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Expression of Herpes Simplex Virus Thymidine
Kinase/Ganciclovir by RNA Trans-Splicing
Induces Selective Killing of HIV-Producing Cells
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Antiviral strategies targeting hijacked cellular processes are less
easily evaded by the virus than viral targets. If selective for viral
functions, they can have a high therapeutic index. We used
RNA trans-splicing to deliver the herpes simplex virus thymi-
dine kinase-ganciclovir (HSV-tk/GCV) cell suicide system
into HIV-producing cells. Using an extensive in silico bioinfor-
matics and RNA structural analysis approach, ten HIV RNA
trans-splicing constructs were designed targeting eight
different HIV splice donor or acceptor sites and were tested
in cells expressing HIV. Trans-spliced mRNAs were identified
in HIV-expressing cells using qRT-PCR with successful
detection of fusion RNA transcripts between HIV RNA and
the HSV-tk RNA transcripts from six of ten candidate RNA
trans-splicing constructs. Conventional PCR and Sanger
sequencing confirmed RNA trans-splicing junctions. Mea-
suring cell viability in the presence or absence of GCV expres-
sion of HSV-tk by RNA trans-splicing led to selective killing
of HIV-producing cells using either 30 exon replacement or
50 exon replacement in the presence of GCV. Five constructs
targeting four HIV splice donor and acceptor sites, D4, A5,
A7, and A8, involved in regulating the generation of multiple
HIV RNA transcripts proved to be effective for trans-splicing
mediated selective killing of HIV-infected cells, within which
individual constructs targeting D4 and A8 were the most
efficient.
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INTRODUCTION
More than 39 million people worldwide are infected with HIV,
according to the World Health Organization. Although highly active
antiretroviral therapy (HAART) is effective at suppressing viral repli-
cation, treatment cannot eliminate the virus because it resides latently
in a population of immune cells referred to as memory T cells (re-
viewed by Van Lint et al.1). The existence of this reservoir, and the
high mutation rate of HIV with the subsequent development of
drug resistance,2 means that alternative treatments are needed that
not only suppress viral replication but can also eliminate infected
cells. Conventional therapies do not selectively target infected cells,
and adverse drug effects are common. In addition, no currently
licensed antiviral drugs are able to eliminate cells in which the virus
is latent. Latency in HIV does not equate to permanent transcrip-
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tional silencing, and there is evidence that it is stochastic.3 Incomplete
RNA transcripts may be found in cells that are not producing intact
virus, and viral RNA-spliced products have been detected in resting
CD4+ T cells isolated from HIV-infected patients on HAART.4 The
viral RNA is thus an unexploited target to treat actively replicating
virus and, at any one time, a significant proportion of latently infected
cells. HIV uses alternative RNA splicing to process its genetic material
into transcripts encoding different viral proteins (reviewed by Tazi
et al.5). A recent study detected up to 109 different spliced HIV
RNAs inHIV-infected T cells.6 The expression of these is tightly regu-
lated, and when the HIV splicing process is modulated, viral replica-
tion and production is impaired.7–10 Given its importance for the viral
life cycle, HIV splicing is an attractive target for the development of
novel antiviral therapies.5,11,12 Recent work shows that the small-
molecule inhibitors digoxin13 and 8-azaguanine14 inhibit HIV repli-
cation by altering HIV alternative splicing,13,14 and the compound
ABX464 enhances HIV RNA splicing, thereby also compromising
HIV replication.15

In addition to pharmacological inhibition of HIV, cell and gene ther-
apies are attractive potential therapies against HIV that may lead to a
more sustained control of viral rebound (reviewed by Hoxie et al.16

and Herrera-Carrillo et al.17). RNA trans-splicing is an elegant gene
therapy method that has been used to correct acquired or inherited
genetic disorders.18 It subverts the cellular RNA splicing machinery
to exchange, through a trans-splicing reaction, a defective RNA tran-
script with a corrected mRNAmolecule delivered in trans. In addition
to correcting genetic mutations, RNA trans-splicing has been used to
deliver cell death signals in order to specifically kill targeted cells (re-
viewed by Drude et al.19). RNA trans-splicing has been used to deliver
the two-step Herpes simplex virus thymidine kinase/ganciclovir
(HSV-tk/GCV) cell death system as a potential cancer therapy.20–24

HSV-tk acts by phosphorylating the pro-drug GCV, an analog of de-
oxyguanosine triphosphate, into an active compound, leading to
ors.
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chain termination during DNA replication and cell death (reviewed
by Duarte et al.25). The HSV-tk/GCV system has been expressed
in HIV-infected cells and proposed as a gene therapy against
HIV.26–32 The extensive use of splicing by HIV to regulate its life cycle
suggests that there are likely to be vulnerable splicing reactions sus-
ceptible to a trans-splicing approach. However, this has never previ-
ously been formally investigated using modern bioinformatic tools to
identify those RNA species involved in individual splicing reactions
that have structures favoring trans-splicing and that would be most
effectively targeted.

We performed a comprehensive in silico analysis of HIV splicing and
RNA structure to both find optimal targets and to design HIV binding
domains in the trans-splicing constructs to, as near as possible, guar-
antee the specificity of the RNA trans-splicing reaction and facilitate
the process. Using a combination of HIV splice site predictions, HIV
RNA free energy calculations, and RNA secondary structure predic-
tions together with an in-depth analysis of the literature, we were
able to select a panel of ten 30 and 50 exon replacement constructs.
These were then subject to testing for their ability to induce trans-
splicing with transcripts from replicating virus. In those in which
trans-splicing was confirmed at a molecular level, functional
screening by MTT assay revealed four susceptible RNA target splice
sites at which this approach led to specific killing of HIV-producing
cells, with 30 exon replacement being overall most efficient.

RESULTS
In Silico Design of RNA Trans-Splicing Binding Domains and

Selection of Target HIV Splice Sites

HIV splice sites were predicted using computer software as described
in Materials and Methods. The splice site prediction analysis of
pNL4.3 gave similar results with both software packages used (data
not shown). Predicted splice site sequences were compared with those
previously described in the literature, and the most favorable were
selected for targeting by trans-splicing (Figure 1A). Splice sites that
had previously been reported in the literature matching our computer
predictions, or that we identified as present within pNL4.3, were
considered. In addition, two groups of two computer-predicted
HIV splice sites each referred to as early acceptor (EA) and late donor
(LD) sites were included, comprising the sites EA1 and EA2 (EA1/2)
and LD1 and LD2 (LD1/2), respectively (Figure 1A).

RNA folding energies of the complete reverse complement HIV
pNL4.3 genome in 50 nucleotide windows from 50 to 30 were calcu-
lated (Figure 1B, left). The number of free nucleotides per folding
window of selected binding domains subjected to further design is
shown (Figure 1B, right). Selected structures were then refolded in
the context of the backbone 30 or 50 exon replacement cassette
sequences to confirm lack of interference by flanking regions (Fig-
ure 1C), and final structures were generated by further sequence
modification. From this detailed in silico analysis, three HIV splice
donor sites, D4, D1a, and LD1/2, were targeted with five 30 exon
replacement constructs, and five HIV splice acceptor site, EA1/2,
A3, A5, A7, and A8, were targeted with 50 exon replacement (Fig-
ure 1D). Final HIV binding domain structures folded in the backbone
cassettes, all displaying predominantly unstructured binding domain
regions, are shown for 30 exon replacement in Figure 2 and for 50 exon
replacement in Figure 3. For clarity, only the binding domain struc-
tures are shown. Target regions are shown in Tables S1A and S1B,
for 30 exon replacement and 50 exon replacement, respectively, and
schematic diagrams of 30 exon replacement and 50 exon replacement
are outlined in Figures S1A and S1B and of HSV-tk in Figures S2A
and S2B.

Sequence Conservation of HIV Binding Domain Target Regions

Given the high level of sequence variability of HIV, it was important
to confirm that the sequences we used for the binding domains would
target the maximum number of HIV strains. Sequence conservation
of the HIV binding domain target regions was assessed using the
AnaylzeAlign software.33 For the 30 exon replacement construct
BD2-D4, the maximum number of mutations of the HIV binding
domain target region reached 32 in a maximum percentage of
21.6% from 3,944 aligned sequences, including all available HIV-1 se-
quences within the Los Alamos National Laboratory (LANL) filtered
web alignment. With BD1-D4, this was reduced to 30 mutations in a
maximum of 12.75% sequences from the consensus sequence. For the
50 exon replacement constructs, the number of mutations was small,
ranging from 7, 8, 6, to 33, in a maximum of 14.79%, 19.72%, 27.55%,
and 9.92% for BD-A7, BD-A5, BD-A3, and BD-A8 in 4,632, 2,712,
2,445, and 4,553 sequences analyzed, respectively (Table S2). Of the
binding domain target sequences, BD-A8 was the least conserved,
with 33 mutations but with a maximum of 9.92% variants from
4,553 sequences analyzed. Interestingly, when sequence variation
was instead analyzed compared with the consensus sequence for
the major subtypes, a decrease in the number of mutations of the
maximum percentage of sequences was seen in half of the constructs,
which could be diminished in all of the constructs to very low levels
when sequence variation within subtype group B was analyzed. The
number of mutations ranged from 3 in BD-A7 to 9 in BD-A8, with
the exception of BD2-D4 showing the least conserved binding
domain target sequence, with 27 mutations in a maximum of
20.16% of the sequences within subtype group B. Remarkably,
when comparing the HIV target sequences for BD1-D4, the number
of mutations could be reduced from 30 in 12.75% when comparing all
HIV-1 sequences in the alignment to 7 mutations in 20.44% within
subtype B sequences. Similarly, the number of mutations was reduced
for BD-A8 target region from 33 in 9.92% of sequences when
comparing all HIV-1 sequences to 9 mutations in 14.55% of
sequences within subtype B, suggesting that the majority of our
HIV binding domains are located in regions with high conservation
within HIV-1 subtype B viruses.

We next aligned our HIV binding domain target sequences in pNL4.3
with the consensus sequences for each binding domain target
region within subtype B using BLAST.34 Needleman-Wunsch global
alignments revealed sequence identities of 73% for BD1-D4, 55%
for BD2-D4, 49% for BD-A3, 98% BD-A5, 96% for BD-A7, and
64% for BD-A8 compared with their respective subtype B consensus
Molecular Therapy: Nucleic Acids Vol. 7 June 2017 141
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Figure 1. In Silico Analysis of HIV Splicing and

Splice-Site Target Determination for RNA Trans-

Splicing

(A) Summary of HIV splice sites considered for targeting

by RNA trans-splicing. Conserved splice donor/acceptor

sites predicted by computer splice site predictions of

pNL4.3 are shown in black.87 In green, previously re-

ported cryptic splice donor site predicted by computer

algorithms.41 In gray, late splice donor/early splice

acceptor sites predicted in pNL4.3 by computer algo-

rithms. In blue, conserved splice donor/acceptor sites not

predicted in pNL4.3 by computer splice site predictions

but previously published.87 In orange, previously reported

cryptic splice sites not predicted in pNL4.3 by computer

algorithms (A1a,41 A6,50–52 D5,50,51 A7a, A7b,88 A8a, A8,

A8b89). In purple, recently described splice donor and

splice acceptor sites not predicted by computer algo-

rithms,6 A5a.6,89,90 (B) Selection of binding domain re-

gions using the software Foldanalyze (HUSAR). MFE

analysis of pNL4.3 throughout the complete reverse

complement pNL4.3 genome per 50 nt folded region

(left). Number of free nucleotides per 50 nt folded region of

the complete reverse complement pNL4.3 genome

(right). Target regions of binding domains selected for

further design are shown in orange. (C) Maps of CMV

promoter-driven RNA trans-splicing cassettes. 30 exon
replacement (top) and 50 exon replacement (bottom)

cassettes are shown. BD, binding domain; spacer,

spacer sequence; 30ss, 30 splice site domain; cl. site, P2A

protein cleavage site91; HSV-tk, herpes simplex virus

thymidine kinase gene; pA, polyA tail; HHRz, hammer-

head ribozyme sequence. (D) Summary of selected HIV

splice sites for targeting by 50 exon replacement (top) or

30 exon replacement (bottom). HIV splice site D4 was

targeted with two different binding domain sequences

(BD1-D4 and BD2-D4), and LD 1 and 2 (LD1 and LD2

respectively) were targeted with two BD-LD1/2 cassettes

driven from either HIV Env or HIV Nef translational start

sites.

Molecular Therapy: Nucleic Acids
sequences, revealing that some of our binding domain target
regions within pNL4.3 show some differences from the consensus
sequence, although BD-A7 and BD-A5 show high levels of sequence
identity.

Screening and Detection of RNA Trans-Splicing Junctions in

HIV-Producing Cells

To test the activity of our 30 exon replacement RNA trans-splicing
constructs, we performed an initial screen in 293T cells. Cells were
either co-transfected with the proviral clone pNL4.3 and the
30 exon replacement constructs, or the latter was transfected 24 hr
later. RNA trans-splicing should lead to the production of chimeric
142 Molecular Therapy: Nucleic Acids Vol. 7 June 2017
mRNAs; these were sought by qRT-PCR (Fig-
ure 4A). RNA trans-splicing amplicons were
detected selectively in samples containing
both HIV and RNA trans-splicing constructs
BD1-D4 and BD2-D4, both in sequentially
and co-transfected cells (Figure 4B). These could also be detected
by conventional electrophoresis (Figure 4C); the PCR products
were analyzed by Sanger sequencing, confirming junctional se-
quences (Figure 4D) between the HIV tat transcript and the trans-
splicing construct.

We next sought chimeric mRNA upon 50 exon replacement. An anal-
ogous strategy to 30 exon replacement was used to detect RNA trans-
splicing amplicons in the presence of pNL4.3 and 50 exon replacement
constructs in either sequentially or co-transfected cells (Figure 5A). In
four of five 50 exon replacement constructs, BD-A3, BD-A5, BD-A7,
and BD-A8, chimeric RNA transcripts could be detected between



Figure 2. RNA Secondary Structure Predictions of

Designed 30 Exon Replacement HIV Binding

Domains

RNA secondary structures of 30 exon replacement cas-

settes containing HIV binding domains were predicted

using Mfold and RNAfold web servers. MFE RNA sec-

ondary structures of HIV binding domain regions pre-

dicted in Mfold are shown (left column). RNAfold

secondary structure predictions showing MFE (middle

column) and centroid folds are shown (right column).

RNA secondary structures of HIV binding domains

with only a small region of the backbone plasmid are

shown for clarity. Predicted free energies for the complete

fold (binding domain and backbone cassette) are

shown as DG.
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HSV-tk and HIV by qRT-PCR (Figure 5B). RNA trans-splicing
amplicons could also be detected by conventional PCR and electro-
phoresis (Figure 5C), and Sanger sequencing confirmed junctional
sequences (Figure 5D). Taken together, this demonstrates that 30 or
50 exon replacement between HIV and HSV-tk is feasible and that
both generate the expected RNA trans-splicing products.

Expression of HSV-tk by RNA Trans-Splicing Leads to Selective

Killing in HIV-Producing Cells

The expression of HSV-tk protein dependent on the presence of the
target HIV RNA sequence should lead to selective killing in the pres-
Molecu
ence of ganciclovir (GCV). 293T cells were
transfected with pNL4.3 and RNA trans-
splicing constructs sequentially. Twenty-four
hours later, cells and appropriate controls as
described in the legend of Figure 6 were treated
with one or two doses of 100 mM GCV on 2
consecutive days 24 hr apart, and cell viability
was measured by the MTT assay 3 days
later (6 days post-transfection with pNL4.3).
30 exon replacement, trans-spliced HSV-tk,
reduced cell viability in the presence of GCV.
Compared with untreated controls (100%
viability), the mean values of cell viability
from representative experiments performed
in multiple wells decreased to 26.2% for
pNL4.3+BD1-D4 and 35.3% for pNL4.3+BD2-
D4 (Figure 6A). Cell viability of cells transfected
with pNL4.3+BD1-D4 compared with BD1-
D4-transfected cells in the presence of GCV
was also statistically significantly different
(p% 0.05) in each of three independent exper-
iments, with a reduction in cell viability in the
presence of pNL4.3. Similarly, this was also
observed with pNL4.3+BD2-D4 compared
with BD2-D4-transfected cells in the presence
of GCV (p% 0.05 in each of three independent
experiments). Amuch smaller although still sig-
nificant reduction in cell viability was seen in cells transfected with
BD2-D4 alone compared with untransfected cells treated with
GCV, from 92.8% to 64.9% (p = 0.0035).

The effect of HSV-tk/GCV on cell viability was also investigated
using 50 exon replacement. 50 exon replacement reduced cell viability
in the presence of GCV to 34.61% for pNL4.3+ BD-A7, 34.93% for
pNL4.3+BD-A5, 51.63% for pNL4.3+BD-A8, and 73.51% for
pNL4.3+BD-A3, compared with control cells (Figure 6B). When
cell viability was assessed as above in cells transfected with pNL4.3+
RNA trans-splicing construct, compared with single-transfected cells
lar Therapy: Nucleic Acids Vol. 7 June 2017 143
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Figure 3. RNA Secondary Structure Predictions of

Designed 50 Exon Replacement HIV Binding

Domains after HHRz RNA Self-Cleavage to Release

the Binding Domain

RNA secondary structures of 50 exon replacement cas-

settes containing HIV binding domains were predicted

using Mfold and RNAfold web servers. MFE RNA sec-

ondary structures of HIV binding domain regions pre-

dicted in Mfold are shown (left column). RNAfold

secondary structure predictions showing MFE (middle

column) and centroid folds (right column). RNA second-

ary structures of HIV binding domains with only a small

region of the backbone plasmid are shown for clarity. See

Figure S1 B for a schematic diagram of HHRz self-

cleavage.
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solely expressing the RNA trans-splicing construct, both in the pres-
ence of GCV, a reduction in cell viability for pNL4.3+BD-A3,
pNL4.3+BD-A7, pNL4.3+BD-A5, and pNL4.3+BD-A8 was observed,
of which pNL4.3+BD-A8 reached statistical significance in each of
three independent experiments (p % 0.05). BD-A7 and BD-A5
were effective in reducing cell viability in the presence of pNL4.3,
and BD-A3 had a modest effect, although for these constructs
this did not reach statistical significance in all three independent
experiments. The 30exon replacement construct BD1-D4 was the
most efficient of our panel of RNA trans-splicing constructs. To
confirm that RNA trans-splicing activity is not restricted to the
144 Molecular Therapy: Nucleic Acids Vol. 7 June 2017
HIV-1 proviral clone pNL4.3, we tested
BD1-D4 against the HIV-1 proviral clone
HXB2 (SVC21). A significant reduction in cell
viability was observed in the presence of the
RNA trans-splicing construct BD1-D4 in
HXB2-producing cells compared with cells
transfected with BD1-D4 alone in the presence
of GCV (p < 0.001), demonstrating that induc-
tion of cell death by RNA trans-splicing is
not restricted to the proviral clone pNL4.3
(Figure S3).

DISCUSSION
HIV RNA splicing is central to the HIV viral
life cycle. Three classes of mRNA transcripts
are generated in infected cells: unspliced,
partially spliced, and multiply spliced mRNAs.
HIV uses alternative splice donor and
acceptor sites in different combinations to
generate a large repertoire of mRNA tran-
scripts in a highly regulated fashion. The
multiply spliced transcripts are produced early
during infection to generate the tat, rev, and
nef transcripts encoding the regulatory pro-
teins Tat, Rev, and Nef. Tat drives transcrip-
tion by binding to TAR in the 50LTR, and
Rev mediates nuclear export of the partially
spliced and unspliced transcripts by binding to the Rev respon-
sive element (RRE) within the tat/rev intron, leading to further
production of viral proteins in the cytoplasm (reviewed by Tazi
et al.5).

The central importance of splicing to HIV has led to exploration of
possible ways to interfere with the process as a way to inhibit viral
replication and control viral growth (reviewed by Tazi et al.5). Previ-
ous approaches have been largely empirical and have not used a
detailed and extensive bioinformatic analysis to optimize the target-
ing. We have now refined this approach taking advantage of



Figure 4. Confirmation of RNA Trans-Splicing between HIV and 30 Exon Replacement Constructs

(A) qRT-PCR primer and probe design to detect RNA trans-splicing amplicons. The forward primer is located in the HIV region and the reverse primer in the HSV-tk region.

The PCR amplicon was detected with a probe in the HSV-tk region. (B) qRT-PCR data in cells transfected with the HIV proviral clone pNL4.3 followed by transfection with

30 exon replacement construct BD1-D4 or BD2-D4. Cells were analyzed 48 hr post-transfection with the RNA trans-splicing constructs in sequentially transfected cells (seq)

or co-transfected cells (co). (C) Confirmation of RNA trans-splicing by conventional PCR in sequentially (seq) or co-transfected cells (co). (D) Confirmation of RNA trans-

splicing products by Sanger sequencing between HIV tat and HSV-tk constructs. BD1-D4 (left) and BD2-D4 (right). The error bars represent the standard deviation (STDEV)

of average Ct values.
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sophisticated predictive and RNA structural software and performing
an extensive in silico analysis of HIV splice sites with the aim of HIV
dependent expression of the HSV-tk/GCV cell suicide system by
RNA trans-splicing. The specificity of the RNA trans-splicing reac-
tion is guaranteed by having complementary sequences binding to
the target pre-mRNA. Binding domains are generally based on target
Molecular Therapy: Nucleic Acids Vol. 7 June 2017 145
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Figure 6. Cell Viability Screen of Exon Replacement

Constructs in HIV-Producing Cells

293T cells were transfected with pNL4.3 and sequen-

tially transfected with RNA trans-splicing constructs the

following day. Cells were treated with one or two

doses of GCV at a concentration of 100 mM, and cell

viability was measured by the MTT assay 6 days after

the initial transfection. Ctrl refers to untransfected

293T cells, pVAX-1 (empty vector backbone) was used

as a negative control, and HSV-tk (full length HSV-tk)

was included as a positive control. (A) 30 exon replace-

ment in HIV-producing 293T cells in the presence or

absence of GCV. (B) Cell viability screen of 50 exon

replacement constructs in HIV-producing 293T cells in

the presence or absence of GCV. BD-A3 (top left), BD-

A5 (top right), BD-A7 (bottom left), and BD-A8 (bottom

right).The data in (A) and (B) represent the average mean

of representative experiments performed in multiple

wells (three to eight wells). The error bars represents the

SD of the average percentage cell viability. p values

(two-tailed) are shown for “t test: two sample assuming

unequal variances”; *p % 0.05), where statistical signif-

icance was observed in each of three independent

experiments.
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sequence (reviewed by Walsh35), but optimization of binding
domains to include stem-loop structures has been tested,36 and fluo-
rescence-based screens of binding domain libraries have been devel-
oped.37–39 In addition to the complementary nucleotide sequence,
we considered RNA structure as an important element for efficient
RNA trans-splicing. It was previously demonstrated by Patzel
and Sczakiel40 that the secondary structure of artificial antisense
Figure 5. Confirmation of RNA Trans-Splicing between HSV-tk and 50 Exon Replacement Constructs

(A) qRT-PCR primer and probe design to detect RNA trans-splicing amplicons. The forward primer is located in th

The PCR amplicon was detected with a probe in the HIV region. (B) qRT-PCR data from cells transfected with th

50 exon replacement constructs sequentially (seq) or after co-transfection of the two constructs (co). Top: data for B

BD-A8 (left to right). (C) Detection of HIV RNA trans-splicing products by conventional PCR. RNA trans-splicing wa

and BD-A8 (middle), and BD-A3 (right). PCR products highlighted in orange were PCR-purified and further analyze

trans-splicing junctions by Sanger sequencing in sequentially transfected cells. Chromatographs showing sequen

were analyzed by sequencing with a 50ER forward primer and HIV-specific reverse primers. Sequencing data ar

BD-A3. RNA trans-splicing junctions are shown by blue lines on sequence chromatographs and sequence read

Molecu
RNA is important for efficient annealing to
target RNA and that target binding represents
the rate-limiting step of antisense RNA-trig-
gered inhibition of gene expression. A fast
annealing rate to the target region was shown
to correlate with terminal unpaired nucleo-
tides.40 Taking all of these factors into consid-
eration, HIV binding domains were designed
on the basis of stepwise minimum free energy
(MFE) calculations. Using our approach, we
confirmed successful RNA trans-splicing in
six of ten designed constructs demonstrating
use of the HIV donor site D4 and acceptor
sites A3, A5, A7, and A8, all of which were confirmed by PCR
and sequencing.

A comprehensive analysis of HIV splicing patterns by Ocwieja et al.6

revealed more than 100 spliced mRNA species. Of the donor splice
sites identified (Figure 1A; Table S1), D4 that we targeted is one of
the major conserved HIV splice sites used in vivo to generate the
e HSV-tk region and the reverse primer in the HIV region.

e HIV proviral clone pNL4.3 followed by transfection with

D-A3 and BD-A5 (left to right). Bottom: data for BD-A7 and

s analyzed by with primers specific for BD-A5 (left), BD-A7

d by Sanger sequencing, as in (D). (D) Confirmation of RNA

ce reads are included (top). PCR products as shown in (C)

e shown from left to right for BD-A5, BD-A7, BD-A8, and

s.
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vpr, tat, rev, nef, and two novel transcripts. It is most commonly used
in combination with the A7 splice acceptor site, followed by A8c, a
recently identified site.6

We also confirmed RNA trans-splicing at HIV splice acceptor sites.
The HIV splice acceptor site A3 is used to generate the tat transcripts
and is most common used in combination with the D1 major splice
donor, followed by D2 and then D3.6 Similarly, splicing at the HIV
acceptor site A5 that generates the env/vpu, rev, and nef transcripts
is most frequently used in combination with splice donor site D1, fol-
lowed by D3 and D2. HIV splice acceptor site A7 generates the vpr,
tat, rev, nef, and recently identified novel transcripts.6 In addition,
A7 mainly splices onto donor site D4 followed by D1. HIV acceptor
site A8 is a cryptic splice site splicing mainly onto D4, but low levels of
splicing onto D1 and D1b has been shown.6 Although we were able to
confirm RNA trans-splicing to the splice acceptor sites A5, A7, A3,
and A8, we cannot exclude that low levels of RNA trans-splicing
events are occurring at proximal acceptor sites. An additional band
was observed when RNA trans-splicing amplicons were analyzed by
conventional PCR with BD-A7 in the presence of HIV (Figure 5C).
The A7 cluster of splice sites, A7c, A7d, A7, A7e, and A7f, are located
within close proximity and with the reverse primer used in the PCR,
whose target sequence is located downstream of A7f, it would be
possible to amplify RNA trans-splicing products arising from splicing
events occurring at proximal splice sites upstream of A7, which would
give rise to a PCR amplicon of increased size. This could be observed,
but the main component in the sequencing analysis revealed splicing
from A7. Similarly, with BD-A5 and BD-A8, we cannot exclude low
levels of RNA trans-splicing in the presence of HIV from the prox-
imal A5a and A5b site in addition to A5 and from the A8 cluster of
splice sites A8a, A8b, A8e, and A8f, respectively. Again, the main
components in the sequencing analysis revealed splicing from A5
and A8. Taken together, this suggests that RNA trans-splicing events
at the A5, A7, and A8 clusters of splice sites are dominant despite
proximal splice sites being present.

We were not able to confirm RNA trans-splicing to the D1a splice
donor site, which is an infrequently used cryptic site, but is suggested
to have a role in RNA stability.41 Nor could we confirm use of EA sites
designated EA1/2 or LD sites LD1/2 identified by our in silico predic-
tions. However, these are putative sites that may not be favorable or
may perhaps be silenced by splicing silencing regulatory domains.
It is intriguing that these sites could not be activated even when
RNA trans-splicing constructs provide splicing domains delivered
in trans, possibly suggesting that they are tightly suppressed. No
HIV splicing silencing domains have so far been identified in the
vicinity of these predicted EAs and LD sites, suggesting that there
may be additional HIV splice site silencing regulatory domains in
the HIV genome.

Of the six constructs confirmed to trans-splice onto HIV, five led to
cell killing in 293T cells in the presence of HIV. The 30 exon replace-
ment RNA trans-splicing candidates (BD1-D4 and BD2-D4) target-
ing HIV splice sites D4 are good candidates for further study. Of
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the 50 exon replacement constructs, BD-A7, BD-A5, and BD-A8
reduced cell viability, of which BD-A8 was the most effective. Splicing
to the D4 site by 30 exon replacement with BD1-D4 gave themost pro-
nounced reduction in cell viability. HIV splice donor site D4 has a
high usage, second only to the major HIV splice donor site D1,
onto which all RNA transcripts splice.6 Recently, Sherrill-Mix
et al.42 observed chimeric RNA transcripts between HIV RNA and
host-cell RNA in infected cells spliced from the D4 site onto cellular
acceptor sites, and RNA trans-splicing from D4 to upstream accep-
tors has recently been observed, suggesting trans-splicing between
different HIV RNA transcripts,43 which is in agreement with our
finding that splicing in trans from D4 is feasible. In cells transfected
with BD2-D4 alone, we observed a small reduction in cell viability,
possibly due to non-specific binding of the binding domain to cellular
pre-mRNA targets. The 30 exon replacement constructs BD1-D4 and
BD2-D4 have overlapping binding domains, but the binding domain
nucleotide sequence of BD1-D4 binds 53 nucleotides upstream of
BD2-D4 and is 17 nt longer, suggesting that increasing the length
of the binding domain may enhance the specificity of the RNA
trans-splicing reaction, which is in agreement with others.44 Indeed,
of the two binding domains targeting D4, BD1-D4 was the most effi-
cient construct in reducing cell viability specifically and, notably, the
only binding domain with a length greater than 50 nucleotides.
Importantly, the efficiencies of these two binding domains in
reducing viability are directly comparable, as the expression of
HSV-tk is driven from the same Tat translational start codon. The
association of the longest binding domain with the greatest effect
on GCV-mediated, HIV-dependent cell killing may be significant.

Both donor site D4 and acceptor site A3 are involved in generating the
different tat RNA transcripts. D4 is used to generate the completely
spliced tat RNA transcripts and A3 for both the completely spliced
and partially spliced tat transcripts.6 Within the pNL4.3 genome,
these sites are located 267 nt apart, and there are multiple splice
site regulatory domains located between them.45 Although both sites
are involved in generating Tat transcripts and are close together, we
were not able to detect a significant reduction in cell viability with
BD-A3 targeting the A3 site. During the preparation of this manu-
script, Emery et al.43 reported that splice acceptor A3 is used to low
frequency in pNL4.3. In addition, the HIV binding domains BD-A3
and BD2-D4 bind 946 nt upstream of splice site A3 and 149 nt down-
stream of D4 respectively, so it is possible that the distance between
the binding domain target sequence and the splice site targeted is
important. This may be an important consideration for trans-splicing
binding domain design in general, as previously suggested.46 Intrigu-
ingly, BD-A3 targeting splice acceptor site A3 and BD-D1a targeting
the cryptic splice donor site D1a have overlapping binding domain
sequences, but RNA trans-splicing junctions could not be detected
from D1a, confirming that the binding domain does not confer
RNA trans-splicing per se.

In vivo, the conserved HIV splice acceptor sites included in our screen
are used with the following frequency: A7 > A5 > A3 > A8 in the
HIV-1 isolate 89.6.6 No clear correlation was seen between splice
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site usage and reduction in cell viability, although they are all
conserved and widely used sites, except A8, a cryptic site.6

On the basis of previous findings from antisense RNA design,40 we
selected and designed HIV binding domain sequences to have a
high degree of free nucleotides and unstructured regions by
in silico RNA secondary structure predictions, aiming for fast anneal-
ing rates.We also compared our binding domain candidates with pre-
viously published SHAPE reactivity data of the complete HIV
genome,47 which revealed that our binding domains are targeted to
regions containing highly reactive and thus predicted unpaired nucle-
otides, in agreement with our in silico predictions. The 50 exon
replacement binding domains BD-A5, BD-EA1/2, and BD-A8
contain small structural domains with hairpin loops, although the
majority of nucleotides are free and unstructured. These hairpins
were difficult to resolve; nevertheless, BD-A5 and BD-A8 had
trans-splicing activity, suggesting that they had little effect on trans-
splicing efficiency.

We investigated HIV binding domain target sequence variation and
compared the number of mutations in the maximum percentage of
sequences between sequences from all HIV-1 groups, the major sub-
types, or within subtype B. The majority of the HIV binding domain
targets are located in regions with a low maximum percentage of
sequence variants, ranging from 9.92%–27.55% when all groups
were included in the analysis. Sequence variation could be reduced
when comparing HIV binding domain target sequences in the major
subgroups and even further within subtype B. Interestingly, a recent
study highlighted the nucleotide genomic diversity across the HIV
genome at the large-scale population level,48 and Li et al.48 demon-
strated that the nucleotide genomic diversity between HIV-1 groups
was 37.5%, 14.7% between HIV-1 subtypes, and 8.2% within the
different HIV-1 subtypes, which supports our findings that fewer var-
iants were present in the maximum percentage of sequences within
subtype B. Global sequence alignments of our binding domain target
sequences in pNL4.3 with their respective subtype B consensus se-
quences revealed that in some cases, overall sequence identity was
moderate between pNL4.3 and the subtype B consensus sequence,
ranging from 49%–73%. Although it would be ambitious to claim
that a single binding domain sequence would be universally appli-
cable for trans-splicing, our data suggest that targeting individual sub-
types such as subtype B with a single construct is highly feasible on the
basis of consensus sequences. Developing HIV-1 therapeutics on the
basis of consensus sequences has previously been suggested for HIV-1
vaccine development49 and would be an attractive and pragmatic
approach for the development of next-generation HIV-1 RNA
trans-splicing binding domains.

Despite the similarity in BD1-D4 HIV-1 binding domain target se-
quences between pNL4.3 and HXB2, these are distinct lab strains
and show differences in splice site usage, HXB2 for example having
an additional splice acceptor site A6,50–52 and the splice donor site
D5,50,51 which was not predicted in our in silico analysis in pNL4.3.
Notwithstanding these differences, we were able to confirm a signif-
icant reduction in cell viability upon RNA trans-splicing with BD1-
D4 in the HXB2 clone SVC21, indicating that it is feasible to target
HIV-1 strains with some variations in splice site usage and that this
did not affect RNA trans- splicing at the conserved HIV splice donor
site D4 site.

The expression of HSV-tk lead to cell death in HIV-producing cells in
the presence of GCV. Our 30 exon replacement constructs lack the
first translational initiation codon of HSV-tk and are designed so
that an upstream in-frame HIV-1 translational initiation codon initi-
ates HSV-tk expression. Intriguingly, HSV-tk has an unusual mech-
anism for translational initiation with additional translational
initiation sites located downstream of the first ATG start codon,
generating additional HSV-tk polypeptides,53–55 with an observed in-
crease in usage when the first ATG is mutated.56,57We cannot exclude
that some of the HSV-tk-induced cell death observed in the absence of
HIV-1 stems from HSV-tk peptide expression driven from down-
stream translational initiation codons or other off-target effects (re-
viewed by Berger et al.58). Splicing in cis and protein expression
from putative translational initiation codons within RNA trans-
splicing molecules has previously been reported.59 Future work will
aim at investigating the relative contribution of different HSV-tk pep-
tides in HSV-tk/GCV-mediated cell death and potential off-target
effects.

HSV-tk/GCV has been widely used in gene therapy to induce cell
killing of malignant cells in a number of different cancers, in vitro
and in vivo, with promising pre-clinical data (reviewed by Karjoo
et al.60). HSV-tk-activated GCV has been shown to induce cell death
through cellular DNA damage and apoptosis,61,62 but non-apoptotic
death has also been observed.63–66 HIV infection leads to T cell deple-
tion through apoptosis in permissive cells (reviewed by Février
et al.67). However, the majority of HIV-driven CD4+ T cell depletion
in lymphoid tissue occurs through pyroptosis of nonpermissive
cells,68 with cell-to-cell viral spread being a crucial factor.69 By elim-
inating the population of HIV-producing cells through HSV-tk/
GCV-induced cell death, it is reasonable to hypothesize that T cell
depletion by pyroptosis may be reduced. Further research is needed
to explore this, and to elucidate the precise mechanism of HSV-tk/
GCV-induced cell death in the context of HIV infection.

HSV-tk/GCV-mediated gene therapy has reached phase I/II clinical
trials and been shown to be safe, although with limited clinical effi-
cacy. The vector system most widely used for HSV-tk/GCV cancer
gene therapy is based on adenoviral vectors (reviewed by Karjoo
et al.60), but because of the lack of Coxsackie and adenovirus receptor
(CAR) on leukocytes,70–72 and the recent observation that Ad5-spe-
cific T cells are more susceptible to HIV,73 a conventional adeno-
viral-based vector may not easily be translatable to T cell-targeted
HIV RNA gene therapy. Lentiviral vectors may be better candidates.
Lentiviral-mediated gene transfer of RNA therapeutics against HIV
has been studied both in pre-clinical studies in vivo and in clinical
trials (reviewed by Hoxie et al.16). In addition, lentiviral-mediated
gene delivery of the HSV-tk/GCV suicide system has been used in
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HIV-infected cells32 and to control graft-versus-host disease in a
phase I/II clinical trial in patients with leukemia.74 Recently, it has
been shown that HIV can infect cells of the hematopoietic lineage
in vivo,75 and novel lentiviral vectors targeting CD34+ hematopoietic
progenitor cells have been described.76 Bone marrow gene therapy is
an attractive technology for HIV antiviral therapies (reviewed by
Herrera-Carrillo et al.17), and lentiviral-mediated gene transfer of
bone-marrow cells has been demonstrated to be feasible in pa-
tients,77–79 which could be a potential delivery method for RNA
trans-splicing technology in HIV-infected individuals. Recently,
Zhou et al.80 described the generation of an engineered lentiviral
vector that can selectively transduce memory CD4+ T cells. Thus,
in the future, it may be feasible to deliver RNA trans-splicing
gene therapy systemically. Encouragingly, GlaxoSmithKline (GSK)
recently received positive recommendation for market authorization
of a gene therapy from the Committee for Medicinal Products for
Human Use (CHMP), followed by marketing authorization for use
within the European Union by the European Commission. The
gene therapy constitutes autologous CD34+ cells transduced with a
retroviral vector to express adenosine deaminase (ADA), and is tar-
geted to treat severe combined immunodeficiency due to adenosine
deaminase deficiency (ADA-SCID).81 Our future work will focus
on targeting latent transcripts which may contain the major splice
donor site D1 and generating RNA trans-splicing cassettes in suitable
vectors for delivery into CD4+ T cells for use in in vitro and in in vivo
studies.

To conclude, expressing HSV-tk/GCV by RNA trans-splicing is an
efficient means to selectively induce cell death in HIV-producing
cells. RNA trans-splicing by either 30 exon replacement targeting
splice donor site D4 or 50 exon replacement targeting splice acceptor
site A8 were the most efficient HIV splice sites to target. A detailed
bioinformatic approach can facilitate design of effective trans-splicing
constructs.

MATERIALS AND METHODS
To develop RNA trans-splicing vectors targeting HIV RNA splice
sites, we used the HIV proviral clone pNL4.3 as a template sequence.
HIV splice sites of this clone nt 1–9,709 (GenBank: AF324493.2) were
predicted using the Splice Site Prediction by Neural Network Server
within the Berkeley Drosophila Genome Project (http://www.
fruitfly.org/seq_tools/splice.html),82 with minimum scores for 50

and 30 splice sites at 0.4. The probability for cryptic splice site activa-
tion was predicted for pNL4-3 with the CrypSkip software within the
Bioinformatics HUSAR server, German Cancer Research Centre
(https://genome.inet.dkfz-heidelberg.de/husar/hs_home.html). HIV
binding domains were designed on the basis of stepwise MFE calcu-
lations of the pNL4-3 genome. The RNA folding energies for the
reverse complement of pNL4-3 nt 1–9,709 was predicted with the Fol-
danalyze software within the Bioinformatics HUSAR server, with a
window size of 50 and a step size of 1. Potential regions of HIV bind-
ing domains with high free energy and a large number of unpaired
bases in the vicinity of predicted and selected HIV splice sites were
subjected to MFE RNA secondary structure predictions using Mfold
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(http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form),83 with
an upper boundary on the number of computing foldings set to 1,
and the percentage suboptimality number to 5. The MFE fold and
partition function were predicted and calculated with the RNAfold
web server (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). Struc-
tures displaying both a large number of unpaired nucleotides and
similar predicted structures with both software packages were
selected for further design. Selected structures were then refolded in
the backbone 30 or 50 exon replacement cassettes to exclude long-dis-
tance effects of folding of the vector backbone, again using the web-
servers Mfold and RNAfold and subjected to further design as
described below. One or 2 mismatch nucleotides were introduced
into binding domain sequences at every 20–25 nucleotides to prevent
effects triggered by long double-stranded RNA (reviewed by Chalup-
nikova et al.84). When structured helical domains were present in the
RNA secondary structures of binding domains, C-to-U or A-to-G
base exchanges that trigger GU or UG wobble base pairs with the
target were introduced to resolve duplexes and promote an unstruc-
tured conformation.

Sequence Conservation Analysis

Sequence conservation of HIV binding domain target regions were
determined with the AnalyzeAlign software33 using the filtered web
LANL database alignment in HIV-1, for either all subtypes or major
subtypes. The nucleotide range number refers to residues of HXB2
(GenBank: K03455). A 95% cutoff for calculating the frequency by
position was used. For finding variants, the consensus of the align-
ment was used as master sequence. Nucleotide alignments of
pNL4.3 target sequences with subtype B consensus sequence were
performed with BLAST Needleman-Wunsch global alignments.34

Gaps within consensus sequences were replaced with N for any
nucleotide prior to the alignments.

Cells and Chemicals

293T cells were maintained at 37�C and 5% CO2 in DMEM (GIBCO/
Life Technologies) supplemented with 10% fetal bovine serum
(GIBCO, Life Technologies) and penicillin 100 U/mL and strepto-
mycin 100 mg/mL final concentration (GIBCO, Life Technologies).

Thiazolyl Blue Tetrazolium Salt (3-[4,5-Dimethyl-2-thiozolyl-2,5-di-
phenyl-2H-tetrazolium bromide] [MTT]) (M5655, Sigma) was resus-
pended in PBS, filtered through a 0.22 mm filter, and stored in aliquots
of 5 mg/mL at �20�C. GCV (G2536, Sigma) was resuspended in
0.1 M HCl to a concentration of 39.6 mM, and aliquots were stored
at �20�C.

Plasmids, Cloning, and Transfections

30 and 50 exon replacement cassettes were subcloned into the pVAX-1
backbone (Invitrogen) using SpeI and BbsI. HIV binding domains
were synthesized by gene synthesis (Life Technologies, Invitrogen)
and subcloned into 30 exon replacement cassettes in the pVAX-1
backbone (Invitrogen) using NheI and MluI (Thermo Scientific)
restriction enzyme digestion and subcloning. The MluI site in
the pVAX-1 backbone at position 30 was removed by ethidium

http://www.fruitfly.org/seq_tools/splice.html
http://www.fruitfly.org/seq_tools/splice.html
https://genome.inet.dkfz-heidelberg.de/husar/hs_home.html
http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form
http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
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bromide-mediated partial digestion prior to inserting the HIV bind-
ing domains into the 30exon replacement cassettes. HIV binding do-
mains were inserted into the 50 exon replacement cassettes in the
pVAX-1 backbone using KpnI and BbvCI (New England Biolabs) re-
striction enzyme digestion and subcloning.

The infectious HIV clone pNL4-3 was obtained from Dr. Malcom
Martin through the AIDS Research and Reference Reagent Program,
Division of AIDS, National Institute of Allergy and Infectious Disease
(NIAID), National Institutes of Health (NIH).85

Plasmid DNA was transfected into 293T cells with the Trans-IT-LT1
Transfection reagent (Mirus) in DMEM (GIBCO/Life Technologies)
free from fetal bovine serum and antibiotics.

PCR and Sequencing

Ten nanograms of template cDNA was amplified by two-step PCR
with 1.25 U of GoTaq DNA polymerase (Promega) in a PCR con-
taining 5� GoTaq Reaction Buffer (Promega), 2.5 mM PCR Nucle-
otide mix (Promega), and 500 nM of forward and reverse primers
(see Table S3 for primer sequences). Two-step PCR cycling condi-
tions to detect 30exon replacement RNA trans-splicing amplicons
were as follows: 95�C for 2 min, 30 cycles of 95�C, 30 sec, 55�C,
30 sec, 72�C, 30 sec (step 1), followed by another 30 cycles of the
step 1 cycling conditions above (step 2). A final extension step was
performed at 72�C for 5 min, followed by hold at 4�C. PCR products
were visualized on 2% agarose gels, and PCR fragments were purified
with the QIAquick PCR Purification Kit (Qiagen) according to the
manufacturer’s instructions (Qiagen). The presence of RNA trans-
splicing junctions in purified PCR products were confirmed by
Sanger sequencing with the same primer pairs used as in the two-
step PCR. RNA trans-splicing amplicons after 50 exon replacement
were detected by two-step PCR as above but with 25 cycles of
steps 1 and 2.

qRT-PCR

Total cellular RNA was extracted with the RNeasy Mini Kit
(Qiagen) according to the manufacturer’s instructions. Extracted
RNA was treated with DNase I (New England Biolabs) for
20 min at 37�C. The DNase was inactivated by the addition of
EDTA to a final concentration of 5 mM and incubated for
10 min at 75�C. One microgram of DNase-treated RNA was reverse
transcribed using the High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems) according to the manufacturer’s instruc-
tions. cDNA to an equivalent of 10 ng of DNase-treated RNA
was used as a template in qPCR. The qPCRs were as follows:
2� TaqMan Fast Advanced Master Mix (Applied Biosystems),
500 nM forward and reverse primers, and 150 nM probe (see Table
S3 for primer and probe sequences). The PCR products were ampli-
fied at 50�C for 2 min, 95�C for 20 s, and 50 cycles of 95�C for 3 s
and 60�C for 30 s on a 7500 Fast Real Time PCR System (Applied
Biosystems). A Ct value of 40 was used as a cutoff for background
and mis-priming, and values above Ct 40 were omitted during the
analysis.
Analysis of Cell Viability by the MTT Assay

293T cells (2 � 104) were plated per well in 96-well plates on day 1
and transfected with 100 ng pNL4.3 and RNA trans-splicing
construct on days 2 and 3, respectively. 293T cells were treated with
one or two doses of 100 mM GCV during the 2 following days. Cell
viability was assayed on day 8 by the MTT assay on the basis of
a previously published method.86 MTT was added to each well to a
final concentration of 0.5 mg/ml and incubated at 37�C, 5% CO2

for 2 hr. Following this, the MTT-containing medium was aspirated,
and the formazan crystals were resuspended in acidified (0.04 N HCl)
isopropanol/6% Triton X-100 and incubated for 15 min at room tem-
perature to inactivate HIV viral particles. Absorbance was read at 540
and 690 nm on a Multiskan Ascent absorbance plate reader, and the
690 nm reading was subtracted from the 540 nm reading for each
well. In Figure S3, absorbance was measured at 595 and 655 nm on
a iMark Microplate Reader, BioRad. The 655 nm reading was sub-
tracted from the 595 nm reading for each well.

Statistical Analysis

Statistical analysis was performed with Microsoft Excel 2010 software
using the “t test: two sample assuming unequal variances” function,
with p values shown for two-tailed analysis.
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