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Abstract: The study aimed to investigate possible systematic effects in the basic underlying variability
of individual metabolomic data. In this context, the extent of gender- and genotype-dependent
differences reflected in the metabolic composition of three tissues in fattening pigs was determined.
The 40 pigs belonged to the genotypes PIx(LWxGL) and PIxGL with gilts and boars, respectively.
Blood and tissue samples from M. longissimus dorsi and liver were directly taken at the slaughtering
plant and directed to GC × GC qMS metabolite analysis. Differences were observed for various
metabolite classes like amino acids, fatty acids, sugars, or organic acids. Gender-specific differences
were much more pronounced than genotype-related differences, which could be due to the close
genetic relation of the fattening pigs. However, the metabolic dimorphism between gilts and boars
was found to be genotype-dependent, and vice versa metabolic differences between genotypes were
found to be gender-dependent. Most interestingly, integration into metabolic pathways revealed
different patterns for carbon (C) and nitrogen (N) usage in boars and gilts. We suppose a stronger N-
recycling and increased energy metabolism in boars, whereas, in gilts, more N is presumably excreted
and remaining carbon skeletons channeled into lipogenesis. Associations of metabolites to meat
quality factors confirmed the applicability of metabolomics approaches for a better understanding
about the impact of drivers (e.g., gender, age, breed) on physiological processes influencing meat
quality. Due to the huge complexity of the drivers-traits-network, the derivation of independent
biomarkers for meat quality prediction will hardly be possible.

Keywords: GC × GC qMS; blood; muscle; liver; pigs; meat quality

1. Introduction

Quality traits such as tenderness, color and water-holding capacity (WHC) are of
major importance for consumer acceptance, and therefore for the economic value of the
meat. Even though the impact of animal handling and post-mortem processing is well
described, the biochemical processes behind, which are affecting the meat quality traits, are
still not fully understood. There is also an interest in the rapid prediction of meat quality in
the meat production sector by using biomarkers [1–3]. Even though attempts have been
made to predict meat quality by using various techniques like transcriptomics, proteomics
or metabolomics, it appears that the complexity of meat quality can hardly be anticipated.

The principal processes affecting meat quality during early post-mortem metabolism
are the rate and extent of glycogen degradation, anaerobic glycolysis and consequently the
pH decline [4–6]. During the ripening phase the meat becomes tender as a consequence
of proteolytic activity of several proteases, and activity of proteolytic enzymes depends
on early post-mortem biochemical processes like pH development [7]. Therefore, protein
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biochemistry in relation to tenderization and juiciness was the main focus studying intra-
muscular post-mortem changes in the past [8–11]. In addition, research on muscle fiber
biology and the interaction with intramuscular fat and connecting tissues has revealed
insights into the complexity of the muscle to meat conversion [12–14]. Meanwhile, ge-
nomics approaches [15] and biochemical profiling approaches (proteomics, metabolomics)
are additionally used to relate quality traits to particular biomarkers, and to look for the
impact of metabolic networks [16–18]. So far, the broad analysis of metabolites has revealed
several biomarkers for particular aspects of meat quality in chicken, beef and pork, but
also for animal growth performances. In addition, the differentiation of species by meat
metabolite profiling has been shown [19]. Regarding meat quality, metabolites from muscle
catabolic pathways and oxidative stress response could be related to high ultimate pH in
chicken [20]. Welzenbach et al., 2015 [21] found significant correlations of pyruvic acid,
methylglyoxal and glucosylceramide to drip loss in pork. The high relation of drip loss and
energy metabolism is obvious, but the relationship between drip loss and transformation
products of sphingolipid metabolism hints towards cell stress and membrane degradation
processes [21]. Bovo et al., 2016 [22] conducted a study on the genetically separated geno-
types Italian Duroc and Italian Landrace using blood from exsanguination. The baseline
metabolite profiles differed between both genotypes as obtained by multivariate statis-
tical approaches. However, strong significant differences were only observed for a few
metabolites. Carmelo et al., 2020 [23] applied an untargeted metabolomics approach to
better understand the association of metabolite changes during maturation with nutrient
utilization. Despite some linear predictability between timepoints being observed, they
clearly emphasized the complexity of this trait because of remarkable differences between
breeds and time points. In beef, a metabolomics approach was used to investigate the
impact of the feeding type—grass vs. grain. Besides the nutritional differences of the meat
(lipid profile, omega3/omega6 ratio), the authors found strong evidence for less stress in
grass fed animals compared to grain fed animals [24]. In general, one objective of using
OMICS technologies (transcripts, proteins or metabolites) in meat science is to precisely
predict meat quality traits by deriving independent biomarkers [3,15,25–28]. However, the
various laboratory approaches aiming at identifying generalized mechanisms underlying
meat quality traits clearly showed that the impacts of gender, genotype and feeding are no-
table, which indicates that each modification/change in the biological system (pig) directly
impacts metabolite levels resulting in inter-individual variations.

Techniques used for metabolite profiling approaches are nuclear magnetic resonance
spectroscopy (NMR) and mass spectrometry (MS). MS offers a broad variability of ana-
lytical approaches depending on ionization technique and mass analyzer, for example
quadrupole (q) or time of flight. Usually, a separation technique is used in front of a mass
spectrometer, which can be gas chromatography (GC), liquid chromatography (LC) or
capillary electrophoresis (CE). Each technique coming with its own pros and cons. The
huge challenge in metabolite profiling, independent of the used technique, is to find com-
promises for the detection between low and highly concentrated compounds, between the
various chemical properties of compound classes, and for a practicable separation in front
of the MS. Meaning, no technique is able to detect everything, but only a small snap shot
of the whole metabolome. In our study, we applied a comprehensive, two-dimensional
GC × GC qMS approach, which provides a much better separation of analytes compared
to 1D GC-MS, and therefore a much higher number of detected features could be used in
statistical analysis [29,30]. Typical metabolites measured with GC-MS are amino acids, fatty
acids, small organic acids, sugars and various derivatives, various heterocyclic compounds
like the nitrogen bases (e.g., purines or pyrimidines) and sterols among others.

In Germany, the most common fattening pigs are crossings of Piétrain (PI) as terminal
sire with crossbred Large White (LW) × German Landrace (GL) or purebred GL on the
mother side. The crossings are known for high lean meat percentage as well as a bigger
eye muscle. Since the description of the mutation in the ryanodine receptor in 1991 [31] pig
breeding has endeavored to produce a stress-stable pig population with a high proportion
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of lean meat. In Bavarian herdbook breeding the pig populations for landrace and Large
White are 100% stress stable, the remediation of stress stability in the Piétrain population
is not yet completed. However, less than 1% of the Piétrain population is homozygously
mutated in the ryanodine receptor gene.

The objective of this study was to investigate the fundamental underlying variability
in metabolomic data between individual animals, and to elucidate gender- and genotype
dependent characteristics in metabolite profiles. Information about the extent of variation
among different sample groups would be essential when relating metabolite profiles to
meat quality attributes, and searching for independent biomarkers. We used sticking blood
and hot muscle and liver tissues from two crossbred pigs, (PIx(LWxGL) and PIxGL), to
depict the metabolite profiles before muscle had converted to meat.

2. Results
2.1. Meat Quality Data

The pigs were reared in the test station for about 100 days up to a carcass weight
of approximately 95 kg. Carcass and meat quality data were recorded directly at the
slaughtering plant and contained pH1, color and drip loss among other data (Figure 1,
Supplementary Table S1). The meat quality parameters for three of the animals pointed
towards impaired water holding (Supplementary Table S1). A negative correlation of pH1
and drip loss was determined (r = −0.69; p < 0.0001), which is in accordance with general
meat physiochemical properties. Genotype-specific differences for the recorded meat
quality data were not observed. Gender-specific differences were only observed for PIxGL
crossbreds. The PIxGL gilts showed a significantly higher fat area (p = 0.0248) compared to
boars. Interestingly, the PIxGL crossbreds also showed higher b* values (p = 0.0022) in gilts.

Figure 1. Meat quality data. Statistical differences were calculated using Tukey’s HSD Test. Significant differences are
indicated with capital letters: p < 0.01 and lower-case letters: p < 0.05. Abbreviations: F-1 = female PIx(LWxGL), F-2 = female
PIxGL, M-1 = male PIx(LWxGL), M-2 = male PIxGL.

2.2. High Individual Variability of Metabolites in Muscle, Liver and Blood

A comprehensive GC × GC qMS approach was applied to extracts from muscle
(M. longissimus dorsi), liver and total blood to analyse the basic individual metabolic
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variation of gilts and boars, and to elucidate if gender specific differences are influenced by
the genotype. For all three tissues more than 300 features were used in statistical analyses
(Table 1), respectively.

Table 1. Numbers of candidate molecules that potentially play a role in sexual metabolic dimorphism
or genotype differentiation. VIP—Variable Importance Projection.

Blood Muscle Liver

Signals used in data analysis 375 323 476

Differences between gilts
and boars

VIP > 1 117 89 120
Significant by Student’s T-Test/Wilcoxon 61 41 75
Significant by Tukey’s HSD/Steel Dwass Test 26 9 28

Differences between both
genotypes

Significant by Student’s T-Test/Wilcoxon 15 15 20
Significant by Tukey’s HSD/Steel Dwass Test 3 2 5

The Principal Component Analysis (PCA) revealed high inter-individual variations
between animals from one group (genotype-gender combination). In addition, a low vari-
ance among sample groups was observed by unbiased PCA (Figure 2). Neither the closely
related genotypes nor the genders caused a clear differentiation in the PCA score plots.
Data points for gilts (dark and light red) and boars (dark and light blue) largely overlapped
indicating that the global metabolite profiles are based on individual characteristics. For
PIxGL (light blue and light red), a small tendency of variation between gilts and boars
could already be recognized and is indicated by circles.

According to the small variance between female and male pigs at a first sight, we ap-
plied in a second step supervised Orthogonal Projections to Latent Structures Discriminant
Analysis (OPLS-DA). Application of OPLS-DA classification to all samples revealed clearer
segregations between female and male pigs and acceptable qualities of the models were
indicated by R2 values > 0.85 and Q2 values > 0.51 by using two components (Figure 2). No
distinctive variation was observed in the vertical dimension that displays the within group
variation (in our case between the two genotypes within gilts and boars), indicating again
that differences between individuals strongly, affect the distribution of data points in the
score plot. An OPLS-DA for the discrimination of both genotypes did not result in reliable
models. We also checked for a sampling day-dependent variation but did not obtain an
effect in blood. Differences observed for muscle and liver tissue showed no considerable
effects for the parameters gender and genotype included in this study.

Potential differential features from OPLS-DA analysis were selected by Variable Impor-
tance Projection (VIP) (Supplementary Table S2) with features having a VIP > 1 considered
to be influential. In addition, significance levels were pairwise calculated with Tukey’s
HSD Test for normal distributed data and Steel-Dwass test for not normal distributed data
(both tests correcting for family wise error rates). The selection of either parametric or
non-parametric testing was based on the Anderson-Darling test for normality. In Table 1
an overview of the numbers of features with potential impacts on sexual metabolic di-
morphism as well as genotype differentiation is presented. Even though the visualization
of global metabolic profiles by PCA did not show a clear distinction of the genders and
genotypes, the univariate statistical tests revealed a considerable number of diversifying
molecular features. In accordance with the results from OPLS-DA, the number of significant
gender specific features dominate compared to a few genotype specific features.
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Figure 2. Principal Component Analysis (PCA) and Orthogonal Projections to Latent Structures Discriminant Analysis
(OPLS-DA) score plots of metabolic profiles of blood, muscle and liver from two common German crossbreds and including
female and male pigs. Data were mean centred and unit variance scaled; the white circle represents the 95% confidence
interval.

2.3. Accumulation of Gender Regulated Metabolites Is Genotype-Dependent

In order to identify molecular features whose abundances are gender-dependently
regulated we compared gilts and boars from both genotypes. In this way, we determined
features that showed a similar regulation in both genotypes, and those features that were
genotype-specific regulated. For example, this was the case for N-acetylhexosamines in
liver which were remarkably high in PIxGL gilts. A database search using the NIST library
allowed for the annotation of putative biomarkers (Table 2), and integration into related
biochemical pathways they are involved in (Figure 3). The differences affected various
compound classes participating in a number of metabolic pathways including amino acids,
lipids, organic acids or sugars. In addition to the significant features observed by Tukey’s
HSD Test and Steel-Dwass Test, a number of compounds were observed by a simple
Students T-Test and Wilcoxon Test, or were only observed by VIP scoring in OPLS-DA
(Supplementary Table S2). These features were treated as tentative candidate compounds
for male-female distinction.
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Table 2. Significant differences between gilts and boars regarding dependence on the genotype. According to the outcomes
from Anderson-Darling’s Test for normal distribution the results from Tukey HSD Test or Steel-Dwass Test have to be
considered. A data table with candidate features from T-Test/Wilcoxon Test and OPLS-DA (VIP scores) analysis is provided
in Supplementary Table S2; n.a.—not applied due to limit of detection; FC—fold change.

Metabolite Class Tissue Analyt
ID Annotation

OPLS-DA Test for
Normality

Genotype
Parametric Non-

Parametric log2 FC
(Boars/Gilts)

VIP Anderson-
Darling Tukey Steel-Dwass

Amino acids and
derivatives

Blood

A0274 Beta-alanine 2.66655 <0.0001 PIxGL 0.0135 0.0199 0.95

A0363 Oxoproline 2.14204 0.785 PIxGL 0.0378 0.30

A0381 Hydroxyproline 1.32486 0.025 PIxGL 0.0288 0.0389 0.48

A0386 Unknown amine 1.87376 <0.0001 PIxGL 0.0389 1.25

A0462 Glutamic acid 1.72612 0.316 PIxGL 0.0361 0.0389 0.35

A0528 Glutamine 1.63493 <0.0001 PIxGL 0.0341 0.0251 0.66

A0581 Putative histamine 1.69071 0.528 PIxGL 0.0443 0.49

Muscle
A0273 Hydroxyproline 2.01281 0.132 PIxGL 0.0047 0.0074 0.42

A0449 Glutamine 2.39137 0.142 PIxGL 0.0135 0.0147 0.46

Liver

A0173 Putative allo-Isoleucine 0.325 PIx(LWxGL) 0.0213 −0.65

A0328 Aspartic acid 3.32175 0.038 PIx(LWxGL) 0.0014 0.0155 0.64

A0328 Aspartic acid 3.32175 0.038 PIxGL 0.0007 0.0085 0.65

A0333 Unknown amine 2.1025 0.814 PIxGL 0.0416 0.26

A0502 Phosphorylethanolamine 1.43293 0.673 PIxGL 0.0073 0.0067 0.70

A0680 Acetyl glucosamine 1 1.94297 0.001 PIxGL 0.0189 0.0468 −1.20

A0686 Acetyl glucosamine 2 1.96005 <0.0001 PIxGL 0.0152 0.0126 −1.89

Lipids

Blood
A0483 Putative fatty acid 1.79711 0.473 PIxGL 0.0386 0.66

A0624 Fatty acid (putative
Pentadecanoic acid) 2.18734 0.001 PIxGL 0.015 0.0033 0.44

Liver

A0808 Eicosatrienoic acid 2.08445 0.001 PIx(LWxGL) 0.0487 1.94

A0816
Fatty acid (putative
Butyl-9,12-
octadecadienoate)

2.2954 0.004 PIx(LWxGL) 0.0478 0.27

A0847 Eicosapentaenoic acid 2.2939 0.066 PIxGL 0.0013 0.0107 −0.51

Organic acids

Blood

A0430 2-Oxoglutaric acid 1.75833 <0.0001 PIxGL 0.0097 0.0199 1.06

A0453 Putative pimelic acid 0.06 PIxGL 0.0248 0.0199 0.20

A0565 Citric acid 2.46605 <0.0001 PIxGL 0.0009 0.0251 1.03

Muscle A0481 Citric acid 2.05545 0.257 PIxGL 0.0205 0.0277 1.10

Liver A0205 Fumaric acid 1.52228 0.419 PIxGL 0.0296 0.0107 0.98

Carbo-hydrates

Blood

A0497 Pentose (unknown
isomer) 1.54153 <0.0001 PIxGL 0.0162 0.0478 1.23

A0558 Glyceraldehyde
3-phosphate 1.77768 0.636 PIxGL 0.0059 0.0251 0.76

A0618_H2 Hexose alcohol
(unknown isomer) 1.51685 0.47 PIxGL 0.0018 0.0313 0.64

A0656 Myo Inositol 1.81065 0.719 PIxGL 0.0385 0.28

Muscle A0489 1,5-Anhydroglucitol 2.31495 0.516 PIxGL 0.0412 0.0339 −0.82

Liver

A0624 Inositol (unknown
isomer) 1.51716 0.18 PIx(LWxGL) 0.0315 −0.79

A0659 Inositol (unknown
isomer) 1.95406 0.106 PIxGL 0.0316 0.32

A0778 Glyceryl-glycoside 2.24976 0.129 PIxGL 0.0002 0.0079 1.91
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Table 2. Cont.

Metabolite Class Tissue Analyt
ID Annotation

OPLS-DA Test for
Normality

Genotype
Parametric Non-

Parametric log2 FC
(Boars/Gilts)

VIP Anderson-
Darling Tukey Steel-Dwass

Nucleotide
metabolism Blood

A0550 Hypoxanthine 2.29192 <0.0001 PIxGL 0.0027 0.0033 1.09

A0731 Inosine 1.50638 <0.0001 PIxGL 0.031 n.a.

Unknowns

Blood

A0237 Unknown 1.44216 0.005 PIx(LWxGL) 0.0478 0.17

A0521 Unknown 2.15177 0.141 PIx(LWxGL) 0.0425 −0.71

A0135 Unknown 2.31982 0.035 PIxGL 0.0326 0.048 0.95

A0336 Unknown 1.35796 0.171 PIxGL 0.0432 0.0124 0.36

A0432 Unknown 1.25233 <0.0001 PIxGL 0.0449 0.0217 1.14

A0467 Unknown 1.19814 <0.0001 PIxGL 0.038 2.20

A0590 Unknown 1.92151 <0.0001 PIxGL 0.048 1.46

A0603 Unknown 1.6805 <0.0001 PIxGL 0.048 1.76

Muscle

A0431 Unknown 1.37717 0.423 PIx(LWxGL) 0.0138 0.34

A0013 Unknown 1.28436 0.107 PIxGL 0.0496 −0.16

A0428 Unknown 2.46274 0.310 PIxGL 0.0107 0.0498 0.55

A0555 Unknown 1.8396 0.500 PIxGL 0.0451 1.18

A0714 Unknown 2.56177 0.040 PIxGL 0.0044 0.0116 1.57

Liver

A0076 Unknown 2.24581 0.643 PIx(LWxGL) 0.0046 0.0478 −0.65

A0266 Unknown 0.456 PIx(LWxGL) 0.0383 −0.66

A0533 Unknown 2.06327 0.654 PIx(LWxGL) 0.0287 0.0277 −0.62

A0569 Unknown 1.4654 0.814 PIx(LWxGL) 0.0275 −0.65

A0608 Unknown 1.50611 0.004 PIx(LWxGL) 0.0451 0.0478 −0.90

A0615 Unknown 2.11088 0.607 PIx(LWxGL) 0.0129 −1.12

A0862 Unknown 1.19302 0.058 PIx(LWxGL) 0.0186 −0.90

A0356 Unknown 0.144 PIxGL 0.0443 0.55

A0364 Unknown 1.61973 0.049 PIxGL 0.0193 0.0168 1.12

A0379 Unknown 2.50225 0.776 PIxGL 0.0283 0.0209 −0.48

A0447 Unknown 1.02693 <0.0001 PIxGL 0.0117 2.31

A0528 Unknown 1.21156 0.24 PIxGL 0.0123 0.0386 1.20

A0536 Unknown 0.879 PIxGL 0.0359 0.49

A0610 Unknown 2.35537 0.005 PIxGL 0.0423 −1.71

A0795 Unknown 1.89984 0.413 PIxGL 0.0155 0.0316 0.86
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Figure 3. Pathway integration of varying metabolites in blood. Relevance of metabolites was determined by univariate
statistical testing and OPLS-DA. Metabolites illustrated in red frames were found to be significantly different between
boars and gilts (as observed by Tukey’s HSD Test or Steel-Dwass Test). Visualized are the unit variance scaled means of the
respective signal intensities displayed as color coded heatmaps.

2.3.1. Divergences in the Free, Proteinogenic Amino Acid Pool

Amino acids that can only be degraded via the glucogenic pathway showed a mixed
pattern. Glutamine, glutamic acid and aspartic acid were higher accumulated in boars,
especially in the PIxGL line (Table 2). Glutamine, which connects amino acid metabolism
between various organs was increased up to 66% and 46% in blood and muscle tissue from
PIxGL boars compared to the gilts, respectively. In addition, glutamate was also increased
by 35% in boar blood. The AAs valine and histidine were tentatively higher abundant in
gilts (Supplementary Table S2).

Liver aspartate levels in boars exceeded the levels in gilts by ca 65% in both genotypes.
Aspartate was found to be the only compound significantly different between boars and
gilts in both genotypes, which makes it a possible candidate as an independent biomarker
for sexual metabolic dimorphism (Figure 4). In all three tissues, amino acids that are
degraded via the ketogenic pathway (lysine, leucine) showed tentatively higher levels
in gilts.
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Figure 4. Gender-dependent differences in both genotypes. (A) Only significant analytes were summarized (obtained
by Tukey’s HSD or Steel-Dwass testing); Aspartate is the only analyte significantly different in both genotypes. (B) Only
those molecular features are illustrated in Box plots that were recorded in all three tissues as a candidate feature and
showed at least in one tissue a significant difference (*). Significances (*) were only observed for the genotype PIxGL and
are indicated with capital letters. No label means detected by VIP scoring and/or Student’s T-Test/Wilcoxon Test. The
y-axis corresponds to total ion counts and is scaled to highlight the variation within and among groups. Abbreviations:
F-1 = female PIx(LWxGL), F-2 = female PIxGL, M-1 = male PIx(LWxGL), M-2 = male PIxGL.

2.3.2. Amino Acids with Crucial Physiological Importance Accumulated in PIxGL Boars

For all three tissues of PIxGL an influence of the gender was observed for the non-
proteinogenic amino acids beta-alanine, 5-oxoproline and hydroxyproline (Figure 4). All
three compounds are described to be involved in protective functions such as ROS scaveng-
ing and tissue protection and turnover. In particular, hydroxyproline showed significant
higher levels in boar blood and muscle. The effects were least pronounced in liver and only
recorded by VIP scoring (Supplementary Table S2).

2.3.3. Increased Levels of Metabolites from Energy Metabolism in PIxGL Boar Blood

In addition, the citric acid cycle seems to be influenced by a metabolic sexual di-
morphism in PIxGL (Figure 3). In all three tissues, fumarate was accumulated in boars
(Figure 4). In blood samples, also citrate and 2-oxoglutarate differed significantly (Table 2),
and malate and succinate were qualified by T-Test/Wilcoxon test and OPLS-DA (Sup-
plementary Table S2). Citrate and malate were additionally detected as VIPs in muscle,
and malate in liver. Gender differences in the TCA cycle as a central linker of metabolic
pathways, and a central unit in energy metabolism, are stronger reflected in blood than in
muscle or liver cells. In addition, glycerinaldehyde-3-phosphate (GA3P, to 76%) and phos-
phoenolpyruvate (to 68%) from the glycolysis pathway were accumulated more in PIxGL
boars (Table 2 and Supplementary Table S2). Furthermore, in the same tissue, differences
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occurred in the adenosine nucleotide degradation pathway. Hypoxanthine was doubled in
its signal intensity in PIxGL boars compared to gilts, and inosine was not at all detected in
PIxGL gilts, but in boars (Table 2).

2.3.4. Relationship between Markers of Increased Energy Metabolism and Amino Acids
with Scavenging Functions

Pearson’s correlation coefficients for the above mentioned markers as well as their
important precursors glutamine and glutamate showed that citrate was associated with
levels of ß-alanine (r = 0.57), oxoproline (r = 0.67) and hydroxyproline (r = 0.50) (Table 3).
The correlation coefficient was even higher between the two precursors and the first
TCA cycle intermediate. In addition, the amounts of hypoxanthine seem to be related
to the amounts of ß-alanine (r = 0.55). The high correlation of citrate and 2-oxoglutarate
to hypoxanthine demonstrates the tight relation between the TCA cycle and ATP/ADP
breakdown. In addition, we included components of GSH regulation in this analysis
(Cysteine, 2-aminobutyric acid and 2-hydoxybutyric acid). All three components were
strongly correlated with each other, and cysteine levels correlated also to hypoxanthine
(r = 0.52).

Table 3. Correlations of energy balance related metabolites and compounds connected to tissue protection. The upper right
corner contains p-values for the correlation probability and the lower left corner the correlation coefficients (r). In addition,
the correlation is visualized with a color gradient from r = −1 (dark blue), gray intermediate to r = 1 (red).

Beta-
Alanine Oxoproline Hydroxy-

proline GA-3P Citrate 2-Oxoglutarate Glutamate Glutamine Hypoxanthine Inosine 2-Hydroxybutyric
Acid

2-Ainobutyric
Acid Cysteine

Beta-Alanine 0.0040 0.0078 0.0051 0.0003 0.0334 0.2128 0.0341 0.0005 0.0093 0.9290 0.5147 0.2276
Oxoproline 0.4681 <0.0001 0.0025 <0.0001 0.0208 0.0017 <0.0001 0.0515 0.1316 0.9447 0.6478 0.0625
Hydroxyproline 0.4365 0.7306 0.0060 0.0019 0.0370 0.0122 <0.0001 0.3070 0.6759 0.7480 0.4436 0.1208
GA3P 0.4566 0.4889 0.4488 <0.0001 0.0007 0.1427 0.0005 0.0003 0.0420 0.0182 0.0419 0.0085
Citrate 0.5669 0.6664 0.4995 0.6718 <0.0001 0.0001 <0.0001 <0.0001 0.0019 0.1199 0.3042 <0.0001
2-Oxoglutarate 0.3555 0.3838 0.3489 0.5403 0.7480 0.0011 0.0198 <0.0001 0.0064 0.0024 0.0197 <0.0001
Glutamate 0.2128 0.5049 0.4133 0.2492 0.5992 0.5211 0.0004 0.1037 0.1478 0.5975 0.6655 0.0013
Glutamine 0.3541 0.8134 0.6822 0.5476 0.6974 0.3866 0.5573 0.0750 0.0965 0.8977 0.6672 0.0823
Hypoxanthine 0.5484 0.3271 0.1751 0.5727 0.6717 0.6893 0.2757 0.3005 <0.0001 0.0135 0.1196 0.0010
Inosine 0.4274 0.2561 0.0721 0.3408 0.5003 0.4460 0.2462 0.2813 0.8147 0.4198 0.9585 0.0643
2-Hydroxybutyric
acid 0.0154 −0.0120 −0.0555 0.3916 0.2639 0.4905 0.0910 −0.0222 0.4079 0.1387 <0.0001 <0.0001

2-Aminobutyric acid −0.1122 −0.0788 −0.1318 0.3408 0.1761 0.3870 0.0746 −0.0742 0.2641 0.0090 0.8957 <0.0001
Cysteine 0.2062 0.3136 0.2633 0.4322 0.6387 0.8274 0.5154 0.2935 0.5270 0.3116 0.7515 0.6212

2.3.5. Enhanced Lipid Metabolism in Gilt’s Liver

Liver fatty acids showed a diverse pattern in both genotypes. In PIx(LWxGL) eicosatrienoic
acid was barely detected in gilts but showed a much higher abundance in boars. In contrast,
eicosapentaenoic acid was much lower in PIxGL boars than in gilts. Considering also the VIPs, a
general trend to higher amounts of free fatty acids in gilts could be recognized (Supplementary
Table S2). In addition, monoacylglycerols (MAG), which are intermediates in the breakdown
and synthesis of triacylglycerols (TAG), showed a higher accumulation in gilts compared to
boars. Fatty amides are a diverse group of metabolites depending on the fatty acid and the
linked amino moiety. Two of these N-acyl amides detected in liver had highest levels in
PIxGL gilts.

In muscle, no generalizable patterns were observed. For some compounds higher
levels were observed in boars, like stearic acid or arachidonic acids (both saturated),
whereas gilts showed higher levels for hexadecenoic acid (Supplementary Table S2). A
similar mixed pattern could be seen in levels of MAGs and presumable precursors.

2.3.6. Summary

It can be summarized that features contributing to sexual metabolic dimorphism are
not generalizable but genotype-dependently pronounced (Figure 3). Interestingly, in PIxGL
more differentiating features were found in all three tissues than in PIx(LWxGL) (Table 2),
and only one genotype independent marker in liver could be observed. Furthermore, blood
and muscle metabolites showed more similar trends, whereas in liver the differentiating
compounds were more related to lipid metabolism. Nevertheless, it has to be considered
that tissues for liver and muscle analyses were taken ca 30 min post-mortem so that
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during this time frame no oxygen and nutrient supply or metabolic exchange with other
organs was possible, and resulting metabolite profiles were accordingly affected (might
not represent in vivo conditions).

2.4. Differences According to the Genetic Background

Among the multitude of measured analytes we found some that showed significant
differences between the genotypes. Compared to the variation between males and females,
the genetically-dependent variability was less pronounced (Table 1). Furthermore, these
differences were confounded with gender effects, and were either detected in gilts or boars
of the two crossbreds (Figure 5, Supplementary Table S2). In blood no distinguishing
feature was observed between gilts of both genotypes, and 15 features were found to vary
between boars (as observed by T-Test/Wilcoxon Test), three were significantly different
(as observed by Tukey’s HSD Test/Steel Dwass Test). In muscle eight features showed a
variation between gilts of both genotypes, of them two were significant, and seven features
in boars varied to a small extent. Most varying features were detected in liver with six
signals between gilts, one of them with a significant difference, and 14 signals between
boars with four significantly different signals.

Figure 5. Heatmaps of features varying between genotypes. Displayed are the normalized (median normalization, unit
variance scaled) ion intensities for relevant molecular features. Features that were significantly different by Tukey HSD/Steel-
Dwass Test are labelled with [*]. All other features were obtained by Students T-Test/Wilcoxon Test, and are designated as
most likely different. Supplementary Table S2 contains the corresponding values for log2 fold changes and p-values.

As has been revealed for gender-depending differences, the diversifying compounds
between genotypes belonged to various metabolite classes. Additionally, these compounds
were individual for each tissue. From the heatmap, it can be recognized that, in mus-
cle tissue, more differentiating features (in gilts and boars) were found in the genotype
PIx(LWxGL), whereas, in liver, this was the case for PIxGL. According to this low number of
genotype-dependent variables, a conclusion about particular involved metabolic pathways
could not be deduced.

2.5. Correlations of Candidate Compounds to Meat Quality Parameters

In order to check if meat quality parameters are associated to metabolite markers, and
if they could be predicted with them we calculated Pearson correlation coefficients (Table 4)
and multiple regression coefficients. Negative associations of the energy metabolites
citric acid, inosine, GA3P and hypoxanthine to meat colour were observed for blood. In
addition, muscle citric acid and liver fumaric acid were negatively correlated to meat colour.
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Furthermore, drip loss and pH 1 strongly correlated to meat citric acid and liver fumaric
acid, which confirmed the huge importance of energy metabolism during early post-
mortem processes. Interestingly, 1,5-Anhydroglucitol in muscle showed strong correlations
to drip loss, L* and pH1, which supports the role of sugar metabolism on water holding.
Similarly, liver acetyl glucosamine levels, which correlated to L*, drip loss, pH1 and fat
area can be suspected to mirror the energetic status of the liver. The amino acid aspartic
acid showed a strong association with b* in liver. The fat area correlated to several liver
metabolites among them fatty acids, which seems obvious and implies the regulatory role
of the liver for lipid metabolism.

Table 4. Pearson correlation coefficients (r) of quality parameters to compounds that showed significant differences between
boars and gilts, and multiple regression coefficients with predictors having an r > 0.4 (at least moderate correlation). For the
explained variance [R2] the adjusted value is presented.

Tissue Quality Parameter Compound Correlation
Coefficient [r]

Significance
Probability [p]

Explained
Variance [adj. R2]

Significance of
the Model [p]

Blood

% Drip loss Hexose alcohol (A0618_H2) −0.329 0.047

b* Putative fatty acid (A0483) −0.466 0.004

0.28 0.0085

b* Hypoxanthine −0.439 0.007

b* Glyceraldehyde 3-phosphate −0.407 0.013

b* Beta-alanine −0.406 0.013

b* Unknown (A0237) −0.400 0.014

b* Unknown (A0135) −0.362 0.028

b* Citric acid −0.358 0.030

b* Inosine −0.350 0.034

L* Citric acid −0.350 0.034

pH 1 Putative histamine 0.385 0.019

pH 1 Hexose alcohol (A0618_H2) 0.349 0.034

Fat area Unknown (A0135) −0.520 0.001

0.27 0.0094

Fat area Glutamine −0.430 0.008

Fat area Citric acid −0.417 0.010

Fat area Putative histamine −0.402 0.014

Fat area Beta-alanine −0.400 0.014

Meat area Unknown (A0135) −0.329 0.047

Muscle

% Drip loss Citric acid −0.463 0.004
0.32 0.0005

% Drip loss 1,5-Anhydroglucitol 0.569 0.000

b* Citric acid −0.421 0.010 0.15 0.0095

b* Unknown (A0428) −0.362 0.028

L* Citric acid −0.337 0.042

L* 1,5-Anhydroglucitol 0.508 0.001 0.23 0.0013

pH 1 1,5-Anhydroglucitol −0.501 0.002
0.27 0.0018

pH 1 Citric acid 0.471 0.003

pH 1 Glutamine 0.346 0.036
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Table 4. Cont.

Tissue Quality Parameter Compound Correlation
Coefficient [r]

Significance
Probability [p]

Explained
Variance [adj. R2]

Significance of
the Model [p]

Liver

% Drip loss Fumaric acid −0.366 0.024

% Drip loss Unknown (A0447) −0.341 0.036

% Drip loss Acetyl glucosamine 2 0.325 0.046

% Drip loss Acetyl glucosamine 1 0.325 0.047

a* Unknown (A0076) 0.403 0.012
0.28 0.0112

a* Inositol (A0624) 0.401 0.013

a* Unknown (A0608) 0.387 0.016

a* Aspartic acid −0.361 0.026

b* Aspartic acid −0.543 0.000
0.31 0.0006

b* Unkown (A0795) −0.436 0.006

b* Unknown (A0533) 0.378 0.019

b* Fatty acid (A0816) −0.373 0.021

b* Unknown (A0615) 0.342 0.036

b* Eicosatrienoic acid −0.330 0.043

b* Fumaric acid −0.325 0.047

b* Inositol (A0659) −0.323 0.048

b* Unknown (A0610) 0.321 0.049

b* Eicosapentaenoic acid 0.320 0.050

L* Eicosapentaenoic acid 0.521 0.001

0.25 0.0078
L* Acetyl glucosamine 2 0.424 0.008

L* Acetyl glucosamine 1 0.408 0.011

L* Fumaric acid −0.403 0.012

L* Unknown (A0528) −0.324 0.048

pH 1 Unknown (A0528) 0.376 0.020

pH 1 Glyceryl-glycoside 0.344 0.035

pH 1 Acetyl glucosamine 2 −0.329 0.044

pH 1 Acetyl glucosamine 1 −0.323 0.048

Fat area Unknown (A0533) 0.488 0.002

0.34 0.0038

Fat area Unknown (A0379) 0.431 0.007

Fat area Acetyl glucosamine 2 0.425 0.008

Fat area Acetyl glucosamine 1 0.416 0.009

Fat area Urea 0.405 0.012

Fat area Unknown (A0615) 0.403 0.012

Fat area Eicosapentaenoic acid 0.393 0.015

Fat area Fatty acid (A0816) −0.368 0.023

Fat area Fumaric acid −0.358 0.027

Fat area Eicosatrienoic acid −0.335 0.040

Fat area Unknown (A0569) 0.322 0.049

Meat area Aspartic acid −0.389 0.016

Meat area Acetyl glucosamine 2 0.377 0.020

Meat area Acetyl glucosamine 1 0.369 0.023

Meat area Unknown (A0615) 0.345 0.034

For the muscle metabolites with correlations to meat quality parameters we also found
corresponding associations to blood levels. 1,5-Anhydroglucitol levels in blood and muscle
strongly correlated to each other (r = 0.94, p < 0.001). In addition, glutamine (r = 0.55,
p < 0.001) and hydroxyproline (r = 0.54, p < 0.001) levels were associated as well as citric
acid levels (r = 0.44, p = 0.008).

For metabolite markers with at least a moderate Pearson correlation coefficient (r > 0.4)
we calculated multiple regression coefficients to check for predictability of selected quality
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parameters (Table 4). Moderate predictability, R2 > 0.3 (according to Cohen 1988 [32]) was
achieved for the parameters % drip loss, b* and fat area, involving different metabolite
markers in all three tissues.

3. Discussion
3.1. Differences in Metabolite Levels between Boars and Gilts Are Genotype Dependent

During the conversion of muscle to meat, the inter-organ exchange of metabolites is
interrupted and the biochemical processes defining meat quality depend on the metabolic
state of the animal during slaughtering. The metabolic state of an organ or a tissue
results from many endogenous and exogeneous factors like management system, feeding,
stress, sex among many more. It has been shown that metabolite profiles could be used
to differentiate between different species or non-related breeds by using blood or meat
samples [19,22,33], emphasizing for the impact of genetics on the metabolic phenotype.
However, a study using hot muscle and liver samples of close related genotypes in pigs
had not yet been applied.

In this study, we performed a metabolite profiling approach with GC × GC qMS on
blood and hot muscle and liver tissues to elucidate basic variations in metabolite profiles
between individual pigs. We included two genotypes, each with gilts and boars to look
at the impact from the gender and genetic background. The unbiased statistical analysis
by PCA revealed that the diversity between individuals predominated the sexual and
genetic predisposition as shown in the PCA plots in Figure 2. As exogenous factors like
feed, management system and transport stress to the slaughter house were minimized it
can be concluded that various endogenous factors like genotype, gender, individual stress
feeling or health status were mutually affected causing the high variability of metabolite
profiles. The classification by OPLS-DA revealed gender dependent differences, and further
univariate statistical testing showed that among the multitude of analytes a substantial
number was significantly different. Interestingly, more gender-dependent differences were
obtained in the PIxGL background compared to the PIx(LWxGL) crossings. The obtained
patterns of significantly different signals indicated that the abundance of molecules is not
necessarily a characteristic of either genotype or sex but a combination of both. This became
particularly clear for features that showed a difference only in one group compared to the
other three—for example, the elevated blood fumarate levels in PIxGL boars (Figure 3).
In the past, gender differences have mainly been discussed regarding boar taint, and
differences in fat composition and fatty acid profiles, which affect consumers perception and
technical processing to meat products [34–37]. Bovo et al., 2015 [38] applied a large study
on mature female and castrated Italian Large White pigs. They targeted 186 metabolites and
found differences in various metabolic pathways from which they suggested a metabolic
shift in castrated males towards energy storage and lipid production. This indicated that
feeding strategies could be adopted accordingly [38]. In this direction, considering the
lower carcass weights and the lower meat areas in boars observed here, we assume that the
feeding efficiency did not meet the required levels for optimal growth of the boars. This is
also reflected in metabolic differences from which we suspect a shift in carbon and nitrogen
metabolism (as discussed below).

In our study, the pigs were adolescent and sexual development was not yet completed,
so that most probably the sexual divergences were not completely manifested in the
metabolite profiles. The higher number of differentiating features between gilts and boars
in the PIxGL background was observed for all three sample types. It can be suspected
that the crossing of PI with a LW containing mother line in PIx(LWxGL) either generally
leads to less pronounced metabolic variations between gilts and boars or that the reduced
differences are related to developmental shifts, e.g., a later puberty stage and therefore
even less sex-induced metabolic variance. It is well known that, during early development,
the growth patterns of gilts and boars are very similar until puberty, which is about the
slaughter age here [39,40]. During puberty, sex hormone induced physiological switches
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generally lead to increased fat deposition in sows and a higher muscle proportion in boars.
It might be suspected that, at maturity, the metabolic phenotypes are more distinct.

The differences between both genotypes were less pronounced than the gender-
dependent differences. Furthermore, the differences were either detected in gilts or boars. It
appears that the LW containing mother line has only a small impact for genotype-dependent
metabolic variations at this developmental stage. Other metabolomic studies, which used
mature pigs, have shown that metabolite profiles between non-related breeds are more
pronounced [22,23]. In both studies the authors could differentiate both genotypes by
applying multivariate statistics, though their results also showed a considerable variability
of individuals. Using univariate statistics, Carmelo et al., 2020 [23] detected only five
metabolites that largely contributed to the discrimination between Duroc and Landrace
pigs, and were significantly different. Bovo et al., 2016 [22] detected six significantly
different metabolites between Duroc and Large white pigs. It can therefore be assumed
that the genetic distance does not have to be a prerequisite for the strength of metabolic
differentiation.

Taken together, our data indicate that genetics, gender and developmental stage
cannot be considered in isolation for understanding physiological processes involved in
breed metabolic characterization and differentiation. It would be interesting to elucidate to
which extent the genetic distance impacts the metabolic separation in dependence of the
developmental stage.

3.2. Carbon and Nitrogen Shifts in PIxGL Gilts and Boars

Figure 6 summarizes our conclusions gained from metabolite profiles of all three
sample types. Even though the pigs were adolescent at slaughtering, we already observed
different tendencies for carbon and nitrogen use, especially in the PIxGL background.
Tendentially, the amino acids that accumulated in gilts belonged to ketogenic as well as
glucogenic amino acids, whereas, in boars, only the glucogenic amino acids glutamine,
glutamate, and aspartate accumulated to a higher amount. Additionally, the glucogenic
proline and its derivatives hydroxyproline and oxoproline were higher abundant in boars.

Figure 6. Proposed differences in amino acid metabolism between gilts and boars in the genotype
PIxGL. According to the results from all three tissues, different pathways for C and N distribution
are assumed. Whereas in boars (B) the ammonia is preferentially recycled and shuffled into protein
biosynthesis and energy nucleotides, in gilts (G) the excretion level in the form of urea is higher.
Released carbon skeletons are assumed to be preferentially shuffled into gluconeogenesis in boars to
provide energy in gilts, more carbon might go into lipid biosynthesis.
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Glutamate and aspartate are key components in the interplay of TCA cycle, gluco-
neogenesis as well as amino acid redirection and degradation via urea cycle. Cytosolic
aspartate is converted with citrulline to argininosuccinate, which is the branching point
between urea cycle and TCA cycle, with the latter providing malate for the malate-aspartate
shuttle and providing oxaloacetate for gluconeogenesis. Both mechanisms are highly active
in liver. Aspartate is recovered from fumarate and glutamate via transamination catalysed
by the aspartate transaminase (AST). Even though aspartate links the TCA cycle and urea
cycle, and provides an amino group in urea synthesis, the urea levels in boars were not in-
creased but tendentially lower than in gilts (Supplementary Table S2). The malate-aspartate
shuttle (most active in liver, kidney, heart) is mostly important for the indirect transfer
of cytosolic NADH into mitochondria to provide reduction equivalents needed during
oxidative phosphorylation. In accordance with the higher aspartate levels in boars, malate
was also accumulated in PIxGL boars (Supplementary Table S2). This might hint at a shunt
in energy metabolism in PIxGL boars. Aspartate can reversibly be converted to glutamate
catalysed by the Aspartate aminotransferase (AST), but no difference for glutamate or
glutamine were observed in the liver.

Glutamate, which is more abundant in boar blood, is formed by deamination of
glutamine, protein breakdown or transamination of alanine and α-ketoglutarate (Cahill
cycle). From our results, we suspect that, in PIxGL boars, the recycling of ammonia by
glutamine synthase (GS) is higher compared to gilts. The recycled ammonia could be used
in protein anabolism such as muscle development. Vice versa, more ammonia is converted
to urea and excreted in gilts. Glutamine, which is generally highly abundant in blood
represents a multi-functional metabolite in many tissues because it is the main transport
and storage form of ammonia, nitrogen donor for pyrimidine and purine synthesis, and
it is important for protein anabolism, energy metabolism and defence (GSH precursor).
Glutamine correlated very high to hydroxyproline, which is a major component of collagen.
The additional association of hydroxyproline to glutamate and TCA components gave rise
to the assumption that collagen synthesis was increased in boars. In this context, a high
hydroxyproline pool was observed during muscle growth in relation with accompanied
connective tissue turnover [41].

Regarding GSH homeostasis, levels of the GSH regulatory component 2-aminobutyric
acid (2-AABA) in combination with oxoproline levels are discussed as potential biomarkers
for GSH status because 2-AABA is a precursor of ophthalmate, which is an analog of GSH
in which the L-cysteine is replaced by 2-AABA [42,43]. Therefore, it could be speculated
that the high levels of 5-oxoproline and 2-AABA point towards reduced levels of GSH in
boars compared to gilts, which could result from increased energy metabolism and thus a
higher need for ROS scavenging. Furthermore, the higher levels of 2-hydoxybutyric acid
in boars are additional hints for increased needs of GSH.

Concerning carbon metabolism, we speculate that a deamination of glucogenic amino
acids in boars shuffles the carbon skeleton (pyruvate) into gluconeogenesis to provide
glucose for the export to organs of consumption (e.g., energy metabolism in muscles). The
lower levels of hexoses like fructose and glucose in muscle and higher levels of sugars
in blood are probably a hint for higher sugar turnover rates in boars. An increased level
of energy metabolism in PIxGL boars was indicated by the notable enhanced levels of
TCA components in correlation with GA3P (Glycolysis), inosine and hypoxanthine (both
breakdown products from ATP). The TCA cycle connects various metabolic pathways.
Among them it is the intermediate section between glycolysis and oxidative phosphoryla-
tion (ATP production). The adenine nucleotide degradation products hypoxanthine and
inosine significantly accumulated in boar blood, which substantiated our conclusion of
increased energy metabolism in boars. Whether the hypoxanthine is used for adenine
nucleotide restoration via the salvage pathway is not known. It has been described that
increased levels of hypoxanthine and inosine can be linked to hypoxia and increased
oxidative stress [44,45]. The correlation of ß-Alanine to0020hypoxanthine and citrate was
a further indicator for higher ROS scavenging needs in boars. ß-Alanine is precursor of
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the dipeptide carnosine, which is discussed to exert antioxidant activity inhibiting lipid
oxidation, and it may be a free radical scavenger and pH buffer [46].

In contrast to the proposed shift of the deaminated carbon skeleton into energy
metabolism in boars, the ketogenic amino acids in gilts can be broken down to Acetyl-CoA,
branching point into lipid biosynthesis. Lipogenesis is again closely related to energy
metabolism. Therefore, correlations of compounds from lipid and energy metabolism in
liver to meat quality factors might also reflect the importance of the liver for whole body
homeostatic control. In general, different qualitative differences for lipid classes were
observed in all three sample types. Among them, monoacylglycerols tended to higher
levels in gilts. In relation to the proposed increased level of nitrogen excretion via the urea
cycle in gilts the remaining carbon skeleton is supposed to feed into lipid biosynthesis. This
is also supported by the higher fat amount in gilts. Interestingly, the fatty acids observed
in this study showed a mixed pattern in intramuscular fat composition with saturated fatty
acids higher accumulating in boars and non-saturated fatty acids higher accumulating
in gilts.

Concluding from our results, we assume that, in boars (especially PIxGL), the re-use
of nitrogen is enhanced compared to gilts. At the end of the fattening period, metabolism is
increasingly shifted from nitrogen towards carbon (fat) metabolism. Our data indicate that
the boars in this study are still showing considerable muscle growth. This is also reflected
in Figure 1 (meat area and fat area). Furthermore, for the released carbon skeletons we
suppose a stronger flow into gluconeogenesis in boars, whereas in gilts the carbons might
be more channeled into lipogenesis. This would be in accordance with the assumption that
the maturation in gilts is more progressed, and that gilt’s metabolism shows diminished
muscle growth and more fat deposition. Further research should address development-
dependent shifts of metabolites in pigs to draw more concrete conclusions about sexual
dimorphism in energy metabolism and oxidative stress defence mechanisms. To prove
our hypotheses, the elements of the Cory cycle, Cahill cycle and gluconeogenesis have to
be analysed in detail. Additionally, the mechanisms of ROS scavenging and nucleotide
metabolism should be elucidated. For this purpose, it is important to use pigs from different
genetic backgrounds at different developmental stages.

3.3. Association of Metabolite Levels to Meat Quality Data

Pearson correlation and multiple regressions were calculated in order to estimate if
the obtained metabolite markers (Table 1) are also associated with meat quality parameters,
and if they might be interesting candidate compounds for the prediction of meat quality.
In particular, metabolites from energy metabolism correlated to the various quality factors.
This is accordance with Welzenbach et al., 2016 [21], who also observed also a high impor-
tance of energy metabolism in relation to drip loss. Muroya et al., 2014 [47] observed huge
differences in energy-, amino acid—and nucleotide metabolism in slow and fast type mus-
cles during aging, which indicates that the development of meat quality is also different
depending on the muscle type and probably on consumption rates of energy metabolites.
Considering the low variations in parameters describing meat quality of this sample set,
no substantial contributions of candidate compounds were expected. Nevertheless, due to
the close relationship between post-mortem glycolysis and the resulting meat quality, it is
of interest if any relationship on this level can be detected.

The correlation of 1,5-Anhydroglucitol to the most important meat quality parameters
(L*, pH1 and drip loss) predicting the resulting water binding capacity of meat, has not
been described so far. This compound is described as a clinical marker of short-term
glycemic control reacting on fast glucose fluctuations [48]. Thus, 1,5-Anhydroglucitol
might represent an indirect marker for glucose consumption to fuel early post-mortem
energy pathways. Similarly, liver acetyl glucosamine levels, which also correlated to water
holding can be suspected to mirror the energetic status of the liver as these molecules play
regulative roles in lipogenesis and gluconeogenesis/glycogenesis [49].
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An early prediction of meat quality, for example by using sticking blood, would be very
useful for slaughter house operators to optimize the post-mortem technological treatments
like chilling on a more individual level. The observed moderate regression coefficients
for pH1, drip loss, b* and fat area indicate that it might be worth using metabolomic data
for a large-scale investigation, which would help to better understand relations between
metabolic pathways, drivers and meat quality. So far, sticking blood has been used to detect
differences according to the genetic background, to gender or feeding efficiency. Carmelo
et al., 2020 [23] who used Duroc and Landrace pigs, confirmed the study from Bovo
et al., 2016 [22] on the applicability of metabolomics to discriminate between (genetically
distant) breeds. Bovo et al., 2015 [38] also showed differences between sows and castrates
within one genotype. In addition, Carmelo et al., 2020 [23] linked metabolite profiles to
feeding efficiencies in pigs and observed genotype-dependent responses to testing time
and feeding type. Thus, concluding from our observations and results gained from other
research, a prediction of final meat quality using sticking blood or muscle biopsy will
hardly be achieved. A multifactorial network of influence factors, like genetic distance,
gender, age, feeding and husbandry formulate individual in vivo metabolite profiles. Thus,
comprehensive meta information would have to be dissected for each individuum in a
slaughter line. Besides the pre-slaughter conditions, the processes during muscle-meat
transition are also complex and manifold, and metabolite profiles are only one part of
the story defining meat quality. Attempts made so far applying metabolomics to meat
quality mainly focused on the use of meat (24 h after slaughter) in relation to aging [50–53]
or development of sensory attributes [33,54]. Therefore, the usage of biomarkers might
become relevant for particular questions of meat handling, for example the extent of
ripening. Following the basic applications so far, future studies should elucidate the
discriminative power for samples from different production systems or for different breeds
and genders to validate the stated hypotheses.

4. Materials and Methods
4.1. Chemicals

All chemicals used were commercially obtained from Merck (Darmstadt, Germany)
or Altmann Analytics (Munich, Germany), and are listed in Supplementary Table S3.

4.2. Sample Collection

The animals were reared under the same conditions at the Bavarian performance
testing institute Schwarzenau, Germany. No particular treatments were conducted so that
no ethical statements were needed. The pigs were reared for about 100 days in the test
station until they reached their testing weight, a hot carcass weight of 95 kg. The pigs
were fed with a two-phase feeding. In the first six weeks they were fed with diet 1. From
week seven onwards diet 2 was fed. The compositions of the both diets are provided in
Supplementary Table S4 [55,56]. The slaughterhouse was on-site, so that transport stress
was minimal. The samples were randomly collected at an on-site slaughtering plant, and at
three slaughtering days with an interval of one week. The sample set consisted of 40 pigs of
two common German crossbreds, 18 PIx(LWxGL) (11 gilts and 7 entire males) and 22 PIxGL
(10 gilts and 12 entire males).

The pigs were electrically stunned with a semi- automatic stunning device (Haas,
Neuler, Germany) and the blood samples were collected during exsanguination. Muscle
and liver samples were collected at the cutting line, approximately 30 min after exsan-
guination. Muscle samples were taken from left M. longissimus dorsi between the 12 and 13
ribs. Liver samples were taken from the left medial lobule. All samples were immediately
frozen in liquid nitrogen and stored until further use at −80 ◦C.

4.3. Meat Quality Parameters

Meat quality parameters color and drip loss were analysed using a 3 cm thick cutting
from the right M. longissimus dorsi at the 12th/13th rib, taken 24 h after slaughter. Color
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parameters L*, a*, b* were measured after 15 min bloom time with a Minolta Chroma Meter
CR-310 (Konica Minolta, Munich, Germany). Drip loss was determined according to the
EZ-DripLoss method from Rasmussen and Andersson (1996) [57]. Therefore, duplicate
samples were punched out from each cutting with a Ø 2.5 cm circular knife and stored at
4 ◦C for 24 h in EZ drip loss containers.

PH1 measurement was performed 45 min post-mortem. The measurement was done
in the M. longissimus dorsi between the 13th and 14th thoracic vertebrae in a depth of
4 cm with a pH probe. Ultimate pH was measured after 24 h in M. longissimus dorsi and
M. semimembranosus.

The meat area is the surface of the M. longissimus dorsi at the cut part of the chop in
cm2. The fat area is the fat surface above the cut part of chop in cm2. To measure the meat
and fat area, the chops were cut on the hanging carcass at the level of the 13th and 14th
thoracic vertebrae. This section was photographed and the measurement was carried out
on the image (SCAN-STAR K, R.Matthäus, Eckelsheim, Germany).

For significance calculations we applied Tukey’s HSD test implemented in the JMP
software (13.1.0, SAS Institute Inc., Cary, NC, USA). For association of selected analytes to
meat quality parameters we calculated the Pearson correlation coefficient, and addition-
ally applied a multiple regression to check for predictability. Both coefficients were also
calculated in JMP software.

4.4. Sample Preparation and GC × GC qMS Measurement

Sample preparation and measurement were performed according to Wagner et al.,
2020 [58]. In brief, all tissue samples were lyophilized and homogenized to powder with a
bead mill before sample extraction. For GC × GC qMS analysis we included quality check
samples (QC) and blank samples in addition to our biological study samples. The QC
samples were prepared for each tissue type (whole blood, muscle and liver) and consisted of
an aliquot from each sample, respectively. All samples were extracted in the same manner.
The blank samples didn’t contain any matrix. Firstly, 20 mg of the dried, homogeneous
powder were extracted with 600 µL ice-cold 80% methanol containing an internal standard
mix (Supplementary Table S3) using a bead mill homogenizer (Minilys, Bertin Technologies
SAS, France) and subsequently an ultrasonic bath for 2 min. After centrifugation the
pellet was re-extracted with 600 µL ice-cold methanol:chloroform (2:1 v/v) according to
the first extraction step. The combined supernatants were transferred into 2 mL glass
vials containing a 200 µL glass insert, dried in a vacuum centrifuge (Christ Speedvac RVC
2-18 CD plus, Germany) and finally stored under protective argon atmosphere at −80 ◦C
until analysis.

Before measurement samples were derivatized, methoximation was carried out using
a 20 mg/mL solution of MAH in pyridine at 50 ◦C for 1 h. In a second step, 70 µL of MSTFA
+ 1% TMCS were added and samples were shaken at 70 ◦C for 1h. The measurements were
carried out on a Shimadzu GCMS QP2010 instrument (Shimadzu, Duisburg, Germany).
Instrumentation and parameter details are provided in Supplementary Table S3. Full scan
data were acquired in a mass range of 60–550 m/z.

4.5. Metabolomic Data Analysis

Peak integration of the acquired raw data was performed with GCMS Postrun Analysis
Module within the instrument software GCMSsolution (Version 4.45, Shimadzu, Duisburg,
Germany). Subsequently, peak quality filtering, peak alignment, signal intensity drift cor-
rection and quality assessment were performed [29,30]. For visualization of chromatograms
and annotation of compounds we used the NIST 14 library database implemented in GC
Image Software (Version 2.7, GC Image, Lincoln, NE, USA). A series of n-alkanes (C7-C30)
was used as a retention time standard.

We applied two different approaches of multivariate data analyses, Principle Com-
ponent Analysis (PCA) and Orthogonal Projections to Latent Structures Discriminant
Analysis (OPLS-DA). Both are commonly used methods for multivariate analysis (MVA) in
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high dimensional data space, such as metabolomics. PCA is an unbiased unsupervised
dimension reduction method, which does not include any class information, while OPLS is
a supervised MVA dimension reduction method, which incorporates the provided class
information with the ultimate goal to differentiate the groups from different classes (dis-
criminant analysis) on the basis of the provided data variables matrix. Conceptually, the
data matrix is decomposed into scores and loadings vectors. For the supervised method,
variable importance projections (VIP) are used to extract meaningful variables (in our
case analytes), being important (VIP > 1) for an appropriate class segregation [59]. MVA
was performed using the SIMCA-P+ software (version 13, Umetrics, Umeå, Sweden). All
variables were centered and unit variance scaled. In order to visualize general differences
among the sample groups (two genotypes, each with gilts and boars) and test for out-
liers we applied in a first step PCA. Hotelling’s T2 Range was used to find samples lying
outside the critical limits of the model plane (0.05 level). These were treated as outliers
and removed from further analysis. We removed 2 samples from muscle and one sample
from blood analyses. In a second step we performed OPLS-DA to analyze for differences
between genders and genotypes.

For univariate statistical calculations we used the JMP software (13.1.0, SAS Institute
Inc., Cary, NC, USA). In a first step we used the Anderson Darling Test to check for normal
distributions of analytes. Then we applied Tukey’s HSD Test (for normal distributed
variables) and Steel-Dwass Test (for non-parametric variables) to elucidate significant
differences (p < 0.05) of analytes between genders and genotypes. Both include a correction
for family-wise error rates by multiple testing. In addition, we also show results (p < 0.05)
from simple Student’s t-test (for normal distributed variables) and Wilcoxon test (for non-
parametric data) to also take analytes into account that show tendencies for a differentiation
between sample groups (but are probably not strong enough due to the size of the sample
set).

The heatmap illustration in Figure 5 was created in MetaboAnalyst (https://www.
metaboanalyst.ca/home.xhtml, accessed on 22 January 2021) [60]. For integration of
the identified compounds into metabolic pathways we used information from KEGG
(https://www.genome.jp/kegg/pathway.html, accessed on 22 January 2021) and HMDB
(https://hmdb.ca/, accessed on 22 January 2021) databases.

5. Conclusions

As key outcomes of this study we concluded that the sexual metabolic dimorphism
depends on the genetic background and vice versa that metabolic differences between geno-
types depend on gender. We observed substantial patterns related to gender differences,
especially in the PIxGL background, from which we deduced hypotheses for differences
in carbon and nitrogen shunt. We concluded that released ammonia from the free amino
acid pool in gilts is excreted to higher amounts via urea, whereas in boars a higher rate of
N-recycling is presumed. Released carbon skeletons from deaminated amino acids might
be shuffled to a higher extent into gluconeogenesis in boars compared to gilts, while in
gilts we assume a higher use of released carbon skeletons for lipogenesis.

Blood as the transport medium between the different organs partly reflected the
metabolic levels of muscle tissue samples. From a practical point of view, a system which
could predict the resulting meat quality already from blood samples at exsanguination,
would, for example, allow for adjusting carcass handling practices. However, with the cur-
rent study, we demonstrate that each animal has to be considered as an individual reflected
by the variability of metabolite patterns in all three tissues. Furthermore, correlations to
selected carcass and meat quality parameters did not result in a strong predictability. We
point out that the use of sticking blood or hot muscle samples has limited applicability for
meat quality prediction. Besides internal factors (gender, age, breed) and pre-slaughter
conditions, the processes during muscle-meat transition are also complex and manifold. It
appeared that holistic considerations are needed. In this direction further research should

https://www.metaboanalyst.ca/home.xhtml
https://www.metaboanalyst.ca/home.xhtml
https://www.genome.jp/kegg/pathway.html
https://hmdb.ca/
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at least take time, genetic distance and genders into account when relating metabolite
profiles to performance data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11050261/s1, Supplementary Table S1: Carcass and meat quality data; Supplementary
Table S2: Overview of molecular features as obtained by univariate statistical testing and OPLS-DA
analysis; Supplementary Table S3: Chemicals and measurement parameters for GC × GC qMS
analysis. Supplementary Table S4: Composition of the feeding diet. Supplementary Table S5:
GC × GX qMS preprocessed data used for statistical analysis.
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