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Critical brain hypothesis has been intensively studied both in experimental and theoretical

neuroscience over the past two decades. However, some important questions still

remain: (i) What is the critical point the brain operates at? (ii) What is the regulatory

mechanism that brings about and maintains such a critical state? (iii) The critical state

is characterized by scale-invariant behavior which is seemingly at odds with definitive

brain oscillations? In this work we consider a biologically motivated model of Izhikevich

neuronal network with chemical synapses interacting via spike-timing-dependent

plasticity (STDP) as well as axonal time delay. Under generic and physiologically

relevant conditions we show that the system is organized and maintained around a

synchronization transition point as opposed to an activity transition point associated

with an absorbing state phase transition. However, such a state exhibits experimentally

relevant signs of critical dynamics including scale-free avalanches with finite-size scaling

as well as critical branching ratios. While the system displays stochastic oscillations with

highly correlated fluctuations, it also displays dominant frequency modes seen as sharp

peaks in the power spectrum. The role of STDP as well as time delay is crucial in achieving

and maintaining such critical dynamics, while the role of inhibition is not as crucial. In this

way we provide possible answers to all three questions posed above. We also show that

one can achieve supercritical or subcritical dynamics if one changes the average time

delay associated with axonal conduction.

Keywords: neuronal network, spike-time dependent plasticity, critical dynamics, time delay, Izhikevich neuron,

neuronal avalanches, synchronization, chemical synapses

1. INTRODUCTION

Since its inception nearly two decades ago, the critical brain hypothesis has gained a considerable
amount of attention in the literature (Legenstein and Maass, 2007; Chialvo, 2010; Plenz, 2014).
Although it has encountered some skepticism at times (Beggs and Timme, 2012), it has now
grown to a relatively mature field with substantial body of theoretical and experimental evidence to
support it (Beggs and Plenz, 2003, 2004; Levina et al., 2007; Plenz and Thiagarajan, 2007; Beggs
and Timme, 2012; Friedman et al., 2012; Haimovici et al., 2013; Fontenele et al., 2019). Brain
criticality is thought to underlie many of its fundamental properties such as optimal response,
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learning, information storage, as well as transfer (Kinouchi and
Copelli, 2006; Shew et al., 2009; Larremore et al., 2011; Shew and
Plenz, 2013; Hesse and Gross, 2014; Gautam et al., 2015; Clawson
et al., 2017). The original ideas of brain criticality came out of
studies of self-organized criticality, where a threshold dynamics
leads to a balance between slow drive and fast dissipation in
open nonequilibrium systems and thus observation of critical
dynamics (Bak et al., 1987). It is now generally believed that
long-term evolution has led to a balance between excitatory
as well as inhibitory tendencies which place the brain “on the
edge,” i.e., a critical point. However, this does not necessarily
answer the problem of stability of the critical state, as some
neurophysiological mechanism is needed to maintain the system
near the critical point against many possible perturbative effects.

It seems like there are some important theoretical issues
which have remained open in regards to brain criticality: (i)
What exactly is the phase transition which determines the critical
point? Traditionally, this has been assumed to be the absorbing-
state phase transition motivated by the studies of self-organized
criticality (Montakhab and Carlson, 1998; Vespignani et al.,
2000). However, in some recent studies, it has been indicated
that the brain is maintained near a synchronization transition
(Poil et al., 2012; Gautam et al., 2015; di Santo et al., 2018; Dalla
Porta and Copelli, 2019; Fontenele et al., 2019). We note that
some authors have also argued for the existence of the extended
critical region similar to that of “Griffiths phase” (Munoz et al.,
2010; Moretti and Munoz, 2013; Odor et al., 2015; Moosavi
et al., 2017). However, such critical regions also typically occur
near the absorbing phase transition where the system transitions
from an inactive phase to an active phase. (ii) What is the
self-organizing mechanism which leads to, and maintains the
system in a critical state? As mentioned above the balance
between excitatory and inhibitory tendencies are thought to be
the long time solution to this question. However, physiological
mechanism such as synaptic plasticity are also considered to
be important mechanism to maintain the nervous system in a
balanced state on shorter time scales. Clearly, extended criticality
can also alleviate such a problem to a certain extend as criticality
is observed for a range of parameter instead of a particular point.
(iii) If the brain is in the critical state with its associated scale-
invariant behavior, how could it also display definitive rhythmic
behavior via brain oscillations?

Brain plasticity is increasingly being recognized as an
important and fundamental property of a healthy nervous
system. In particular, spike-timing-dependent-plasticity (STDP)
is an important mechanism which can modify synaptic weights
on very short time scales. Therefore, it seems reasonable to invoke
STDP as a self-organizing mechanism. In a STDP protocol, the
strength of a synapse is modified based on the relative spike-
timing of its corresponding pre- and post-synaptic neurons, i.e.,
STDP incorporates the causality of pre- and post-synaptic spikes
into the synaptic strength modifications. If the pre-synaptic
neuron spikes first and leads to the post-synaptic neuron to spike
shortly afterward, then the synapse is potentiated. Reversely, if
the pre-synaptic spike follows the post-synaptic spike the synapse
will be depressed (Song et al., 2000; Bi and Poo, 2001; Sjostrom
and Gerstner, 2010; Markram et al., 2012). The competition

between coupling and decoupling forces arising from successive
potentiation and depression of synapses tunes the neural network
into a balanced dynamical state.

Our work in this paper is motivated by the above
considerations. In particular, we propose to study a biologically
plausible model of cortical networks, i.e., Izhikevich neurons,
along with neurophysiological regulatory mechanism such as
STDP with suitable axonal conduction delays in order to answer
some of the above posed questions. Interestingly, we find that
our regulatory system self-organizes the neuronal network to
the “edge of synchronization” in physiologically meaningful
parameter regime.We first establish some of the characteristics of
such a steady state. More importantly, we look for characteristics
of critical dynamics in such a minimally synchronized steady
state. Motivated by various experiments, we look for neuronal
avalanches, branching ratios, as well as power spectrum of
activity time-series. We find that such a system on the edge
of synchronization exhibits significant indications of critical
dynamics including scale-invariant avalanches with finite-size
scaling. Our results provide plausible answers to the above
questions in a biologically relevant (microscopic) model of
neuronal networks.

In the following section, we describe the model we use for
our study. Results of our numerical study is presented in section
III, and we close the paper with some concluding remarks in
section IV.

2. MODEL AND METHODS

The studied cortical networks consist of N spiking Izhikevich
neurons which interact by transition of chemical synaptic
currents with axonal conduction delays. The dynamics of each
neuron is described by a set of two differential equations
(Izhikevich, 2003):

dvi

dt
= 0.04v2i + 5vi + 140− ui + IDCi + I

syn
i (1)

dui

dt
= a(bvi − ui) (2)

with the auxiliary after-spike reset:

if vi≥30, then vi → c and ui → ui + d (3)

for i = 1, 2, ...,N. Here vi is the membrane potential and ui is the
membrane recovery variable. When vi reaches its apex (vmax =

30 mV), voltage and recovery variable are reset according to
Equation (4). a, b, c, and d are four adjustable parameters in this
model. Tuning these parameters, Izhikevich neuron is capable
of reproducing different intrinsic firing patterns observed in
real excitatory and inhibitory neurons (Izhikevich, 2003). We
set these parameters so that excitatory neurons spike regularly
and inhibitory neurons produce fast spiking pattern (Izhikevich,
2003, 2006, 2007).

The term IDCi is an external current which determines intrinsic
firing rate of uncoupled neurons. Regularly spiking Izhikevich
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TABLE 1 | Values of constant parameters used in this study.

Izhikevich neuron aex = 0.02 bex = 0.2 cex = −65 dex = 8 ain = 0.1 bin = 0.2 cin = −65 din = 2

Synaptic current τf = 0.2 τs = 1.7 V0,ex = 0 V0,in = −75

STDP rule A+ = 0.05 A− = 0.05 τ+ = 20 τ− = 20 gmin = 0 gmax = 0.6

neurons exhibits a Hopf bifurcation at IDC = 3.78 (Khoshkhou
and Montakhab, 2018). We choose values of IDCi randomly
from a Poisson distribution with the mean value 10. The term
I
syn
i represents the chemical synaptic current delivered to each
post-synaptic neuron i (Roth and van Rossum, 2009):

I
syn
i =

V0 − vi

Di

∑

j

gji

exp(−
t−(tj+τji)

τs
)− exp(−

t−(tj+τji)

τf
)

τs − τf
(4)

Here Di is the in-degree of node i, tj is the instance of last
spike of pre-synaptic neuron j, and τji is the axonal conduction
delay from pre-synaptic neuron j to post-synaptic neuron i. If
axonal delays are not taken into account, then τji = 0 for all
j 6= i. Axonal delay values of τji are chosen randomly from a
Poisson distribution with mean value τ = 〈τji〉. τf and τs are
the synaptic fast and slow time constants and V0 is the reversal
potential of the synapse. If inhibition is included, then motivated
by the properties of cortical networks (DeFelipe, 1993), we set
population density of inhibitory neurons to twenty percent, i.e.,
α = 0.2 while the initial strength of inhibitory synapses are
chosen four times the strength of excitatory synapses. Therefore,
the excitation-inhibition ratio is balanced. α = 0 indicates that
we are only considering a network of excitatory neurons. gji is the
corresponding element of the adjacency matrix of the network
which denotes the strength of synapse from pre-synaptic neuron j
to post-synaptic neuron i. Each type of synapses are initially static
and have equal strength. gji = gs if neurons j and i are connected
and the synapse is excitatory, gji = 4gs if neurons j and i are
connected and the synapse is inhibitory, and gji = 0 otherwise.
When we turn the STDP on, strength of excitatory synapses are
modified according to a soft-bound STDP rule (Song et al., 2000;
Bi and Poo, 2001; Sjostrom and Gerstner, 2010; Markram et al.,
2012), while the strength of inhibitory synapses are fixed. If post-
synaptic neuron i fires a spike at time t = tpost , then the strength
of synapse is modified to gji → gji + 1gji, where:

1gji =







A+(gmax − gji)e
−

1t−τji
τ+ if 1t > τji

−A−(gji − gmin)e
1t−τji

τ− if 1t ≤ τji

(5)

Here, 1t = tpost − tpre is the time difference of last post- and pre-
synaptic spikes, A+ and A− determine the maximum synaptic
potentiation and depression, τ+ and τ− determine the temporal
extent of the STDP window for potentiation and depression,
and gmin and gmax are the lower and upper bounds of synaptic
strength. The values of all parameters for Izhikevich neuron,
synaptic current and STDP rule are listed in Table 1.

We consider a temporally shifted STDP window for which
the boundary separating potentiation and depression does not

FIGURE 1 | Conventional (solid line) and shifted (dashed line) STDP temporal

window function 1g = f (1t). Blue parts denote depression and red parts

denote potentiation. Units of 1t is ms.

occur for simultaneous pre- and post-synaptic spikes, but rather
for spikes separated by a small time interval (Babadi and Abbott,
2010). We set the value of this shift equal with the actual axonal
delay for each synapse. This rule retrieves the conventional
STDP rule when no time-delay is considered, τji = 0. We have
plotted the STDP temporal window function 1g = f (1t) and
its shift in Figure 1. This type of time shift introduces a signal
transmission time which is more realistic for a causal relation
between pre and post synaptic firing. As a result, this temporal
shift causes synchronous or nearly-synchronous pre- and post-
synaptic spikes to induce long-term depression, which leads to
intrinsic stability for the network (Babadi and Abbott, 2010; Asl
et al., 2018).

We integrate the dynamical equations using fourth-order
Runge-Kutta method with a time step h = 0.01 ms and obtain
vi(t). We typically evolve the entire system for a long time and
make sure that the system has reached a stationary state. We
then perform our measurements and calculations. We obtain the
instants of firings of all neurons and then assign a phase to each
neuron between each pairs of successive spikes (Pikovsky et al.,
1997):

φi(t) = 2π
t − tmi

tm+1
i − tmi

(6)

while tmi is the time that neuron i emits itsmth spike. We define a
time-dependent order parameter:

S(t) =
2

N(N − 1)

∑

i6=j

cos2
(φi(t)− φj(t)

2

)

(7)

This order parameter measures the collective phase
synchronization at time t. S(t) is bounded between 0.5 and
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1. If neurons spike out-of-phase, then S(t)≃0.5, when they
spike completely in-phase S(t)≃1 and for states with partial
synchrony 0.5 < S(t) < 1. The global order parameter S∗ is
the long-time-average of S(t) at the stationary state after the
influence of STDP (S∗ = 〈S(t)〉t). We note that the intricate
details of the model along with the need to obtain long-time
dynamics of the system, limit our computational abilities. We
have therefore performed simulations for 100 < N < 1, 000. We
find that our general results and conclusions are independent of
the system size used and therefore report most of our results for
N ≈ 500. In the next section we will present a systematic study
of the system above, paying particular attention to the effect of
STDP, time delay, and inhibition.

Before we present our results, we note that in our simulations
we have also calculated the more common order parameter
R(t)eiθ = 1

N

∑

j e
iφj(t) along with the order parameter S which

we choose to report in this study. Essentially, the same results are
obtained for R as those obtained for S. However, from a statistical
point of view R(t) represents an average of N data points while
S(t) represents an average ofN(N−1)/2 data points which results
in better statistics for our limited system sizes, and therefore
smoother diagrams given our computational limitations.

3. RESULTS

Spiking Izhikevich neurons with static chemical synapses
exhibit a continuous transition to phase synchronization upon
increasing synaptic strength, i.e., the amount of global synchrony
depends on the average synaptic strength (Khoshkhou and
Montakhab, 2018). Now, consider the simple case of an all-to-
all network of excitatory neurons without axonal delays. STDP is
off initially. S(t) timeseries for different values of gs are illustrated
in Figure 2A. It is observed that S(t) depends on gs as is expected.
Next, we turn on the STDP at t = 5s. Interestingly, it is seen that
S(t) timeseries evolve to a common state regardless of their initial
values. Thus, as STDP modifies the synaptic strengths, neural
network organizes into a final state with a specific global phase
synchronization S∗ independent of the initial synaptic strengths.
Our investigations reveal that this is a generic condition emerging
in neural networks with different underlying structures. We also
find that the amount of S∗ is independent of many parameters
including the amplitudes and time extents of STDP rule, and
intrinsic firing rate of neurons. However, S∗ depends drastically
on the average value of axonal conduction delays. Figure 2B
shows that increasing τ leads to a phase transition from strongly
synchronized states with S∗ ≃ 1 to asynchronous states with
S∗ ≃ 0.5, for neural networks with α = 0 and α = 0.2. Figure 2B
also shows that inhibition has a secondary role in the amount
of steady state synchronization,S∗, as compared to axonal delay,
τ . Important to our purposes, it shows that for τ = 10 ms the
system stands at the boundary of phase synchronization for both
α values. Note the importance of time delay as it causes STDP
to depress (weaken) the synchronous neurons, thus reducing the
amount of S∗ in the system.

In order to further investigate the properties of Izhikevich
neuronal networks, we consider four different networks of N =

FIGURE 2 | (A) Effect of STDP on the time evolution of S(t) for all-to-all

networks of excitatory spiking neurons with different gs. The unit of time axis is

in seconds. (B) Dependence of S∗ on τ for α = 0 and α = 0.2.

500: (1) a network of purely excitatory neurons without time-
delay (α = 0, τji = 0), (2) a network of purely excitatory
neurons with axonal conduction delays (α = 0, τ = 10 ms),
(3) a network of excitatory and inhibitory neurons without time-
delay (α = 0.2, τji = 0), and (4) a network of excitatory and
inhibitory neurons with axonal conduction delays (α = 0.2,
τ = 10 ms). We have studied networks with different τ values,
but we display mostly the results in cases for which all delays are
zero (τji = 0) and S∗ ≫ 0.5 as well as those with τ = 10 ms for
which S∗ → 0.5+. We note that while our results (Figure 2) show
that τ = 10 ms is an interesting case of transition point, such
an actual value for axonal delay is experimentally meaningful
(Swadlow and Waxman, 2012). We turn on STDP at t = 5s in a
complete network and monitor its influence on different features
of each system.

3.1. Synchronization and Average Synaptic
Weights
The influence of STDP on the timeseries S(t) in different
conditions is illustrated in the left column of Figure 3. Each
panel contains three plots with different values of gs, i.e., the
initial synaptic weights. When STDP is off, S(t) depends on gs.
Turning STDP on, each system reaches a final state with a specific
amount of synchronization S∗, regardless of initial level of order
(regardless of gs). However, S∗ depends on τ and α. Systems (1)
and (3) reach a strongly synchronized states with S∗ ≃ 0.88 and
S∗ ≃ 0.75, respectively. Implementation of conduction delays
drive the dynamics toward lower levels of order. Systems (2) and
(4) with τ = 10 ms lead to states at the edge of transition with
S∗ ≃ 0.509 and S∗ ≃ 0.503, respectively. The right column
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FIGURE 3 | Timeseries of S(t) and G(t) and the influence of STDP on them. (A,B) α = 0 and τji = 0, (C,D) α = 0 and τ = 10 ms, (E,F) α = 0.2 and τj i = 0, (G,H)

α = 0.2 and τ = 10 ms. The unit of time axis is in seconds. STDP is turned on at t = 5s. In each panel different line colors represent different static synaptic strengths,

gs = 0.5 (black), gs = 0.2 (red) and gs = 0.05 (blue).

of Figure 3 represents the timeseries of the average strength of
excitatory synapses, for the corresponding system in the left
column represented by, G(t) = 1

NL

∑

j 6=i gji,ex(t), where NL is

the number of existing excitatory links. It is observed that at the
final states G(t) ≃ 0.3 for all the systems. It is interesting that
the final average value of synaptic weight is independent of the
amount of inhibition and and/or axonal delay, as well as initial
distribution. However, the main point here is that the amount of
synchronization in the system is not solely determined by average
synaptic strength but crucially depends on axonal conduction
delay, and to a lesser degree on inhibition.

3.2. Synaptic Distributions
It is somewhat unexpected that similar average synaptic weights
would lead to decidedly different synchronization patterns. The
answer is in the form of the actual distributions of the weights.
In one scenario the average is the most likely value (unimodal
distribution) and in the other case is the least likely value
(bimodal distribution). The probability distribution function of
excitatory synaptic strengths P(gex) (in the steady state) for each
system is shown in the left column of Figure 4. Also, the right
column of this figure illustrates time evolution of strength of
a pair of reciprocal synapses. At the absence of axonal delays,
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FIGURE 4 | Distribution of the excitatory synaptic strength at the stationary state of the systems after the influence of STDP (left) and time evolution of a pair of

reciprocal synapses (right). (A,B) α = 0 and τj i = 0, (C,D) α = 0 and τ = 10 ms, (E,F) α = 0.2 and τj i = 0, (G,H) α = 0.2 and τ = 10 ms. The unit of time axis is in

seconds.

STDP produces a bimodal distribution of synaptic strengths
(Figures 4A,E) which is incompatible with the experimentally
observed distributions of synaptic strength. However, addition
of time-delays to the neural network modifies this condition.
Simultaneous presence of STDP and time-delays produce a
unimodal distribution of synaptic strengths (Figures 4C,G)
resembling those measured in cultured and cortical networks
(Turrigiano et al., 1998; Song et al., 2005).

Emergence of these different distributions of synaptic
strengths is associated with the amount of phase synchronization

in the networks. When neurons interact without time-delay, the
final state of the system is strongly synchronized. Therefore,
for each pair of symmetric links, STDP depresses the link in
one direction and potentiates the link in the opposite direction
as in Figures 4B,F). Thus, all symmetric connection would be
broken into unidirectional connections after a while in this
case. This leads to a bimodal distribution of synaptic strengths
whether the network consists of purely excitatory neurons or a
mixture of excitatory and inhibitory neurons. With the inclusion
of time-delay in the system the level of order declines as it also
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causes to preserve symmetric connections between each pair of
neurons (Asl et al., 2017). Although the strength of synapses
fluctuates over time (Figures 4D,H), both links in opposite
directions remain active. This leads to a unimodal distribution
of synaptic strengths.

3.3. Indicators of Criticality
So far we have seen that STDP along with reasonable time
delay (and inhibition) will lead the system on the edge of
synchronization. However, being on the edge of synchronization
could be caused by vastly different spiking patterns (Khoshkhou
and Montakhab, 2018). More importantly for the purpose of
the present study, we would like to know whether such a state
of minimal synchronization has any experimentally relevant
indications of criticality. In this subsection we will address
such issues.

Raster plots of neural networks with different values of α and
τ (in the steady state) are displayed in Figure 5. When time-delay
is ignored, neuronal spikes are highly ordered (Figures 5A,C).
This is not the real state of a healthy nervous system. However,
addition of axonal conduction delay modifies the amount of
global order in the networks. Simultaneous effect of STDP and
a suitable axonal conduction delays decrease global coherence
in neural oscillations (see Figures 5B,D). In Figures 5C,D,
inhibitory neurons indexed as 401− 500, spike with a higher rate
as compared to excitatory neurons 1− 400.

The amount of order parameter S∗ and the raster plots
are reasonable evidences showing the system with τ = 10
ms organizes to the edge of synchronization transition point.
We now present experimentally relevant results which indicate
that such a system is in a critical state. We first consider the
network activity timeseries M(t) which is defined as the number

of neuronal spikes at time t, as well as its power spectrum.
These plots are illustrated in Figure 6. The network activity
oscillates regularly in systems without time-delay for which
phase synchronization is strong (Figures 6A,E). Therefore, the
power spectrum of these systems exhibit a sharp peak at f ≃

23.5 Hz (Figures 6B,F). While neurons are delay-coupled the
oscillations of M(t) are irregular (Figures 6C,G). Despite this
deceptive irregularity, the power spectrum exhibits a large peak
at frequency f ≃ 21.5 Hz (Figures 6D,H) along with a range
of other frequencies. This dominant peak reveals that rhythmic
oscillations are still robust at these neural networks. The inset
of Figures 6D,H show a log-log plot which indicates that the
spectrum is fat-tailed in the systems for which τ = 10 ms.
Note that the amplitude of oscillations of M(t) depends on the
level of phase synchronization. The stronger the neurons are
synchronized, the larger is the amplitude ofM(t) oscillations, i.e.,
note the scale of the power spectrum on the y-axis.

Scale-invariant statistics of neural avalanches is thought to
be the most important indicator of critical brain dynamics.
Hence, the network displays spontaneous activity of various sizes
s and durations d, known as neural avalanches, which exhibit
scale-free distribution, i.e., P(s) ∼ s−γs and P(d) ∼ d−γd

(Beggs and Plenz, 2003). By monitoring the spiking activity of
our systems, we can identify outbursts of spikes the number
of which is associated with the size, and the lifetime with
the duration of avalanches. An avalanche begins when the
network activity exceeds a threshold Mth and ends when it
turns back below that threshold. Here, we set the threshold to
be equal with the mean value of activity in the system. s is
defined as the total number of spikes during this avalanche,
and d is the time interval between the onset and offset of the
avalanche. Criticality is supposed to be indicated by a power-law

FIGURE 5 | Raster plots of the neural networks with different values of τ and α at the stationary states after influence of STDP. (A) α = 0 and τji = 0, (B) α = 0 and

τ = 10 ms, (C) α = 0.2 and τji = 0, (D) α = 0.2 and τ = 10 ms. The unit of time axis is in seconds.
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FIGURE 6 | Timeseries of network activity M(t) in the stationary state after the influence of STDP (left) and their power spectrum (right). (A,B) α = 0 and τji = 0, (C,D)

α = 0 and τ = 10 ms, (E,F) α = 0.2 and τji = 0, (G,H) α = 0.2 and τ = 10 ms. The units of time axis is seconds. The inset of (D,H) show the same data on a

log-log scale.

behavior and a finite-size cut-off which diverges as system size
diverges (N → ∞).

We consider neural networks with α = 0.2 and three different
τ values, i.e., τ = 14 ms, τ = 10 ms and τ = 8 ms. From the
synchronization point of view, Figure 2B, these systems would
be subcritical, critical, and supercritical. Each network is also
simulated with different network sizes N. For any given set of
parameters the network is simulated for a considerably long time,
producing a large number of avalanches. Probability distribution

functions of avalanche sizes and avalanche durations for such
networks is illustrated in Figure 7. For neural networks with
τ = 14 ms, P(s) and P(d) decay with a characteristic scale
which is an indicator of subcritical behavior (Figures 7A,B). Note
how this scale begins to saturates as system size increases. For
networks with τ = 8 ms, P(s) exhibits a bump for large s and
d which is an evidence of supercritical behavior (Figures 7G,H).
Here, large avalanches are more likely to occur than intermediate
size avalanches. Interestingly, in networks with τ = 10 ms P(d)
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FIGURE 7 | Distribution function of size and duration of avalanches, as well as activity-dependent branching-ratio b(M) vs. M−Ma, for various network sizes N: (A–C)

subcritical, (D–F) critical, and (G–I) supercritical. On the right column, the average branching-ratio B for each network with size N is reported in the corresponding

legend.

and P(s) exhibit power-law behavior P(d) ∼ d−γd , P(s) ∼ s−γs

and a finite-size cut-off which increases relative to the system
size (Figures 7D,E).

Another important quantity to characterize critical dynamics
is activity-dependent branching ratio (Martin et al., 2010).
Essentially, this function gives the (relative) expectation value of
the timeseries in the next time step for a given amount of activity
at the present time step. More precisely, it is defined as, b(M) =
E{ξM/M}. The variable ξM is the value of the next signal given
that the present one is equal toM, so ξM = {M(t+dt)|M(t) = M}

(Martin et al., 2010). Since a critical system is on the edge and
is inherently unpredictable, b(M) ≈ 1,∀M. For a finite system
one expects a similar result with the additional consideration
that, with increasing system size, the range of activity M should
increase and that the function should asymptotically approach 1.
Therefore, one expects b(M) < 1 to generally indicate subcritical
behavior, while b(M) > 1 to indicate supercritical behavior. In

fact, b(M) has been used to ascertain criticality in a wide range of

systems including sandpile models of SOC or solar flares (Martin
et al., 2010) as well as neural networks (Larremore et al., 2014;

Moosavi and Montakhab, 2014; Moosavi et al., 2017).
We obtain the activity-dependent branching-ratio b(M) using

timeseries M(t). The right column of Figure 7 displays b(M)
plots for each one of subcritical, critical and supercritical systems
for different system sizes N (Figures 7C,F,I). Note that the plots
are centered around their respective average activity Ma. Only
in the critical case (Figure 7F) do we observe B(Ma) = 1.
However, more importantly, we see b(M) increases its range and
decreases its slope (toward zero) with increasing system size,

consistent with critical dynamics of the network. In the two
other cases, no such behavior is observed. For a more common
branching ratio, one calculates the average value of B(M), i.e.,

B = 1
Mmax−Mmin

∫ Mmax

Mmin
b(M)dM. We find B ≃ 1, B ≃ 0.93, and

B ≃ 1.1 again indicating critical, subcritical, and supercritical
dynamics accordingly. The average branching ratio, B, is reported
on the legend of the corresponding plots in Figure 7 for each
system size. However, we emphasize that the behavior of b(M) is
key indicator of criticality in the thermodynamic limit. A close
inspection of Figure 7F reveals that the range of activity, M,
increases with system size, as well as b(M) becoming increasingly
flat. This is a strong indication of b(M) = 1 for a wide range of
possibleM, for large system sizes.

In order to better study the scaling behavior of neuronal
avalanches and provide scaling exponents, we use finite-size
scaling arguments. In this way, one can scale the y-axis with Nδy

and scale the corresponding x-axis with Nδx and seek exponents
that collapse the data on the same curve. Finding a good collapse
is considered a strong indication of true scaling (i.e., in the
thermodynamics limit), and the ratio of the exponents give the
desired power-law exponent, i.e., γ = δy/δx. The results for
such a study is presented in Figures 8A,B where a good collapse
is observed for both size and duration. We obtain the critical
exponents γs = 1.45 ± 0.05 and γd = 1.88 ± 0.1. Incidently,
these exponents are close to the experimental values obtained in
neuronal avalanche studies (Beggs and Plenz, 2003, 2004). Beside
standard scaling relations for avalanche size and duration, the
theory of critical phenomena predicts another scaling relation
between the average size 〈s〉 and duration of avalanches, i.e.,
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FIGURE 8 | Finite-size-scaling collapse of (A) size and (B) duration of

avalanches in the critical system for δy,s = 1.68, δx,s = 1.16, δy,d = 2.15 and

δx,d = 1.14. The critical exponents for avalanche size and duration are

γs = δy,s/δx,s = 1.45 and γd = δy,d/δx,d = 1.88, respectively. (C) The average

value of avalanches size 〈s〉 as a function of avalanches duration d in the

critical system.

〈s〉(d) ∼ d
1

σνz , where the critical exponent 1
σνz is expressed in

terms of other critical exponents (Friedman et al., 2012). The key
result is that such an exponent must be related to the previous
exponents by the relation: Friedman et al. (2012), Dalla Porta and
Copelli (2019), Fontenele et al. (2019):

1

σνz
=

γd − 1

γs − 1
(8)

In Figure 8C we show our results for 〈s〉(d) vs. d. We obtain
1

σνz = 1.92 ± 0.05. Fulfillment of Equation (8) is considered as

another strong evidence of criticality. Here, we obtain
γd−1
γs−1 =

1.95 ± 0.05 which is in good agreement with the value 1
σνz =

1.92± 0.05.
We note that critical exponents indicating a universality class

different from mean-field, i.e., γs = 3/2 and γd = 2, have been
reported in recent theoretical and experimental studies of neural
avalanches (Scarpetta and de Candia, 2013; Scarpetta et al., 2018;
Dalla Porta and Copelli, 2019; Fontenele et al., 2019). The critical

exponents we obtained here are reasonably close to the mean-
field exponents originally seen in experiments of Beggs and Plenz
(Beggs and Plenz, 2003, 2004). One would expect such exponents
on general grounds regardless of the dynamics on a small-world
network such as ours (i.e., all-to-all network) (Moosavi and
Montakhab, 2015). However, we note that the values of our
exponents can be effected by various factors including our limited
system size N = 500. Also thresholding can have an effect on
the value of the exponents (Dalla Porta and Copelli, 2019). As
indicated above, we have set the threshold to be Mth = 〈M(t)〉
and we have checked to verify that the exponents do not change
significantly within a standard deviation shift of this threshold.
However, as in Dalla Porta and Copelli (2019) one can expects the
exponents to change considerably if one changes the threshold by
a significant amount.

4. CONCLUDING REMARKS

Recently, the dynamics of adaptive neural networks to a critical
state has attracted attention as an interesting mechanism for
self-organized criticality (Shew et al., 2015; Virkar et al., 2016;
Del Papa et al., 2017; Kossio et al., 2018). In this paper we
showed that invoking neurophysiological regulatorymechanisms
such as temporally shifted STDP and specific amounts of axonal
conduction delays (τ = 10 ms) in a biologically plausible
model of cortical networks put the system in a critical state at
the neighborhood of synchronization transition point. In this
state the system exhibits robust rhythmic behavior along with
power-law behavior of various avalanche distribution functions.
Furthermore, the behavior of activity-dependent branching-
ratio confirms the criticality of system in this state as well.
However for smaller or larger values of axonal conduction delays
neural networks self-organize into supercritical or subcritical
states, respectively. While the state of the network is off-critical,
neither the statistics of avalanches nor branching-ratio exhibit the
relevant signs of criticality. In this regard, we have taken extra
care to establish the existence of true critical behavior in spite of
our limited system size.

Coexistence of rhythmic oscillations and scale-invariant
avalanches is important for development of cortical layers
(Gireesh and Plenz, 2008). Evidence for this coexistence
has been found in experimental investigations (Gireesh and
Plenz, 2008; Yang et al., 2012). Also in theoretical studies,
this phenomenon has been reported to occur as a result of
balance between inhibition and excitation (Poil et al., 2012),
as well as in a periodically driven SOC model (Moosavi
et al., 2018). The neurophysiological mechanisms leading
to this intricate dynamics in the cortex is of fundamental
importance in neuroscience. Here, we revealed that such intricate
dynamics emerges as a result of intrinsic regulatory mechanisms
like STDP and axonal conduction delays. More strictly, we
obtained self-regulated criticality along with coexistence of
rhythmic oscillations and scale invariant activity in a biologically
relevant model. However, we note that being on the verge of
synchronization transition, our system exhibits certain patterns
of regularity in oscillations as exhibited in raster plots in
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Figure 5D and more precisely shown in the accompanying
power-spectrum as in Figure 6H. In fact, real cortical networks
display a broad range of frequency such as a heterogenous power-
law behavior in the spectrum. Therefore, despite producing
relevant oscillations as well as scale-free avalanches, our model
does not reproduce a wide range of frequencies in the
power spectrum. This can perhaps be alleviated by choosing
a more heterogenous range of intrinsic frequencies for the
Izhikevich neurons.

We began this paper by posing three open questions
regarding the critical brain hypothesis. Our results have provided
interesting possible answers to all three questions. (i) The critical
point and corresponding phase transition that the brain organizes
itself into is not the usual activity and/or absorbing phase
transition, but the synchronization phase transition. (ii) The self-
organizing mechanism which tunes and maintains the system
around such critical point is a standard neurophysiological
regulatory mechanism of a temporally shifted STDP. (iii) The
existence of individual neuronal oscillations which self-organize
to a highly correlated but weakly synchronized collective state
is responsible for a dominate oscillatory mode in addition to
scale-free fluctuations.

We have studied neural networks with different (small-
world) topologies, various initial conditions, as well as various
choices of STDP parameters and observed that our results are
generally the same upon all such changes.We have also examined

that hard-bound STDP leads to similar results, except for the
distribution function of synaptic strengths that would be bimodal
regardless of all conditions implemented in the neural network.
Regarding the importance of inhibition, our results show that
inhibition does not significantly alter our conclusions. In fact,
we obtain essentially the same critical behavior for the system
without inhibition, i.e., α = 0 and τ = 10 ms, as can be
expected from similarity of results in various figures with or
without inhibition, e.g., Figure 2B.
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