
biomolecules

Article

How Quickly Do Proteins Fold and Unfold, and What
Structural Parameters Correlate with These Values?

Anna V. Glyakina 1,2 and Oxana V. Galzitskaya 1,3,*
1 Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia;

glyakina@rambler.ru
2 Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Keldysh Institute of Applied

Mathematics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
3 Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences,

Pushchino, Moscow Region 142290, Russia
* Correspondence: ogalzit@vega.protres.ru; Tel.: +7-903-675-0156

Received: 27 December 2019; Accepted: 26 January 2020; Published: 29 January 2020
����������
�������

Abstract: The correlations between the logarithm of the unfolding rate of 108 proteins and their
structural parameters were calculated. We showed that there is a good correlation between the
logarithm of folding and unfolding rates (0.79) and protein stability and unfolding rate (0.79). Thus,
the faster the protein folds, the faster it unfolds. Folding and unfolding rates are higher for the
proteins with two-state kinetics, in comparison with the proteins with multi-state kinetics. At the same
time, two-state bacterial proteins folds and unfolds two orders of magnitude faster than two-state
eukaryotic proteins, and multi-state bacterial proteins folds and unfolds slower than multi-state
eukaryotic proteins. Despite the fact that the folding rates of thermophilic and mesophilic proteins are
close, the unfolding rates of thermophilic proteins is about two orders of magnitude lower than for
mesophilic proteins. The correlation between unfolding rate and stability of thermophilic proteins is
high (0.90). We also found that the unfolding rate correlates with such structural parameters as: size
of the protein, radius of the cross-section, logarithm of absolute contact order, and radius of gyration.
This information will be useful for engineering and designing new proteins with desired properties.

Keywords: protein unfolding; unfolding rates; bacterial proteins; eukaryotic proteins;
thermophile; mesophile

1. Introduction

The problem of predicting folding rates (kf ) for proteins with two-state and multi-state kinetics is
still important and extensively studied [1–20]. Many articles are devoted to the study of protein folding
rates and their correlation with various structural parameters [2,6–8,16]. In 1998, a relative contact
order (rCO) parameter was suggested, which is the average distance along the sequence between all
pairs of contacting residues, normalized to the size of the protein (number of amino acid residues,
further protein length). This parameter reflects the topological complexity of the protein chain. It was
shown that the rCO correlates well (correlation coefficient is 0.81) with the logarithm of the folding
rate for 12 two-state proteins [2]. Subsequent studies have shown that there is no correlation between
rCO and logarithm of the folding rate of proteins [6,7,16]. It turned out that only absolute contact
order (AbsCO, contact order multiplied by protein length) correlated with the logarithm of the folding
rate (the correlation coefficient is −0.77) [16]. It was found that the structural parameters, depending
on the protein length (L), correlated well with the logarithm of the folding rate [16]. In the set of
papers [13,15,16,21,22], the authors considered the different structural parameters of protein globule
compactness: radius of gyration (Rg); normalized radius of gyration (Rg/Rg*, where Rg* is the radius
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of gyration of the ball with the uniform density and the same volume); compactness as the relationship
between the solvent accessible surface area to the solvent accessible surface of sphere with the same
volume (Sasa/S*); and the relationship between the solvent accessible volume to the solvent accessible
surface (Vasa/Sasa). The solvent accessible volume (Vasa) is the volume surrounded by the solvent
accessible surface (Sasa). The radius of the cross-section (Vasa/Sasa) is proportional but not equal to
the radius of the smallest cross-section of the protein globule [16]. It was demonstrated that Vasa/Sasa

correlates good with the logarithm of the folding rate (the correlation coefficient is 0.74) [16]. We have
shown that the less compact the proteins, the faster they fold. Therefore, α-structural proteins are less
compact and the most rapidly folding proteins, while α/β-structural proteins are the most compact
and the most slowly folding proteins [15].

We have previously shown that bacterial proteins with two-state kinetics (further, bacterial
two-state proteins) fold and unfold faster than two-state eukaryotic proteins [23]. It turned out that the
multi-state eukaryotic proteins fold and unfold faster than bacterial ones.

It has been shown that there is a “golden triangle” that limits the possible range of the folding
rates for single-domain globular proteins of different sizes and stability [24]. This triangle was based
only on the biological and physical limitations.

In addition, knowledge of the protein unfolding rates is also necessary to estimate their stability.
Much less work has been devoted to the study of the relationship between the unfolding rates and
structural parameters. It has been shown that the logarithm of the unfolding and folding rates correlate
strongly with the AbsCO and the long-range order (parameter defined by contacts between two
residues that are close in space and far in the sequence) [3], with correlation coefficient values of
0.75 or higher. The logarithm of the unfolding rate correlated better with thermodynamic stability,
in comparison with the folding rate [19].

Early, it has been shown that structural parameters L, ln(AbsCO), Vasa/Sasa, and Rg were in a good
correlation with the logarithm of the protein folding rate [16].

The aim of the study was broader than the search for connections between protein unfolding rates
and various structural parameters, such as L, ln(AbsCO), Vasa/Sasa, and Rg. We were trying to find
out which parameters are most important for the prediction of the unfolding rates for proteins from
different organisms.

2. Materials and Methods

In our study, three databases of proteins were examined. The first database consisted of 108
proteins. Among them, 38 proteins demonstrated multi-state kinetics, and 70 proteins showed
two-state kinetics. The second database consisted of 42 bacterial (29 two-state and 13 multi-state) and
53 eukaryotic (32 two-state and 21 multi-state) proteins. The third database consisted of 42 bacterial
proteins. Among them, there were 10 thermophilic (8 two-state and 2 multi-state) and 32 mesophilic
(21 two-state and 11 multi-state) proteins.

Proteins that have experimentally measured folding and unfolding rates were taken into
consideration. The database of such proteins has begun to be collected since 2003. At that time,
there were only 57 proteins [7]. In 2009, there were already 84 proteins [16]. Now, this database consists
of 108 proteins [19,24].

Data on folding and unfolding rates and structural parameters of the proteins (L—length of the
protein, Vasa/Sasa, ln(AbsCO) and Rg) are in Supplementary Table S1.

Parameters Vasa and Sasa were calculated using YASARA program [25].
Parameter ln(AbsCO) was calculated as ln(AbsCO) = ln( 1

N
∑N

k=1 ∆Li j), where N is the number of
contacts (within 6 Å) between nonhydrogen atoms in the protein and ∆Lij is the number of residues
separating the interacting pair of nonhydrogen atoms (adjacent residues are assumed to be separated
by one residue).
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Parameter Rg was calculated as Rg =

√∑
mi(ri−RC)

2

M , where mi is the mass of the i-th atom, ri is its
Cartesian coordinates, M is the mass of the protein, and RC is the coordinate vector of the mass center
of the protein, calculated as follows:

∑
mi(ri −RC) = 0.

Errors for data from Table 1, Table 3, Table 5, Figure 5 and Figure 9 were calculated as σ =√∑n
i=1(xi−x)
n(n−1) , where x is the average value of a parameter and n is a number of proteins.

3. Results and Discussion

3.1. Unfolding Rates of 108 Proteins

The goal of this work was to find the relationship between protein unfolding rates and protein
structural parameters. For three spectrin domains: R15, R16, and R17, we observed that the faster
the protein folds, the faster it unfolds, and vice versa. Domain R15 folds and unfolds faster than
its homologues, R16 and R17 (see Figure 1A). In the case of these spectrin repeats, the folding and
unfolding rates may be associated with the mechanical stability of the proteins. Previously, it has been
shown that domain R15 is less mechanically stable than domains R16 and R17 [26]. The discovered
correlation between the unfolding and folding rates suggests that the statement that the faster the
protein folds, the faster it unfolds, and vice versa, is also true for a dataset consisting of 108 proteins
(Figure 1B).
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Figure 1. (A) Logarithm of the unfolding and folding rates for the three domains of chicken brain
alpha-spectrin proteins. (B) The average values of the logarithm of the unfolding and folding rates for
108 proteins. Structural parameters that better correlate with the logarithm of the unfolding rates are
outlined in a rectangle.

The correlation between the logarithm of the unfolding and folding rates is 0.79 for all proteins.
Moreover, this correlation is better for two-state (0.78) than for multi-state proteins (0.73). The separation
of 108 proteins by structural classes (α, β, α/β andα+β) revealed that correlation between the logarithm
of the folding and unfolding rates is better for proteins fromα andβ (0.78 and 0.75) classes, in comparison
with the proteins from α/β and α + β classes (0.59 and 0.60). Moreover, two-state proteins make the
largest contribution to this correlation (see Table 1).

The proteins from α class folds and unfolds faster, while proteins from α/β class folds and unfolds
slowly, in comparison with proteins from other structural classes (average logarithm of folding rates:
8.49 ± 0.64 for α, 3.42 ± 0.63 for β, −0.02 ± 0.85 for α/β, and 4.71 ± 0.53 for α + β; average logarithm of
unfolding rates: 2.03 ± 1.03 for α, −4.51 ± 1.12 for β, −8.34 ± 1.64 for α/β, and −4.76 ± 0.97 for α + β;
see also Supplementary Table S2).

It was previously shown that L, ln(AbsCO), Vasa/Sasa, and Rg correlate well with the logarithm of
the protein folding rate [16]. Thus, it can be assumed that if these parameters correlate well with the
logarithm of the folding rate, then they will also correlate well with the logarithm of the unfolding
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rate. In this case, four parameters were examined: L is a number of amino acid residues in protein,
ln(AbsCO) is the logarithm of the absolute contact order, Vasa/Sasa is a radius of cross-section, and Rg is
a radius of gyration.

Table 1. Correlations between logarithm of unfolding (ln(ku) and folding (ln(kf ) rates for four structural
classes of proteins α, β, α/β and α + β.

Correlations with ln(ku) All (Two +Multi) Two-State Multi-State

All 0.79* (108) ** 0.78 (70) ** 0.73 (38) **
α 0.78 (31) 0.82 (23) 0.79 (8)
β 0.75 (37) 0.74 (25) 0.61 (12)
α/β 0.59 (12) - 0.55 (11)
α + β 0.60 (28) 0.63 (21) 0.13 (7)

* Correlations above 0.75 are shown in bold. ** The number of proteins is indicated in parentheses.

The values of structural parameters considered in this paper (L, ln(AbsCO), Vasa/Sasa and Rg)
are lower for two-state proteins than for multi-state proteins: 78 ± 5 vs. 130 ± 8 for L, 3.14 ± 0.05 vs.
3.59 ± 0.06 for Vasa/Sasa, 6.91 ± 0.06 vs. 7.22 ± 0.06 for ln(AbsCO), and 12.1 ± 0.3 vs. 14.2 ± 0.3 for
Rg (see Table 2). The logarithms of the folding and unfolding rates are higher for two-state proteins,
in comparison with multi-state proteins: 6.08 ± 0.50 vs. 2.51 ± 0.59 for the folding rate and −1.51 ± 0.79
vs. −6.09 ± 1.03 for the unfolding rate, respectively (see Figure 1B).

Table 2. Average values of structural parameters for 108 proteins. Vasa/Sasa = radius of cross-section.
Rg = radius of gyration. ln(AbsCO) = logarithm of the absolute contact order. L = length of the protein.

Average Value All (Two +Multi) Two-State Multi-State

Number of proteins 108 70 38
<L> 96 ± 5 78 ± 5 130 ± 8

<Vasa/Sasa> 3.30 ± 0.04 3.14 ± 0.05 3.59 ± 0.06
<ln(AbsCO)> 7.02 ± 0.05 6.91 ± 0.06 7.22 ± 0.06

<Rg> 12.8 ± 0.2 12.1 ± 0.3 14.2 ± 0.3

For 108 proteins, the correlations between the logarithm of the unfolding rate (ln(ku)) and structural
parameters such as L, Vasa/Sasa, ln(AbsCO), and Rg were calculated (Table 3 and Figure 2). Vasa/Sasa

and ln(AbsCO) are better correlated with the logarithm of the unfolding rate of two-state proteins.
For two-state proteins, these correlations are −0.79 and −0.87, in comparison with −0.63 and −0.69 for
multi-state proteins. The correlation between Rg and the logarithm of the unfolding rate is almost
the same for two-state and multi-state proteins (−0.61 vs. −0.60, respectively). Moreover, L is better
correlated with the logarithm of the unfolding rate of multi-state proteins. Good correlation (0.79)
between the protein stability (−(lnkf − lnku)) and the logarithm of the unfolding rate has been observed.

Table 3. Correlations logarithm of the unfolding rate (ln(ku)) with protein stability (−(lnkf − lnku)) and
structural parameters (L, Vasa/Sasa, ln(AbsCO) and Rg) for 108 proteins.

Correlations with ln(ku) All (Two +Multi) Two-State Multi-State

Number of proteins 108 70 38
Stability (−(lnkf − lnku)) 0.79 0.79 0.83

L −0.71 −0.65 −0.71
Vasa/Sasa −0.77 −0.79 −0.63

ln(AbsCO) −0.84 −0.87 −0.69
Rg −0.65 −0.61 −0.60

* Correlations above 0.75 are shown in bold.
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After the separation of 108 proteins by structural classes (α, β, α/β and α + β), we observed that
correlations between the logarithm of the unfolding rate (ln(ku)) and L, Vasa/Sasa, ln(AbsCO), and Rg

are better for proteins from α and β classes (see Table 4). These correlations are the highest for proteins
from β class (higher than 0.8). The largest contribution to these correlations made two-state proteins
(see Table 4). The exception is only for correlation between ln(ku) and L for proteins from β class.
This correlation is higher for multi-state proteins (−0.86), in comparison with two-state proteins (−0.84).

Table 4. Correlations between the logarithm of the unfolding rate (ln(ku) and structural parameters (L,
Vasa/Sasa, ln(AbsCO) and Rg) for four structural classes of proteins (α, β, α/β and α + β).

Correlations
with ln(ku)

All (Two +Multi) Two-State Multi-State

α β α/β α+β α β α/β α+β α β α/β α+β

Number of
proteins 31 37 12 28 23 25 1 21 8 12 11 7

L −0.71 −0.84 −0.50 −0.60 −0.72 −0.84 − −0.77 −0.61 −0.86 −0.53 −0.20
Vasa/Sasa −0.78 −0.82 −0.11 −0.78 −0.84 −0.83 − −0.83 −0.60 −0.66 −0.28 −0.54

ln(AbsCO) −0.80 −0.89 −0.30 −0.73 −0.85 −0.90 − −0.83 −0.48 −0.77 −0.29 −0.34
Rg −0.73 −0.83 −0.69 −0.50 −0.79 −0.84 − −0.57 −0.41 −0.74 −0.69 −0.11

* Correlations above 0.75 are shown in bold.

3.2. Unfolding Rates of Bacterial and Eukaryotic Proteins

To find the dependence of the unfolding rates on the origin of the proteins, the 42 bacterial and 53
eukaryotic proteins from our database were separately studied. Two-state bacterial proteins fold and
unfold faster than two-state eukaryotic proteins. For multi-state proteins, we observed that bacterial
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proteins fold and unfold slower than eukaryotic proteins (see Figures 3 and 4). The same result was
observed when the dataset consisted of 35 bacterial and 38 eukaryotic proteins [23]. The correlation
between the logarithm of the unfolding and folding rates is 0.73 for bacterial and 0.75 for eukaryotic
proteins. Moreover, for bacterial proteins, this correlation is better for two-state (0.69) than for
multi-state proteins (0.45). For eukaryotic proteins, this correlation is better for multi-state (0.81) than
for two-state proteins (0.72). Values Vasa/Sasa, ln(AbsCO), and Rg are slightly higher for the bacterial
proteins, and this gap increases for multi-state proteins: 3.74 ± 0.07 vs. 3.47 ± 0.07 for Vasa/Sasa,
7.40 ± 0.07 vs. 7.14 ± 0.10 for ln(AbsCO), and 14.8 ± 0.5 vs. 13.9 ± 0.4 for Rg, respectively (Table 5).
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Table 5. Average values of structural parameters for two-state and multi-state bacterial and
eukaryotic proteins.

Average Value All (Two +Multi) Two-State Multi-State
Bacteria Eukaryota Bacteria Eukaryota Bacteria Eukaryota

Number of proteins 42 53 29 32 13 21
<L> 107 ± 9 92 ± 5 87 ± 10 77 ± 4 152 ± 14 115 ± 10

<Vasa/Sasa> 3.37 ± 0.07 3.30 ± 0.04 3.21 ± 0.08 3.20 ± 0.05 3.74 ± 0.07 3.47 ± 0.07
<ln(AbsCO)> 7.10 ± 0.07 7.08 ± 0.06 6.97 ± 0.09 7.04 ± 0.07 7.40 ± 0.07 7.14 ± 0.10

<Rg> 13.1 ± 0.4 12.9 ± 0.3 12.3 ± 0.5 12.3 ± 0.4 14.8 ± 0.5 13.9 ± 0.4

Then, the correlations between the logarithm of the unfolding rate and structural parameters for
bacterial and eukaryotic proteins were investigated. The correlations between the logarithm of the
unfolding rate and L, Vasa/Sasa, and ln(AbsCO) are almost the same for all bacterial and eukaryotic
proteins: −0.67 vs. −0.68 for L, −0.72 vs. −0.69 for Vasa/Sasa, and −0.80 vs. −0.79 for ln(AbsCO),
respectively (Table 6 and Figure 4). The difference is observed only for Rg, which correlates better with
the logarithm of the unfolding rate of bacterial proteins (−0.71). If we consider these correlations for
two-state and multi-state bacterial and eukaryotic proteins separately, we get the following picture.
For two-state proteins, the correlation between the logarithm of the unfolding rate and Vasa/Sasa is
almost the same for bacterial and eukaryotic proteins (−0.75 vs. −0.77). Rg and ln(AbsCO) better
correlate with the logarithm of the unfolding rate of two-state bacterial proteins than with eukaryotic
proteins (−0.86 vs. −0.77 for ln(AbsCO) and −0.64 vs. −0.47 for Rg, respectively). L, on the contrary,
correlates better with the logarithm of the unfolding rate of two-state eukaryotic proteins (−0.61 vs.
−0.75). For multi-state proteins, we observed the same picture as for two-state proteins for correlations
of L and Rg with the logarithm of the unfolding rate. Both Vasa/Sasa and ln(AbsCO) correlate better
with the logarithm of the unfolding rate of multi-state eukaryotic proteins than with bacterial proteins:
−0.11 vs. −0.69 for Vasa/Sasa and −0.22 vs. −0.81 for ln(AbsCO), respectively.
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Table 6. Correlations between the logarithm of the unfolding rate (ln(ku)) and structural parameters (L,
Vasa/Sasa, ln(AbsCO) and Rg) for two-state and multi-state bacterial and eukaryotic proteins.

Correlations with ln(ku)
All (Two +Multi) Two-State Multi-State

Bacteria Eukaryota Bacteria Eukaryota Bacteria Eukaryota

Number of proteins 42 53 29 32 13 21
L −0.67 −0.68 −0.61 −0.75 −0.43 −0.77

Vasa/Sasa −0.72 −0.69 −0.75 −0.77 −0.11 −0.69
ln(AbsCO) −0.80 −0.79 −0.86 −0.77 −0.22 −0.81

Rg −0.71 −0.46 −0.64 −0.47 −0.58 −0.50

* Correlations above 0.75 are shown in bold.

Amino acid composition of bacterial and eukaryotic proteins was analyzed (Figure 5). The bacterial
proteins with two-state kinetics are enriched in Ala, Gly, Lys, and Asn, compared with eukaryotic
proteins with two-state kinetics. The eukaryotic proteins with two-state kinetics contain more His, Leu,
Pro, Arg, Ser, and Trp, compared to the bacterial proteins with two-state kinetics (see Figure 5).
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multi-state kinetics.

3.3. Unfolding Rates of Proteins from Thermophilic and Mesophilic Organisms

Since a lot of attention was paid to the search for differences between thermophilic and mesophilic
proteins — in particular, folding rates — we also decided to conduct our analysis for these proteins.
All bacterial proteins were divided into thermophilic and mesophilic groups. Further in the text, we
call proteins from thermophilic organisms as thermophilic proteins and proteins from mesophilic
organisms as mesophilic proteins. The correlation between the logarithm of the unfolding and folding
rates is better for mesophilic (0.76), in comparison with thermophilic (0.73) proteins. Moreover, for
mesophilic proteins, this correlation is better for two-state (0.76) than for multi-state proteins (0.12).
For thermophilic proteins, it is hard to say something, because there are only two proteins with
multi-state kinetics. There is a correlation between stability and the logarithm of the unfolding rate for
thermophilic (0.90) and mesophilic (0.73) proteins. The logarithm of the folding rate of thermophilic
and mesophilic proteins are almost the same (4.75 ± 1.20 vs. 4.58 ± 0.79) (Figure 6 and Table 7). Still,
mesophilic proteins unfold faster than thermophilic proteins (−5.63 ± 2.31 vs. −3.27 ± 1.12). The same
picture is observed for two-state thermophilic and mesophilic proteins. Schematic “chevron” plots for
thermophilic and mesophilic proteins are presented in Figure 7.
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Table 7. Average values of structural parameters for two-state and multi-state thermophilic and
mesophilic proteins.

Average Value All (Two +Multi) Two-State Multi-State
Thermophile Mesophile Thermophile Mesophile Thermophile Mesophile

Number of proteins 10 32 8 21 2 11
<L> 105 ± 18 108 ± 11 82 ± 11 89 ± 13 197 ± 22 144 ± 14

<Vasa/Sasa> 3.30 ± 0.14 3.39 ± 0.08 3.13 ± 0.10 3.23 ± 0.10 3.97 ± 0.01 3.70 ± 0.08
<ln(AbsCO)> 7.13 ± 0.15 7.09 ± 0.08 7.03 ± 0.17 6.95 ± 0.11 7.54 ± 0.07 7.38 ± 0.09

<Rg> 13.3 ± 0.8 13.0 ± 0.5 12.5 ± 0.7 12.2 ± 0.6 16.2 ± 1.1 14.5 ± 0.5

Finally, the correlations of the logarithm of the unfolding rate and structural parameters for
thermophilic and mesophilic proteins were examined (Table 8 and Figure 8). L and Rg correlate better
with the logarithm of the unfolding rate of all thermophilic proteins (−0.83 vs. −0.64 for L and −0.87 vs.
−0.66 for Rg), and ln(AbsCO) correlates better with the logarithm of the unfolding rate of all mesophilic
proteins (−0.74 vs. −0.83). Vasa/Sasa correlates with the logarithm of the unfolding rate practically
the same for all thermophilic and mesophilic proteins (−0.77 vs. −0.75). For two-state thermophilic
proteins, the correlation between all considered parameters (L, Vasa/Sasa, ln(AbsCO) and Rg) is better
than for two-state mesophilic proteins: −0.92 vs. −0.60 for L, −0.92 vs. −0.78 for Vasa/Sasa, −0.93 vs.
−0.85 for ln(AbsCO), and −0.88 vs. −0.60 for Rg.
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Figure 8. Correlations of the logarithm of the unfolding rate of the two- and multi-state thermophilic
and mesophilic proteins with structural parameters: L (length of the protein), Vasa/Sasa, ln(AbsCO),
and Rg. There is a line approximation of points and its equation: red line corresponds to thermophilic
proteins and blue line to mesophilic proteins. R2 is a linear approximation reliability.
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Table 8. Correlations between the logarithm of the unfolding rate (ln(ku)) and structural parameters (L,
Vasa/Sasa, ln(AbsCO) and Rg) for two-state and multi-state thermophilic and mesophilic proteins.

Correlations with
ln(ku)

All (Two +Multi) Two-State Multi-State
Thermophile Mesophile Thermophile Mesophile Thermophile Mesophile

Number of proteins 10 32 8 21 2 11
L −0.83 −0.64 −0.92 −0.60 − −0.27

Vasa/Sasa −0.77 −0.75 −0.92 −0.78 − 0.09
ln(AbsCO) −0.74 −0.83 −0.93 −0.85 − −0.35

Rg −0.87 −0.66 −0.88 −0.60 − −0.47

* Correlations above 0.75 are shown in bold.

The thermophilic proteins are enriched with Lys, Arg, and Val, in comparison with the mesophilic
proteins, and enriched in Lys, Asp, Ala, and the mesophilic proteins contain more Asp, Asn, Ser, and
Thr, in comparison with the thermophilic proteins (Figure 9). The same can be said about two-state
thermophilic and mesophilic proteins. These data are also consistent with those that we obtained
earlier in the study of 373 pairs of structurally similar thermophilic and mesophilic proteins [27].
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4. Discussion

In this paper, we tried to find parameters that are important for predicting the protein unfolding
rates. For this, the database consists of 108 proteins with known unfolding and folding rates, and such
structural parameters as L, ln(AbsCO), Vasa/Sasa, and Rg were considered.

The good correlation (0.79) between the logarithm of the unfolding rate and protein stability was
observed for 108 proteins.

First, we divided the proteins in our database into two-states and multi-states. On average,
the logarithms of the folding and unfolding rates are higher for two-state proteins, in comparison with
multi-state proteins. A good correlation (not lower than 0.70) for the logarithm of the folding and
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unfolding rates for two- and multi-state proteins was observed. It has been shown that the logarithm
of the unfolding rate of two-state proteins correlate better with Vasa/Sasa (−0.79) and ln(AbsCO) (−0.87),
and the logarithm of the unfolding rate of multi-state correlates better with L (−0.71).

Then, we separately studied bacterial and eukaryotic proteins from our database. It has been shown
that two-state bacterial proteins fold and unfold faster than two-state eukaryotic proteins, and multi-state
eukaryotic proteins fold and unfold faster than multi-state bacterial proteins. The logarithm of the
unfolding rate of two-state bacterial proteins correlates better with ln(AbsCO) (−0.86) and Rg (−0.64),
and eukaryotic proteins correlate better with L (−0.75). For multi-state proteins, the following picture
is observed: the logarithm of the unfolding rate of bacterial proteins correlates better with Rg (−0.58),
and eukaryotic proteins correlate better with L (−0.77), Vasa/Sasa (−0.69), and ln(AbsCO) (−0.81).

Finally, we separately studied the thermophilic and mesophilic bacterial proteins from our database.
There is correlation of the logarithm of the unfolding rate with protein stability for thermophilic
(0.90) and mesophilic proteins (0.73). It has been shown that the logarithm of the unfolding rates
of thermophilic proteins are about two orders of magnitude lower than that of mesophilic proteins,
but the logarithm of the folding rates of thermophilic and mesophilic proteins are almost the same.
The logarithm of the unfolding rate of two- and multi-state thermophilic proteins correlate better
with all considered structural parameters (L, Vasa/Sasa, ln(AbsCO) and Rg), in comparison with the
mesophilic proteins.

We have tried to find out which parameters are most important for the prediction of the unfolding
rates for proteins from different structural classes (α, β, α/β and α + β); proteins of different origins
(bacterial and eukaryotic); and proteins from different organisms (thermophilic and mesophilic).

5. Conclusions

Thus, it has been shown that there is a good correlation between the logarithm of the unfolding
and folding rates (0.79) and between the logarithm of the unfolding rate and proteins stabilities (0.79)
for 108 proteins. The correlation between the unfolding and folding rates is better for: two-state
(0.78), in comparison with multi-state (0.73) proteins; α and β proteins (0.78 and 0.75), in comparison
with α/β and α + β protein (0.59 and 0.60) structural classes; eukaryotic (0.75), in comparison with
bacterial (0.73) proteins; and mesophilic (0.76), in comparison with thermophilic (0.73) proteins.
The structural parameter ln(AbsCO) better correlates with the logarithm of the unfolding rate for:
all 108 proteins; proteins from α and β structural classes; and bacterial, eukaryotic, and mesophilic
proteins, in comparison with other parameters (L, Vasa/Sasa and Rg).

Supplementary Materials: The following are available online: http://www.mdpi.com/2218-273X/10/2/197/s1.
Table S1. Logarithm of folding and unfolding rates and some structural parameters for 108 proteins. Table S2.
Average values of different parameters for four structural classes of proteins (α, β, α/β and α + β).
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