295) 1.579 (0.198) 1.468 (0.257) 0.774 0.511 0.812 N/A

Gamma 1.642 (0.288) 1.659 (0.290) 1.793 (0.276) 1.616 (0.324) 1.284 0.282 0.614 N/A

Lambda 1.103 (0.047) 1.121 (0.051) 1.127 (0.036) 1.109 (0.051) 1.455 0.230 0.565 N/A

SN

Sigma 1.612 (0.739) 1.437 (0.428) 1.638 (0.511) 1.447 (0.377) 1.190 0.316 0.614 N/A

Gamma 1.523 (0.389) 1.426 (0.360) 1.626 (0.359) 1.423 (0.309) 1.701 0.170 0.486 N/A

Lambda 1.029 (0.076) 1.031 (0.060) 1.052 (0.031) 1.025 (0.057) 0.656 0.581 0.830 N/A

FPN

Sigma 1.314 (0.282) 1.356 (0.301) 1.392 (0.269) 1.408 (0.216) 1.141 0.335 0.614 N/A

Gamma 1.378 (0.294) 1.444 (0.318) 1.530 (0.354) 1.501 (0.242) 1.914 0.130 0.486 N/A

Lambda 1.066 (0.054) 1.078 (0.052) 1.100 (0.062) 1.077 (0.045) 1.653 0.180 0.486 N/A

DAN

Sigma 1.439 (0.541) 1.322 (0.366) 1.374 (0.457) 1.341 (0.367) 0.579 0.630 0.830 N/A

Gamma 1.344 (0.361) 1.274 (0.270) 1.290 (0.319) 1.268 (0.294) 0.552 0.647 0.830 N/A

Lambda 0.964 (0.082) 0.967 (0.061) 0.969 (0.062) 0.974 (0.075) 0.149 0.930 0.957 N/A

DMN

Sigma 1.266 (0.172) 1.321 (0.186) 1.392 (0.152) 1.321 (0.193) 2.026 0.113 0.486 N/A

Gamma 1.411 (0.196) 1.481 (0.213) 1.607 (0.186) 1.470 (0.221) 3.371 0.020* 0.135 N/A

Lambda 1.108 (0.029) 1.114 (0.035) 1.143 (0.049) 1.104 (0.026) 5.863 0.001* 0.011* HCs < severe: p < 0.001

Mild < severe: p = 0.002

Moderate < severe: p = 0.029

CON

Sigma 1.558 (0.488) 1.621 (0.481) 1.473 (0.343) 1.719 (0.855) 0.815 0.488 0.812 N/A

Gamma 1.480 (0.323) 1.523 (0.372) 1.441 (0.310) 1.577 (0.631) 0.510 0.676 0.830 N/A

Lambda 0.988 (0.077) 0.985 (0.065) 0.993 (0.057) 0.978 (0.055) 0.279 0.840 0.907 N/A

*p < 0.05. VAN, ventral attention network; SBN, subcortical network; SSHN, sensory somatomotor hand network; SN, salience network; FPN, frontoparietal network; DAN, dorsal
attention network; DMN, default-mode network; CON, cingulo-opercular network; sigma, small-worldness; gamma, clustering coefficient; lambda, characterized path length. Bold values
indicate statistically significant values.
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FIGURE 2

Global properties of the whole-brain functional connectome calculated on the Power atlas of schizophrenia patients with different severities of
attention deficits and HCs and comparisons of mean topology properties (sigma, gamma, and lambda) across densities between patients with
different severities of attention deficits and HCs. The range of densities is 0.1: 0.02: 0.5, symbol “∗” represents p < 0.05, and symbol “∗∗”
represents p < 0.01. HCs, healthy controls; sigma, small-worldness; gamma, clustering coefficient; lambda, characterized path length.

varied attention deficit severity. Second, patients with severe
attention deficits showed decreased global integration of the
DMN network compared with HCs and patients with less

severe attention deficits. Third, the abovementioned findings
in patients with schizophrenia under the WM task were not
manifested under the resting state.
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FIGURE 3

Global properties of the DMN functional connectome calculated on Power atlas of schizophrenia patients and HCs and comparisons of mean
topology properties (sigma, gamma, and lambda) across densities between schizophrenia patients with different severities of attention deficits
and HCs. The range of densities is 0.1: 0.02: 0.5, symbol “∗” represents p < 0.05, and symbol “∗∗” represents p < 0.01. DMN, default-mode
network; HCs, healthy controls; sigma, small-worldness; gamma, clustering coefficient; lambda, characterized path length. ***P < 0.001.

In line with our prior work (Yang et al., 2020), this study
reported that all patients with different attention deficit severity
showed increased small-worldness and normalized clustering
coefficient of their whole-brain functional connectome during
the WM task. In patient groups, the increased small-worldness

is driven by higher local clustering but not the global integration.
This topology alteration was similar to the ketamine-induced
alteration of the functional connectome (Dawson et al., 2014),
which was commonly seen among the pharmacological models
of the behavioral deficits similar to schizophrenia in both
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TABLE 3 Network properties of functional connectome during resting state.

Measures Schizophrenia patients HCs F p

Mild Moderate Severe

Whole-brain

Sigma 1.468 (0.206) 1.460 (0.182) 1.420 (0.129) 1.415 (0.242) 0.529 0.663

Gamma 1.584 (0.213) 1.585 (0.184) 1.550 (0.118) 1.540 (0.242) 0.397 0.756

Lambda 1.072 (0.035) 1.076 (0.027) 1.083 (0.048) 1.083 (0.045) 0.728 0.538

DMN

Sigma 1.265 (0.162) 1.312 (0.171) 1.371 (0.136) 1.305 (0.173) 1.157 0.329

Gamma 1.408 (0.193) 1.477 (0.224) 1.528 (0.127) 1.455 (0.203) 1.151 0.331

Lambda 1.106 (0.028) 1.117 (0.029) 1.115 (0.064) 1.098 (0.024) 2.157 0.097

DMN, default-mode network; sigma, small-worldness; gamma, clustering coefficient; lambda, characterized path length.

humans (Morgan et al., 2004; D’Souza et al., 2012) and animals
(Roberts et al., 2010; Skoblenick and Everling, 2012). The
local clustering is essential for motor execution, whereas the
global integration is vitally important for WM (Sakreida et al.,
2018; Bhattacharjee and Schwarz, 2022). It is an inefficient
way for patients with schizophrenia to promote their WM
performance by improving their local clustering (Yang et al.,
2020). Furthermore, we did not observe any differences in the
topology properties of the whole-brain functional connectome
among all patient groups. This finding may collaborate with our
prior study and demonstrate that the increased local clustering
under the WM task is more likely a “trait” marker of patients
with schizophrenia, but irrelevant to their clinical symptoms.

Patients with severe attention deficits showed an increased
normalized characterized path length of the DMN network
compared with HCs and patients with mild attention deficits.
Our results suggested that the efficiency of DMN might be
positively meaningful when the demands on WM capacity
increased (Spreng, 2012; Sormaz et al., 2018; Buckner and
DiNicola, 2019). From the perspective of topology structure, the
increase in normalized characterized path length indicated the
worse global efficiency of DMN. Patients with severe attention
deficits need to devote more neural resources to achieve the
global transition of information in DMN. The increase in
normalized characterized path length in DMN was correlated
with the increase in the attention deficit degree among patients.
This result could be attributed to the patients with severe
attention deficits cannot timely respond to support the flexible
topology reconfiguration when facing the demand of WM task
(Moraschi et al., 2020). Thus, we speculated that the inefficiency
of DMN among patients with severe attention deficits affects the
processing of WM in these certain phases and then causes worse
WM task performance than that of HCs.

The decreased integration of the DMN was only observed
in schizophrenia with severe attention deficits, which may
demonstrate that the DMN can be a potential target for
clinical intervention. This speculation was also supported
by previous research on attention-deficit/hyperactivity
disorder (ADHD), a mental disorder that mainly includes

attention deficits and an overload of cognitive process
(Klingberg, 2009). Bachmann et al. (2018) have demonstrated
that short-term mindfulness could significantly improve WM
task performance in ADHD patients. Mindfulness is a widely
approved psychological intervention for ADHD. It has been
considered closely associated with DMN, and DMN has
been recognized as a potential biomarker for monitoring the
treatment effects of mindfulness (Simon and Engström, 2015).

It should be noted that there were no omnibus significant
brain connectome topology alterations among all groups under
resting state. Indeed, previous studies have reported significant
differences of brain network topology between patients with
schizophrenia and HCs. For example, Yu et al. (2017) and
Jiang et al. (2022) have reported a lower clustering coefficient
and small-worldness in schizophrenia compared with HCs.
However, some studies reported inconsistent findings. For
instance, Hadley et al. (2016) have reported the increased
clustering coefficient but deceased global efficiency in the
unmediated schizophrenias during resting state compared with
HCs, and this pattern of aberrant functional network integration
and segregation in responders can be modulated with 6-week
risperidone treatment. We speculated this inconsistency may be
due to the heterogeneity of the enrolled participants. However,
it should be noted that the omnibus differences in network
properties across all groups were detected during the WM
task. It may suggest that the alteration of network properties
was context-dependent. During the resting state, participants
were only asked to keep their eyes open and not fall asleep.
In contrast, during the WM task, attention resources need to
be sufficiently devoted to accomplishing this task. Concerned
about the dynamic switch of topological configurations of
the DMN observed during the WM task (Duan et al., 2019;
Moraschi et al., 2020), we speculated that the process of
attention mobilization acted as an external inducement for
the functional connectome topology alteration. This finding
may be consistent with previous studies conducted in HCs,
which indicated that the dynamic topology reorganization of
DMN is associated with the WM task (Tommasin et al., 2018;
Moraschi et al., 2020).
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FIGURE 4

Correlations among the accuracy of the WM task, clinical symptoms, and topology properties. WM, working memory; SAPS, scale for assessing
positive symptoms; SANS, scale for assessment of negative symptoms; SANS-adapted, SANS total score without attention items; DMN,
default-mode network; sigma, small-worldness; gamma, clustering coefficient; lambda, characterized path length. *P < 0.05, **P < 0.01,
***P < 0.001.

Limitation

There are some limitations in the current study. First, the
proportion of schizophrenia patients with different severity of
attention deficits is varied, especially the limited sample size
of schizophrenia patients with severe attention deficits. We,
therefore, suggest that these preliminary results of the current
study need to be validated in a future big dataset. Second,
the discrepancy in SANS total score among the schizophrenia
patients with severe attention deficits and the other two patient
groups was apparent. Concerned that the criterion of attention

deficits applied in our research was a part of the SANS
scale, which was associated with other negative symptoms
like avolition or blunted effect, we considered that it was
reasonable that other negative symptoms decrease the efficiency
of attention allocation. So, it is hard to exclude the effect
of the negative symptoms on the normalized characterized
path length of DMN. Thus, we conducted the correlation
analyses among SANS-adapted (SANS total score without
attention items) and topology properties, which were related
to the attention deficits. However, there were no significant
relationships among these variables. Third, the adopted N-back
paradigm lacked various WM loads, and we were not able
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to further explore the differences in functional connectome
topology of schizophrenia patients with diverse attention deficits
and HCs under varied WM loads.

Conclusion

This is the first study to investigate the topology of the
functional connectome during a WM task in schizophrenia
with different attention deficit severity. All patients with
schizophrenia showed higher small-worldness that was induced
by increased clustering compared with HCs. The decreased
integration of DMN is associated with severe attention deficits
in patients with schizophrenia, while these topology alterations
were absent in schizophrenia patients with severe attention
deficits during resting state. The current study suggested that
the mobilization of attention resources might be an external
inducement of the topology reorganization of the DMN during
the N-back WM task among schizophrenia patients with severe
attention deficits.
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